强化SBR工艺对低浓度城市生活污水脱氮除磷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前应用较多的常规生物脱氮除磷工艺由于污泥混合培养使得系统存在碳源、泥龄、硝酸盐等矛盾,导致氮、磷不能同时高效稳定去除;尤其利用常规工艺处理低浓度废水时,系统会长期在低有机负荷状态下运行,无法为微生物提供足够的养分,降低微生物活性,从而影响污染物达标排放。本实验在工程实验条件下,采用新型废水生物脱氮除磷工艺对低浓度城市生活污水的处理进行了研究,旨在提高处理效率,简化运行操作,实现有机物、氮、磷等污染物同时达标排放。
     本研究在总容积为165m3的BICT装置上,对实际条件下BICT工艺处理低浓度城市污水的特性进行了初步研究,并在运行过程中发现,污泥的混合培养可能并非是制约低浓度生活污水中氮磷处理达标的主要因素,因此利用BICT工艺设备,进行了具有污泥转移的SBR工艺(强化SBR)处理低浓度废水的研究。主要得到以下结论:
     (1)BICT工艺能够在处理能力由190m3/d提高到260m3/d,水力停留时间为13.67h,进水有机负荷为0.35kgCOD/m3.d条件下可以达到较好的出水效果。泥龄为15天,周期为4.5h,充水比为1/2,污泥回流比为30%,系统COD、氨氮、TN、TP出水浓度分别为45mg/l、4.1mg/l、8.6mg/l、0.1mg/l,去除率分别为65%、60%、18%、88%,出水可达GB18918-2002一级A标准。
     (2)采用具有污泥转移功能SBR工艺在不影响处理达标前提下能够有效提高处理能力。采用30%的污泥回流比可将处理能力由240吨/天提高到310吨/天;此时系统水力停留时间为8.52h,进水有机负荷为0.5kgCOD/m3.d,系统运行模式为:进水+进水曝气+曝气+沉淀+出水,相应的时间为30min、30min、30min、30min、60min,运行周期为3h。此条件下出水COD、氨氮、TN、TP浓度分别为45mg/l、0.3mg/l、7.9mg/l、0.17mg/l,去除率分别为70%、98%、48%、87%,出水可达GB18918-2002一级A标准。
     (3)污泥转移可提高系统反应阶段的污泥浓度,30%污泥回流比下进水结束后SBR反应器中的污泥总量比无污泥转移的情况提高10%;出水阶段可降低反应器中的污泥总量,有利于增加充水比。这是提高系统处理能力的重要原因。
     (4)污泥转移可改善污泥沉降性能,30%的污泥回流比下系统污泥SVI值由无污泥转移时的140降低为93左右;还可改善系统除磷性能,实现聚磷菌强化除磷。这表明在系统中设置厌氧生物选择区能强化释磷条件、筛选絮凝性强的微生物,是十分必要的。
As conventional biological nitrogen and phosphorus removal processes with carbon、sludge age、nitrate and other issues which makes the N, P highly efficient and stable remove poorly at the same time,due to the same mixed-culture microorganism in the system;In particular, when using conventional process to treat the low concertaion urban sewage, the system will be in the low load state, which can not provide sufficient nutrients for micro-organisms, so that more of these conflicts intensified. In the works conditions, This experiment will use new biological process for the low-concentration wastewater treatment, in order to improve the efficiency、simplify the operation and to ensure that pollutants can be discharged standard.
     Utilize the BICT device, the total volume is 165 m3 , which carried out the preliminary study about dealing with the low concentrations sewage. At the same time, we found that sludge mixed culture may not be the main constraints factors to deal with low concentration sewage,so use of BICT equipment to treat low concentration wastewater with enhanced SBR process. The experimental results as follows:
     (1) The BICT process has good effect at handling capacity from 190 m3/d to 260 m3/d、HRT 13.67h and influent organic load 0.35kgCOD/m3.d. Under the controlled conditions: SRT is 15d, cycle is 4.5h,filling rate is 1/2,recycling rate of sludge is 30%;The average removal rate of COD、NH3、TN、TP are 65%、60%、18%、88%, and the Effluent concentration up to GB18918-2002 grade A standards.
