基于压缩感知的图像编解码方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉传感器通常以远超出有效维度对图像信号采样,从而导致了存储和传输的巨大压力。压缩感知理论表明:在某个变换域下稀疏的信号,可以利用优化方法由少量观测数据稀疏重建。这种非自适应的压缩采样将信号中包含的信息凝聚在少量的观测数据上,大幅度地降低了精确重建原始信号所需要的采样数目。压缩感知理论改变了图像信息的获取、传输和识别方式,在图像处理领域获得了巨大的成功。
     在传统压缩感知框架下,通常将高维的图像数据转化为一维向量进行观测,这就破坏了图像数据的高维结构特性,降低了图像信息的获取能力;并且通常假设噪声是均匀的且具有相同分布特性,导致了重建过程的鲁棒性能低下;忽略图像信号在稀疏基下呈现的结构特性,影响了图像重建质量。本文围绕上述问题展开研究,以压缩感知理论为指导,建立了图像信号的二维观测方法,提出了均衡化量化噪声重建模型和小波域分组稀疏模型。论文的主要工作集中在如下几个方面:
     第一,针对现有基于一维的观测无法有效获取图像的二维相关信息的问题,本文提出了图像信号的二维观测方法。通过研究混合编码框架下变换与压缩感知理论框架下观测之间的联系,给出了将图像视频信号的二维变换等效为压缩感知观测的方法,实现了压缩感知方法和传统变换方法的融合,该方法有效地捕捉到信号各个维度上的不同特性,显著地提高了观测过程对图像信号的信息获取能力。实验结果表明,这一方法能有效提升图像的压缩感知重建效果。
     第二,针对现有图像编解码方法中非一致量化带来的噪声问题,利用压缩感知的重建理论,提出了一种均衡化量化噪声重建模型。通过统计不同量化噪声情形下不同图像的最优误差限,建立了量化噪声水平和优化重建误差参数之间的模型。由该模型指导,针对非一致量化器推导了一个新的均衡化误差约束来代替原有的量化噪声误差约束。实验结果表明,均衡化量化噪声模型对非一致量化下的噪声估计有良好效果,显著提升了图像的重建质量。
     第三,小波变换是压缩感知重建过程中常用的稀疏基,针对小波域最低频承载图像能量和高频子带表达图像结构这一特性,提出一类分离式分组方法,建立了基于小波域能量结构特性分组稀疏重建模型;同时利用小波域的零树特性,提出一类交叠式分组方法,建立了基于小波域零树结构的分组稀疏重建模型。上述重建模型较为复杂,为此利用算子分裂法和Proximal方法等优化技术,基于上述两种模型,给出了高效的求解算法。实验结果表明本文所提出的基于分组稀疏的信号重建模型能够较大幅度提高图像主客观质量。
The vision sensors usually sample far beyond the effective dimension of theimage signal, leading to in huge pressure the storage and transmission. CompressiveSensing (CS) provides an efficient way to acquire and reconstruct sparse signals froma limited number of linear sub-Nyquist random measurements. Such non-adaptivecompression information included in the signal samples will be collected on a smallnumber of observation data, greatly reduce the number of samples required by theaccurate reconstruction of the original signal. CS changes the image informationacquisition, transmission, and identification and gets huge success in the field ofimage processing.
     In traditional compressive sensing codec frame,2D images signals usually arerecast to1D vector in the observation procession which leads to lose the highdimensional structure characteristic of image data. In reconstruction procession,traditional compressive sensing codec frame usually ignores different structurecharacters of different image signal sparse bases and cannot robust recovery imagesfrom noise observation. This paper focus on these issues, proposes2D observationmethod for image signals, group sparse model for fitting sparse bases and equalizationquantization noise model for the non-uniform quantization.The main researchfocusing on the following aspects:
     1.For existing one-dimensional observations can not effectively get two-dimensionalinformation of images, this paper presents the method that takes2D CS observation.By studing relationship between the transform of the hybrid coding framework andCS observation, this paper presents the method that takes2D transform of imagessignal equivalent to CS observation and establishes images two dimensional tensorobserving model. This model catches different character of different dimensions ofimages, and improves efficiency the of observation process. The experimental resultsshow that this method can effectively improve the quality of the compressed sensingreconstruction.
     2. This paper proposes an error estimate method based on equalization andquantization noise model for image codec. Based on sparse constraint, establishes amodel between the quantization noise level and the optimization of reconstructionerror parameters. Due to the robust character of CS, it can upgrade the quality of reconstruction when error has been estimated accurately. With designed equalizationmatrix, a new norm constraint which can enhance the quality of CS recoverysignificantly has been shown. And experimental evidence exhibits more gains over CSreconstruction without error estimation.
