碳酸钠溶液解毒铬渣及堆肥修复铬污染土壤的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬渣及铬污染土壤中含有的Cr(Ⅵ)具有较强的毒性,对环境和人体造成极其严重的危害。在铬渣解毒及铬污染土壤修复过程中,降低Cr(Ⅵ)含量或将Cr(Ⅵ)固定是关键。本课题研究了三种以碳酸钠溶液浸出铬渣为主体的铬渣解毒工艺及一种堆肥修复铬污染土壤的技术,并根据浸出毒性试验对解毒和修复效果进行了评价,同时对堆肥修复铬污染土壤的机理进行了探讨。主要研究内容和结论如下:
     通过碳酸钠溶液堆浸法解毒铬渣的试验研究,明确了浸出剂种类、碳酸钠浓度、铬渣粒度、时间对浸出率的影响规律,在最佳实验条件下,解毒后铬渣的毒性浸出液中Cr(Ⅵ)和总Cr浓度分别为4.31和4.53mg/L;通过碳酸钠溶液堆浸-硫酸亚铁还原联合解毒铬渣的实验研究,明确了循环次数对浸出液中碳酸钠浓度、Cr(VI)浓度和浸出率的影响规律。铬渣粒度显著影响其解毒效果,粒度<0.15mm时,最终解毒渣的毒性浸出液中Cr(VI)和总Cr浓度分别为1.98和2.45mg/L,低于HJ/T301-2007规定的限值。解毒前后的铬渣物相分析结果与热力学分析基本一致;通过碳酸钠溶液搅拌浸出-硫酸亚铁还原联合解毒铬渣的实验研究,明确该实验条件下浸出和还原在处理效果中各自所占的比例大小;解毒后铬渣的毒性浸出液中Cr(VI)和总Cr浓度分别为6.38和10.14mg/L,远高于HJ/T301-2007规定的限值。
     通过堆肥修复铬污染土壤的实验研究,明确了修复剂、搅拌、水分含量和肥含量对土壤修复效果的影响规律,弄清了修复过程中土壤中铬形态的转化规律;在最佳实验条件下,修复后土壤的毒性浸出液中Cr(VI)和总Cr浓度分别为0.28和1.13mg/L,低于GB8978-1996规定的限值,且在120天内修复效果稳定。
     在堆肥修复铬污染土壤机理的研究中,确定了堆肥中有机物是堆肥修复过程中的主导因素,并初步筛选出了肥中有效基团为醇羟基、羧酸基和酰胺基,醇羟基是通过和土壤中Cr(VI)发生氧化还原反应而直接起作用的,酰胺基和羧酸基是通过增强土壤中有机组分的修复效果而间接起作用的。
Hexavalent chromium (Cr(VI)) present in the chromite ore processing residue (COPR) and chromium-contaminated soil causes serious damage to the environment and human health for its high toxicity. It is critical to reduce the content of Cr(VI) or to fix Cr(VI) in the process of COPR detoxification and chromium-contaminated soil remediation. We studied three kinds of COPR detoxification techniques using Na2CO3 solution as the leaching reagent and one kind of chromium-contaminated soil remediation technique by compost, evaluated the detoxification and remediation effect using toxicity characteristic leaching procedure (TCLP), and investigated the remediation mechanism of chromium-contaminated soil by compost. Main researches and conclusions are as follows:
     Through the experimental study on COPR detoxification by using Na2CO3 solution as heap-leaching reagent, the influences of factors, such as leaching reagents, Na2CO3 concentration, particle size of COPR and leaching duration time, on the leaching rate were investigated. Cr(VI) and total Cr concentrations in the leachate of TCLP of the detoxified COPR are 4.31 mg/L and 4.53 mg/L respectively under the optimal expermental conditions. Based on the experimental study on COPR detoxification by the combination process of heap-leaching using Na2CO3 solution as leaching reagent and Cr(VI) reduction by FeSO4, the effects of cycle times on Na2CO3 concentration, pH, Cr(VI) concentration in the leaching solution and the leaching rate were studied. The initial particle size of COPR has a great influence on the detoxification effect. Cr(VI) and total Cr concentration in the leachate of TCLP of the final detoxified COPR (Particle size<0.15mm) is 1.98 mg/L and 2.45 mg/L, respectively, which is below the regular limit of HJ/T301-2007. XRD analyses of the untreated and detoxificated COPR approximately are agreement with the thermodynamic calculation. According to the experimental study on COPR detoxification by the combination process of stirring-leaching using Na2CO3 solution as the leaching reagent and Cr(VI) reduction by FeSO4, the proportions of leaching and reduction of the total detoxification effect were researched under the expermental conditions. The Cr(VI) and total Cr concentrations in the leachate of TCLP of the final detoxificated COPR are 6.38 mg/L and 10.14 mg/L respectively, which is beyond the regular limit of HJ/T301-2007.