     (2) the SBR process with sludge transfer (enhance SBR process) can effectively increase its handling capacity without affecting the processing. Using 30% of the sludge reflux ratio can raise handling capacity from 240 T/d to 310 T/d, when the HRT is 8.52h, the organic load is 0.5kgCOD/m3.d,and Under the controlled conditions: filling(30min), filling/aeration(30min), aeration(30min), sedimentation(30min), decanting(60min); The effluent COD、ammonia nitrogen、TN、TP concentrations are 45mg/l、0.3mg/l、7.9mg/l、0.17mg/l,The average removal rate of COD、NH3、TN、TP are 70%、98%、48%、87%, and the Effluent concentration up to GB18918-2002 grade A standards.
     (3) Sludge transfer in the system can improve the response phase of the sludge concentration, and can reduce the decanting phase of the sludge concentration, which is one of the main reasons to improve the handling capacity.
     (4) Sludge transfer could improve the performance of sludge settlement;Using 30% of the sludge reflux ratio, Sludge settlement index can reduce from 140 to 93. Sludge transfer can also improve Phosphorus Removal Performance,to achieve PAOs’enhanced phosphorus removal. The above two points just show that the enhanced SBR’s anaerobic biological selector not only provide places for PAOs to achieve enhanced phosphorus release, but also filter out the strong flocculation microbial.
引文
[1]国家环境保护总局,国家质量监督检验检疫总局.GB18918-2002.城镇污水处理厂污染物排放标准[S].北京:中国标准出版社,2002.
    [2]江苏省环境保护厅,江苏省质量技术监督局. DB32.江苏省地方标准《太湖地区城镇污水处理厂及重点工业行业主要水污染物排放限值》[S],2007.
    [3]曹贵华,黄勇,潘杨.常规生物脱氮除磷工艺中的问题及对策[J].水处理技术,2009,25(3):102-106.
    [4]李红瑛,陈卫,孙敏.A/O-MBR处理低浓度生活污水的试验研究[J].中国给水排水,2007,23(3):96-98.
    [5] C.P.Leslie,Jr.Glen T.Daigger,Henry C.Lim(张锡辉,刘勇弟译).废水生物处理[M].北京:化学工业出版社,2003.
    [6]李勇.间歇活性污泥法脱氮除磷工艺的改进及试验研究[D](硕士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [7]沈耀良,王宝贞.废水生物处理新技术——理论与应用(第二版)[M].北京:中国环境科学出版社,2006.
    [8]李建政.环境工程微生物学[M].北京:化学工业出版社,2004.
    [9]王毓仁.提高废水生物硝化效果的理论探讨及工艺对策[J].给水排水,1994,8:30~33.
    [10]许乐中.pH值碱度对脱氮除磷效果的影响及其控制因素[J].给水排水,1996,22(1):10~13.
    [11]潘杨,黄勇.单级生物膜法脱氮机理及影响因素[J].苏州城建环保学院学报,2000,13(4):90~91.
    [12] Neufeld R.D.Phenol and Free Ammonia Inhibition to Nitrosomonas Activity[J].Wat.Res,1980,14:1695~1703.
    [13] Comcan Y, Hall KJ. Biochanism Modle for Enhanced Biological Phosphorus Removal[J]. Water Res.1986,20:1511-1521.
    [14] Mion T, Matsuo T. Basic Mechanism of Biological Phosphorus Removal Process[J].Wat.Pollut.Res.1984,10:605-609.
    [15] Bordacs K, Chicsa SC. Carbon Flow Patterns in Enhanced Biological Phosphorus Accumulating Activated Sludge Cultures[J].Wat.Sci.Tech.,1989,21:387-396.
    [16] Comeau Y.et al. Phosphate Release and Uptake in Enhanced Biological Phosphorus Removal from Wastewater[J]. Journal WPCF, 1987, 59:707-715.
    [17] Suzuki M, Yoon C.H. Kinetics of Phosphorus Release and Uptake by Microorganisms under Cyclic Anaerobic/Aerobic Conditions-experimental Study[J]. Wat.Sci.Tech, 1989,21:1717-1720.