     3. The wavelet transform is commonly used sparse basis in compressive sensingreconstruction. Due to wavelet transform lowest frequency coefficients take mostenergy of image while high frequency coefficients are sparse and take some importantvision information, this paper proposes a separeated grouping model based on energyfeature of wavelet coefficents; for wavelet coefficients are commonly represented bytree, this paper presents an overlapped grouping model based on wavelet zerotree.These models are complex and the corresponding algorithms based on compositesplitting and proximal method are employed to approach these group sparse models.Experimental results show that proposed models can obviously improve bothobjective and subjective qualities of image recovery.
引文
[1]高文,赵德斌,马思伟.数字视频编码技术原理[M].北京:科学出版社,2010.
    [2] E. J. Candès, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstructionfrom highly incomplete frequency information[J], IEEE Trans on Information Theory, vol.52,no.2,2006, pp.489-509.
    [3] D. Donoho, Compressed Sensing[J], IEEE Trans. Info. Theory, vol.52, no.4,2006, pp.1289–1306.
    [4] E. J. Candès and T. Tao, Near optimal signal recovery from random projections: Universalencoding strategies[J], IEEE Trans on Information Theory, vol.52, no.12,2006, pp.5406–5425.
    [5] E. J. Candès, Compressive sampling[J], Int. Congress of Mathematics,2006, pp.1433-1452.
    [6] R. Baraniuk, Compressive sensing[J], IEEE Signal Processing Magazine, vol.24, no.4,2007,pp.118-121.
    [7] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Compression Standard[M], New York:Van Nostrand Reinhold,1992.
    [8] E. G. Richardson, H.264and MPEG-4Video Compression[M], John Wiley&Sons Ltd,2003.
    [9] W. Sweldens, The lifting scheme: A construction of second generation wavelets[C], Technicalreport of university of south Carolina,1995(6),1995, pp.1-5.
    [10] W. Ding, F. Wu, X. Wu, Sh. Li, H. Li, Adaptive directional lifting-based wavelet transformfor image coding[J], IEEE transaction on Image Processing, vol.16, no2,2007, pp.416-427.
    [11] D. Taubman and M. Marcellin, JPEG2000: Image Compression Fundamentals, Standards,and Practice[M], Kluwer Academic Publishers,2001.
    [12]樊昌信,张甫翊,徐炳祥等.通信原理[M].北京:国防工业出版社,2001.
    [13] P. Feng and Y.Bresler. Spectrum-blind minimum-rate sampling and reconstruction ofmultiband signals[J]. InProc.IEEE Int. Conf. Acoust., Speech, and SignalProcessing(ICASSP), Atlanta,GA,1996.
    [14] Y. Bresler, P. Feng, Spectrum-blind minimum-rate sampling and reconstruction of2-Dmultiband signals[C]. In Proc. IEEE Int. Conf. Image Processing (ICIP), Zurich,Switzerland,1996.
    [15] P.Feng.Universal spectrum blind minimum rate sampling and reconstruction of multibandsignals[D]. PhD thesis,University of Illinois at Urbana-Champaign,1997.
    [16] R.Venkataramani,Y.Bresler. Further results on spectrum blind sampling of2-D signals[C]. InProc.IEEE Int.Conf.Image Processing(ICIP),Chicago,IL,1998.
    [17] M.Vetterli,P.Marziliano,T.Blu.Sampling signals with finite rate of innovation[J]. IEEETrans.Signal Processing,50(6),2002,pp.1417-1428.
    [18] T. Blu, P. L. Dragotti, M.Vetterli, et al. Sparse Sampling of Signal Innovations[J],in IEEESignal Processing Magazine,25(2),2008,pp.31-40.
    [19] I. Maravic and M.Vetterli.Sampling and Reconstruction of Signals with Finite Rate ofInnovation in the Presence of Noise[J], in IEEE Transactions on SignalProcessing,53(8),2005, pp.2788-2805.
    [20] E. J. Candès and T. Tao, Decoding by linear programming. IEEE Trans on InformationTheory[J], vol.51, no.3,2005, pp.4203–4215.
    [21] M. Iwen, Simple Deterministically Constructible RIP Matrices with Sublinear FourierSampling Requirements[C],43rd Annual Conference on Information Sciences and Systems(CISS), Baltimore, MD,2009.
    [22] M. Mishali, Y. C. Eldar, Expected RIP: Conditioning of The Modulated WidebandConverter[C], IEEE Information Theory Workshop on Networking and Information Theory,ITW,2009.
    [23] E. J. Candès, J. Romberg.Practical Signal Recovery from Random projections[J].Proceedings of SPIE Computational Imaging III,2005, pp.76-86.
    [24] E. J. Candès, J. Romberg, T.Tao, Stable signal recovery from incomplete and inaccuratemeasurements[J].Communications on Pure and Applied Math,99,2005, pp.1207-1223.