     Effects of remediation reagents, the content of H2O and compost, and stirring on soil remediation efficiency were identified, and the transformation of forms of Cr in the soil remediation process was studied by the experimental study on chromium-contaminated soil remediation by compost. The Cr(VI) and total Cr concentrations in the leachate of TCLP of the remediated chromium-contaminated soil are 0.28 mg/L and 1.13 mg/L respectively, which is a little bit lower than the regular limit of GB8978-1996, whats more the remediation effect is stable after 120 days.
     In the study on remediation mechanism of chromium-contaminated soil by compost, it is determined that the organic materials present in the compost are the key factors influencing the remediation effect, and the effective groups are Hydroxyl group, acidamide group and carboxylic acid group. Chemical and FTIR spectroscopy analyses show that hydroxyl group directly acts on Cr(VI) in soil by redox reaction, and acidamide group and carboxylic acid group indirectly act on Cr(VI) in soil by strengthening remediation effect of organic materials in soil.
引文
[1]纪柱.铬渣的物相组成及其对铬渣解毒和综合利用的影响[J].化工环保,1984,4(1):37-41.
    [2]丁翼.铬化合物生产与应用[M].北京:化学工业出版社,2003:272-306.
    [3]陈振林,黄志强.二氧化碳常温浸提法回收铬渣中铬的研究[J].无机盐工业,2006,38(8):42-44.
    [4]纪柱,王承武,赵巧珍.铬渣的物相组成及鉴定[J].无机盐工业,1981,13(6):51-56.
    [5]Rai D, Sass B M, Moore D A. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide[J]. Inorganic Chemistry,1987,26(1):345-349.
    [6]潘金芳.化工铬渣中铬的存在形态研究[J].上海环境科学,1996,15(3):15-17.
    [7]Korallus. Chromium compounds:occupational health, toxicological and biological monitoring[J]. Toxicological and Environment Chemistry,1986,1(12):47-59.
    [8]张汉池,张继军,刘峰.铬的危害与防治[J].内蒙古石油化工,2004,30(1):72-73.
    [9]Lan S G, Yin H I, D i Y A, et al. Detoxication techniques for chromium slag [J]. Research of Environmental Sciences,1998,11 (3):53-56.
    [10]景学森.铬渣Cr(Ⅵ)浸出特性及铬渣酸溶湿法解毒工艺研究[D].陕西杨凌:西北农林科技大学,2007:5-6.
    [11]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用[J].再生资源研究,2004,(6):34-38.
    [12]Chunming S, Ralph D L. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite[J]. Environmental Science & Technology.2005,39(1): 6208-6216.
    [13]Cao J S, Zhang W X. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles[J]. Journal of Hazardous Materials B,2006, 132(1):213-219
    [14]Wang T G, He M L, Pan Q. A new method for the treatment of chromite ore processing residues[J]. Journal of Hazardous Materials,2007,149(1):440-444.
    [15]Zhang D L, He S B, Dai H W, et al. Treatment of Chromite Ore Processing Residue by pyrolysis with rice straw[J]. Chemosphere,2009,77(1):1143-1145.
    [16]黄双双,黄源伟.42万t铬渣综合治理的研究及其环评要点[J].企业技术开发,2008,27(2):9-12.
    [17]Tinjum J M, Benson C H, Edil T B. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment J]. Science of the Total Environment, 2008,391(1):13-25.
    [18]景学森,杨亚提,蔡木林.铬渣中Cr(VI)在盐溶液中的浸出机理[J].西北农林科技大学学报(自然科学版),2007,35(8):151-154.
    [19]Sreeram K J, Tiwari M K, Ramasami T. Some studies on recovery of chromium from chromite ore processing residues[J]. Indian Journal of Chemistry Section A-Inorganic Bio-inorganic Physical Theoretical & Analytical Chemistry,2003, 42(9):2447-2454.
    [20]Mollah M Y A, Tsai Y N, Hess T R. An FTIR SEM investigation of solidification stabilization of chromium using Portland Cement type V and type IP[J]. Journal of Hazardous Materials,1992,30(1):173-183.