    [18]朱怀兰,史家梁,徐亚同. SBR生物除磷工艺的研究[J],上海环境科学,1993,12(8) .
    [19]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997, 13(3).
    [20]马文漪等.环境微生物工程[M].南京:南京大学出版社,1998.
    [21]环境工程手册(水污染防治卷) [M].高教出版社,1996.
    [22]环境工程手册(水污染防治卷),高教出版社,1996.
    [23]郑兴灿,李亚新著.污水除磷脱氮技术[M].中国建筑出版社,1998.
    [24]徐乐中. PH值碱度对脱氮除磷效果的影响及控制方法.给水排水,1996, 22.
    [25]徐亚同.废水生物除磷.环境科学研究.1994,7(5).
    [26]华光辉,张波.城市污水生物除磷脱氯工艺中的矛盾关系及对策[J].给水排水,2000,26(12):1-4.
    [27]李燕峰,管真真,郭方铮.临沂污水处理厂除磷脱氮工艺改造成果介绍[J].科技咨询导报,2007,26:113-114.
    [28] H.Y.Chang,C.F.Ouyang. Improvement of nitrogen and phosphorus removal in the anaerobic-oxic-anoxic-oxic process by stepwise feeding[J].Wat.Sci. Tech, 2000 ,42(3/4):89-94.
    [29]杨殿海,宋拥好,谭巧国等.低碳源、低能耗型改良A2/O工艺的脱氮除磷研究[J].中国给水排水, 2006,22(23):18-21.
    [30]谭佑铭、罗启芳.不同碳源对固定化反硝化菌脱氮的影响[J].卫生研究,2003,32(3):95-97.
    [31]王荣斌,李军,张宁等.污水生物除磷技术研究进展[J].环境工程,2007,25(1):84-88.
    [32] M C M van Loosdrecht, F A Brandse, A C deVries. Upgrading wasterwater treatment process for integrated nutrient removal the BCFS process[J].wat Sci Tech.,1998,37(9):209-217.
    [33] Bortone G, Saltarelli R , Alonso V , et al. Biological anoxic phosphorus removal-the Dephanox process [J].Water Science and Technology , 1996 ,34 (122) :119-128.
    [34]李金页,郑平,梅玲玲.反硝化除磷工艺及其特点[J].科技通报,2006,22(6):882-886.
    [35]毕学军,张波.倒置A2/O工艺生物脱氮除磷原理及其生产应用[J].环境工程,2006,24(3):29-31.
    [36]王琪,刘年丰,张杰等.改进倒置A2/O工艺处理生活污水试验研究[J].环境污染与防治,2007,29(5):361-363.
    [37] K.-H. Ahn et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process[J].DesaIination 2003,157:345-352.
    [38]袁丽梅,张传义,张雁秋等.交替式缺氧/厌氧膜生物反应器的脱氮除磷效能[J].中国给水排水,2006,22(23):14-17.
    [39] S.Tsuneda et al. Simultaneous nitrogen and phosphorus removal using denitrifying phosphate-accumulating organisms in a sequencing batch reactor[J]. Biochemical Engineering Journal,2006,27:191–196.
    [40]聂熹,马红梅,郑冲等.两级序批式活性污泥法生物除磷脱氮工艺的优点[J].现代商贸工业,2007,19(9):289-291.
    [41]吉芳英,罗固源.排除厌氧富磷污水生物化学除磷脱氮ERP-SBR系统研究[J].水处理技术,2005,31(1):57~61.
    [42]王淑梅、刘俊新.厌氧-立体循环一体化氧化沟除磷脱氮工艺中影响厌氧释磷的因素研究[J].环境污染治理技术与设备,2006,7(5):48-53.
    [43]吴剑,王世和,杨小丽,施颖.MB(A2/O)反应器处理城市污水[J].东南大学学报,2007,37(1):144-147.
    [44]吉芳英,左宁,胡玉琴等.LSP&PNR工艺的脱氮除磷和污泥减量性能研究[J].中国给水排水,2007,23(3):35-39.