    [25] E. J. Candès, J. Romberg, Quantitative robust uncertainty principles and optimally sparsedecompositions[J].Foundations of Computational Mathematics,6,2006, pp.227-254.
    [26] E. J. Candès, J. Romberg, T. Tao Robust uncertainty principles:Exact signal reconstructionfrom highly incomplete frequency information[J]. IEEE Transactions on InformationTheory,52,2006, pp.489-509.
    [27] E. J. Candès, M. B. Wakin, An introduction to compressive sampling[J]. IEEE SignalProcessing Magazine,25(2),2008, pp.21-30.
    [28] D Donoho, X. Huo,Uncertainty principles and ideal atomic decomposition[J]. IEEETransactions on Information Theory,47,2001, pp.2845-2862.
    [29] E. J. Candè and J. Romberg, Encoding the Lp ball from limited measurements[C], DataCompression Conference,2006, pp.33-42.
    [30] P. T. Boufounos and R. G.. Baraniuk,1-Bit compressive sensing[C],42nd Annual Conf. onInformation Sciences and Systems,2008, pp.16-21.
    [31] W. Dai, H. V. Pham, and O. Milenkovic, Distortion-rate functions for quantized compressivesensing[C], IEEE Information Theory Workshop on Networking and Information Theory,2009, ITW2009, pp.171-175.
    [32] E. Ardestanizadeh, M. Cheraghchi and A. Shokrollahi, Bit precision analysis for compressedsensing[C], IEEE Inter. Symp. on Information Theory,2009, pp.1-5.
    [33] P. Boufounos and R. Baraniuk, Quantization of sparse representations[C], Proc. DataCompression Conference (DCC),2007, pp.378.
    [34] W. Dai, H. V. Pham, and O. Milenkovic, A Comparative Study of Quantized CompressiveSensing Schemes[C], IEEE Inter. Symp. on Information Theory(ISIT2009),2009, pp.11-15.
    [35] S. J. Wright. Primal-Dual Interior-Point Methods[M], SIAM Publications,1997.
    [36] S. Mehrotra, On the Implementation of a Primal-Dual Interior Point Method[J], SIAM J.Optim. Volume2, Issue4,1992, pp.575-601.
    [37] Y. Nesterov, Interior-point polynomial algorithms in convex programming[M], ANemirovskii,1987.
    [38] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least Angle Regression[J],Annals ofStatistics, vol.32,2004, pp.407–499.
    [39] D. Malioutov, M. C etin, and A. Willsky. Homotopy continuation for sparse signalrepresentation[C], Proceedings of the IEEE International Conference on Acoustics, Speech,and Signal Processing, vol.5,2005, pp.733–736.
    [40] I. Daubechies, M. De Friese, and C. De Mol. An iterative thresholding algorithm for linearinverse problems with a sparsity constraint[J], Communications in Pure and AppliedMathematics, vol.57,2004, pp.1413–1457.
    [41] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for compressedsensing and related problems[J], SIAM J. Imaging Sciences1(1),2008, pp.143-168.
    [42] J. Cai, S. Osher, and Z. Shen. Linearized Bregman iterations for compressed sensing[J], Math.Comp.,2008.
    [43] M. A. Figueiredo, R. D. Nowak and S. J. Wright, Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems[J], Journal ofSelected Topics in Signal Processing: Special Issue on Convex Optimization Methods forSignal Processing, vol.1, no.4,2007, pp.586-598.
    [44] M. Benzi, C.D. Meyer, M. Tuma, a sparse approximate inverse preconditioner for theconjugate gradient method[J], SIAM Journal on Scientific Computing,1996.
    [45] D. L. Donoho, Y. Ysaig, I. Drori etc, Sparse solution of underdetermined linear equations bystagewise orthogonal matching pursuit[J], Technical Report,2006.
    [46] W. Dai and O. Milenkovic, Subspace pursuit for compressive sensing reconstruction[J], IEEETrans. Inform. Theory, vol.55, no.5,2009, pp.2230-2249.
    [47] D. Needell and J. A. Tropp, Cosamp: Iterative signal recovery from incomplete andinaccurate samples[J], Applied and Computational Harmonic Analysis, vol.26, no.3,2009,pp.301–321.
    [48] S. Mallat, and Z. Zhang, Matching pursuits with time-frequency dictionaries[J], IEEE Transon Signal Process, vol.14,1993, pp.3397-3415.
    [49] G. M. Davis, S. G. Mallat and Z. Zhang, Adaptive time-frequency decompositions[J], SPIEJournal of Optima; Engineering, vol.33, no.7,1994, pp.2183-2191.
    [50] Y. C. Pati, R. Rezaiifar, P. S. Krishnaprasad, Orthogonal matching pursuit: recursive functionapproximation with applications to wavelet decomposition[C], in Conference Record of the27th Annual Asilomar Conference on Signals, Systems and Computers, vol.1,1993, pp.40-44.