    [21]Kindness A, Macias A, Glasser F P. Immobilization of chromium in cement matrices [J]. Waste Management,1994,14(1):3-11.
    [22]Deok H M, Mahmoud W, Agamemnon K, et al. Evaluation of the treatment of chromite ore processing residue by ferrous sulfate and asphalt[J]. Journal of Hazardous Materials,2009,166(1):27-32.
    [23]Nino V A, Marina K A, Tamar M K, et al. Effect of chromium(VI) action arthrobacter oxydans. Current Microbiology [J],2004,49(1):321-326.
    [24]Rocio R R,Carlos C M, Mario A R, et al. Cr(VI) reduction in a chromate-resistant strain of Candida moltosa isolated from leather industry [J]. Antonie Van Leeuw-enhoek,2004,85(1):63-68.
    [25]谷孝保,罗建中,陈敏.铬渣应用于烧结炼铁工艺的研究及实践[J].环境工程,2004,22(4):71-72.
    [26]薛文东,谢静,李勇,等.利用铬渣制备耐火材料[J].稀有金属材料与工程,2009,38(增刊2):1226-1228.
    [27]张茂山,肖勇,朱元洪,等.铬渣治理技术及应用现状[J].中国资源综合利用,2007,25(10):16-18.
    [28]刘亚辉,马书文,刘亚,等.铬渣的处理及利用[J].无机盐工业,2008,40(8):53-55.
    [29]Li Y G, Gong Q Y. Use of chromic slags for manufacturing microcrystal vitreous ceramics as decorative building panels[J]. Chinese Science Abstracts Series B, 1995,14(2):72.
    [30]Alexander K, Paoal P, Mario P. The effect of CraO3 as a nucleation agent in iron-rich glass-ceramics[J]. Journal of the European Ceramic Society,1999, 19(1):2641-2645.
    [31]Zhuang W Q. Dispose and Utilize of Solid Waste[M]. Beijing:Chemical Industry Press,2001:87-132.
    [32]刘长河,兰铁刚.铬渣堆场地下混凝土防渗墙技术及应用[J].无机盐工业,2005,37(3):45-47.
    [33]Seaman J. In situ Cr6+ reduction with coarse-textured oxide-coated soil and aquifer systems using Fe2+ solutions[J]. Environmental Science & Technology, 1999,33(6):938-944.
    [34]Franco D V, Da Silva L M, Jardim W F. Reduction of hexavalent chromium in soil and ground water using zero-valent iron under batch and semi-batch conditions [J]. Water, Air, and Soil Pollution,2009,197(1-4):49-60.
    [35]Zhang P, Jin C J, Zhao Z H, et al.2D crossed electric field for electrokinetic remediation of chromium contaminated soil[J]. Journal of Hazardous Materials, 2010,177(1-3),1126-1133.
    [36]柴立元,曾娟,苏艳蓉,等.一株Cr(VI)还原菌的鉴定及其还原特性[J].中南大学学报(自然科学版),2011,42(2),300-304.
    [37]Liviana L, Alja M, Arnold P, et al. Soil humic acids may favour the persistence of hexavalent chromium in soil[J]. Environmental Pollution,2009,157(6): 1862-1866.
    [38]Higgins T E. In situ reduction of hexavalent chromium in alkalinesoils enriched with chromite ore processing residue[J]. Journal of Air & Waste Management Association,1998,48(1):1100-1106.
    [39]Duan C G, Zhang X H, Zhu Y N, et al. Potential of Leersia hexandra Swartz for phytoectraction of Cr from soil[J]. Journal of Hazardous Materials,2011, 188(1-3):85-91.
    [40]Antiochla R, Chmpanella L, Ghezzi P, et al. The use of vetiver for remediation of heavy metal soil contamination [J]. Analytical and Bioanalytical Chemistry, 2007,388(4):947-958.
    [41]王兴润,李丽,刘雪,等.铬渣治理技术的应用进展及特点分析[J].中国给水排水,2009,25(4):10-14.
    [42]余宇楠.国内外铬浸出渣治理方法概述[J].昆明冶金高等专科学校学报,1998,14(2):48-50.
    [43]李斌Na2CO3-CO2-H2O体系处理铬渣的工艺研究[D].湖南长沙:中南大学,2010:22-33.
    [44]田国宾.低浓度铬污染土壤与餐厨垃圾混合堆肥研究D].山东青岛:中国海洋大学,2009:33-39.