    [45]董滨,梁娅,高廷耀等.活性污泥一生物膜法系统的脱氮除磷效果研究[J].同济大学学报,2006,34(8):1066-1069.
    [46]郝赫,孙力平,张轶凡等.组合填料改良MUCT工艺除磷脱氮特性研究[J].天津城市建设学院学报,2007,13(1):50-53.
    [47]张杰,刘年丰,丁峰等.两级A/O工艺处理生活污水脱氮除磷试验[J].工业用水与废水,2007,38(1):35-39.
    [48]聂喜,田曦.两级SBR生物除磷脱氮工艺效果实验研究[J].长春工程学院学报,2006,7(1):39-41.
    [49]蒋山泉,汤琪,郑泽根.三级SBR除磷脱氮工艺处理生活污水[J].重庆大学学报,2007,30(3):125-127.
    [50] Jens Peter Keren-Jespersen,Mogens Henze,et al. Biological phosphorus release and uptake under alternation anaerobic and anoxic conditions in a fixed-film reactor[J].Wat Res ,1994 ,5(28) :1253 - 1255.
    [51]邹伟国等.新型双污泥脱氮除磷工艺处理生活污水[J].中国给水排水,2004,20(6):16-18.
    [52]任南琪,吴永志,王秀蘅.新型反硝化脱氮除磷工艺及其影响因素研究[J].哈尔滨商业大学学报,2006,22(6):20-23.
    [53] Huang Yong, Li Yong, Pan Yang, BICT Process for Biological Nitrogen and Phosphorus Removal[J], Water Science and Technology, 2004(50)6:179~188.
    [54] Hao X D.et al. contribution of P-Bacteria in BNR process to oveall effects on the environment[J]. Water Science and Technology,2001,44(1):67-76.
    [55]黄勇,李勇,潘杨.双循环两相生物处理工艺的脱氮除磷研究[J].中国给水排水,2003,19(10):44~46.
    [56]李勇,黄勇,潘杨.双循环两相生物处理工艺工程应用的探讨[J] .环境污染与防治,2006,28(3):218~221.
    [57]李勇,黄勇.泥龄对生物除磷效率影响的分析[J].苏州城建环保学院学报,2002,14(1):16~21.
    [58]杨志斌,黄勇.BICT工艺脱氮特性及运行控制中试试验.苏州科技学院硕士学位论文[D],2007.
    [59]薛燕,黄勇.BICT工艺除磷特性及运行控制中试试验.苏州科技学院硕士学位论文[D],2007.
    [60]于淼,黄勇.BICT工艺处理城市污水的特性及运行控制研究.苏州科技学院硕士学位论文[D],2008.
    [61]兰中仁.温度对氨氮废水硝化动力学参数影响[J].四川环境,2005,24(3):4~7
    [62]吴成强.低温生物膜和活性污泥的生物活性比较[J].应用与环境生物学报,2004,10 (5):647~650
    [63]张建丰.活性污泥法工艺控制[M].中国电力出版社,2007.
    [64]周雹.活性污泥工艺简明原理及设计计算[M].中国建筑工业出版社,2005.
    [65] Rensink J.H. Principles of phosphate and nitrogen removal process, incorporated in activated sludge treatment systems. In First Dutch-Tapanese workshop on the treatment of municipal wastewater, RWZI, 2000, 92~103.
    [66]吴俊奇,汪惠贞.活性污泥法2号模型(ASM2)简介[J].给水排水,1998,24, 6:13~18.
    [67]黄勇,李勇,潘扬.几种废水特性鉴定试验方法的比较研究[J].苏州城建环保学院学报,2000,12, 3:9~17.
    [68] Metcalf&Eddy,Inc.Wastewater Engineering Treatment and Reuse(Fourth Edition)[M].清华大学出版社,2003.
    [69]付乐,李树苑,钱望新登.低碳源城市生活污水的强化脱氮除磷工艺研究[J].中国给水排水,2009,25(1):26-29.
    [70] Wentzel,M.C ,Lotter,L.H., Ekama,G. A. et al., Evaluation of biologicalmodels for biological excess phosphourus removal[J]. Wat Sci Tech,1991,23 (4/6) ,567~576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700