    [45]姚岚.污泥堆肥中重金属的形态变化及农用富集研究[D].四川成都:西南科技大学,2008:19-51.
    [46]吴军.生活垃圾填埋场腐殖垃圾腐殖质表征及重金属生物有效性初步研究[D].上海:同济大学,2005:61-104.
    [47]周建红,刘存海,张学忠.含铬污泥的堆肥化处理及其复合肥的应用效果[J].西北轻工院学院学报,2002,20(2):8-10.
    [48]陈寒松,刘丽娜,黄巧云,等.堆肥修复土壤金属污染研究进展[J].应用与环境生物学报,2008,14(6):898-904.
    [49]Huang Q F, Gao D, Ding D R, et al. Remediation of chromium-polluted soil using municipal solid waste compost[J]. Chin J Appl Ecol,2002,13 (2): 167-170.
    [50]Hettiarachchi G M, Ryan J A, Chaney R L, et al. Sorption and desorption of cadmium by different fractions of biosolids-amended soils[J]. Journal of Environmental Quality,2003,32 (5):1684-1693.
    [51]Geelhoed J S, Meeussen J C L, Hillier S, et al. Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue[J]. Geochimica et Cosmochimica Acta, 2002,66(22):3927-3942.
    [52]Geelhoed J S, Meeussen J C L, Roe M J, et al. Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue[J]. Environmental Science and Technology, 2003,37(14):3206-3213.
    [53]盛灿文,柴立元,王云燕,等.铬渣的湿法解毒研究现状及发展前景[J].工业安全与环保,2006,32(2):1-3.
    [54]Jin L, Wang X J, Shen Y S, et al. Using composted refuse to reclaim paddy soil I: Effects on physical and chemical properties of paddy soil[J]. Chinese Journal of Applied & Environmental Biology,2003,9(3):266-270.
    [55]Beavogui M. Effects of compost extract on disease suppression and growth of potato [C]. Composting and Compost Utilization International Symposium,2002.
    [56]马俊伟.堆浸工艺中矿岩散体介质的渗透性能研究[D].湖南长沙:中南大 学,2005:19.
    [57]Wazne M, Jagupilla S C, Moon D H, et al. Leaching mechanisms of Cr(VI) from chromite ore processing residue[J]. Journal of Environmental Quality,2008, 37(6):2125-2134.
    [58]天津大学.无机化学(第四版)[M].北京:高等教育出版社,2007:197-199,534.
    [59]Hillier S, Roe M J, Geelhoed J S, et al. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue[J]. The Science of the Total Environment,2003,308(1-3):195-210.
    [60]惠秀娟,孟雪莲,徐成斌,等.沈阳市新城子铬渣堆存区土壤铬污染分布及形态研究[J].气象与环境学报,2009,25(6):64-67.
    [61]伍越寰,李伟昶,沈晓明.有机化学[M].合肥:中国科学大学出版社,2003:244-389.
    [62]丁波,刘艳华,李铮伟,等.乙醇的低温光催化氧化实验研究[J].燃料化学学报,2006,34(2):226-229.
    [63]Lim T T, Tay J H, Wang J Y. Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil [J]. Journal of Environmental Engineering,2004, 130(1):59-66.
    [64]Yang J X, He M Y, Wang G J. Removal of toxic chromate using free and immobilized Cr(VI)-reducing bacterial cells of Intrasporangium sp.Q5-1[J]. World Journal of Microbiology and Biotechnology,2009,25(1):1579-1587.
    [65]桂新安,杨海真,王少平,等.铬在土壤中的吸附解吸研究进展[J].土壤通报,2007,38(5):1007-1012.
    [66]林成谷.土壤学(北方本)[M].北京:农业出版社,1992:1-23.
    [67]森越彩,寺岛元基,田中俊逸,等.腐植酸及其前驱物质的官能团含量和还原容量[J].腐植酸,2004,1(6):47-48.
    [68]卢静,朱琨,侯彬,等.腐植酸与土壤中重金属离子的作用机理研究概况[J].腐植酸,2006,1(5):1-5.
    [69]Chang Chien S W, Wang M C, Huang C C. Reactions of compost-derived humic substances with lead, copper, cadmium, and zinc[J]. Chemosphere,2006,64(8): 1353-1361.
    [70]李勇,张东,魏巍.腐植酸树脂制备及其对Cr(Ⅵ)和Cr(Ⅵ)的吸附性能[J].电镀与精饰,2008,30(3):32-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700