    [51] L. M. Bregman, The method of successive projection for finding a common point of convexsets[J], Doklady Mathematics, vol.6,1965, pp.688-692.
    [52] K. T. Block, M. Uecker, J. Frahm. Under-sampled Radial MRI with Multiple Coils.IterativeImage Reconstruction Using a Total Variation Constraint[J]. Magnetic Resonance inMedicine,57(6),2007, pp.1086-1098.
    [53] M. Lustig, D. Donoho, John M. Pauly. Sparse MRI: The application of compressed sensingfor rapid MR imaging[J]. Magnetic Resonance in Medicine,58(6),2007, pp.1182-1195.
    [54] Y. Kim, S. Narayanan, et al. Accelerated Three-Dimensional Upper Airway MRI UsingCompressed Sensing[J]. Magnetic Resonance in Medicine,61,2009,pp.1434-1440.
    [55] K. R. Varshney, M. etin, J. W. Fisher, et al. Sparse representation in structured dictionarieswith application to synthetic aperture radar[J]. IEEE Transactions on Signal Processing,56(8),2008, pp.3548-3561.
    [56] X. Xie, Y. Zhang. High-resolution imaging of moving train by ground-based radar withcompressive sensing[J]. Electron Lett,46,(7),2010, pp.529-531.
    [57] A.Budillon, A.Evangelista, G.Schirinzi. Three-Dimensional SAR Focusing From MultipassSignals Using Compressive Sampling[J]. IEEE Trans on Geoscience and Remote Sensing,49,2011,pp.488-499.
    [58] X. Zhu, R. Bamler. Tomographic SAR Inversion by L1Norm Regularization-TheCompressive Sensing Approach[J]. IEEE Transactions on Geoscience and Remote Sensing,(10),2010, pp.3839-3846..
    [59] N. Rao, R. Nowak, S.Wright, Convex approaches to model wavelet sparsity patterns[C], InProc. of ICIP,2011.
    [60] H. Xu, J. Xu, F. Wu, Lifting-based directional DCT-like transform for image coding[J], IEEEtransaction on Circuits and Systems for Video Technology, vol.17, no.10,2007,pp.1325-1335.
    [61] X. Li, B. Yin, Y. Shi, D. Kong, Multiple description image coding using directional wavelettransform in the wavelet domain and based-RKF interpolation[C], IEEE InternationalConference on Computational Intelligence and Security (CIS2006),2006,pp1683-1688.
    [62] S.Ma, W. Yin, Y Zhang, and A.Chakraborty,An efficient algorithm for compressed MRimaging using total variation and wavelets[C]. In proc. of CVPR,2008.
    [63] W. Bajwa, J. Haupt, G. Raz, S. Wright,Toeplitz-structured compressed sensing matrices[C],IEEE Workshop on Statistical Signal Processing (SSP),2007.
    [64] W. Yin, S.Morgan, J F Yang, Y Zhang, Practical Compressive Sensing with Toeplitz andCirculant Matrices[C], In Proc.of VCIP,2007.
    [65] H. Rauhut, Circulant and toeplitz matrices in compressed sensing[C], In Proc. of SPARS'09,2009.
    [66] D. Liang, G. Xu, H. Wang, K. F. King, and L. Ying, Toeplitz random encoding MR imagingusing compressed sensing[C], in Proc. of ISBI,2009,pp.270-273.
    [67] T. T. Do, T. D. Tran, and L. Gan, Fast compressive sampling with structurally randommatrices[C]. In Proc.of ICASSP,2008.
    [68] L. Gan, T. T. Do, and T. D. Tran, Fast compressive imaging using scrambled hadamardensemble[C], In proc. of EUSIPCO,2008.
    [69] Y. Zhang, S. Mei, Q. Chen, Z. Chen, A novel image video coding method based onCompressed Sensing theory[C], Acoustics, Speech and Signal Processing,2008.
    [70] Y. Zhang, S. Mei, Q. Chen, Z. Chen, A multiple description image/video coding method bycompressed sensing theory[C], Circuits and Systems,2008.
    [71] L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms[J],Physica D: Nonlinear Phenomena60(1–4),1992, pp.259–268.
    [72] E. J. Candés, J. Romberg,1-magic: Recovery of sparse signals via convexprogramming[J/OL], www.acm.caltech.edu/l1magic/,2005.
    [73] E. T. Hale, W. Yin and Y. Zhan, A Fixed-Point Continuation Method for l1-RegularizedMinimization with Applications to Compressed Sensing[R], CAAM Technical Report TR07,2007.
    [74] J. Wright, A. Yang, A. Ganesh, Sastry, and Y. Ma. Robust face recognition via sparserepresentation[J], IEEE Trans on Pattern Analysis and Machine Intelligence, vol.31, no.2,2009,pp.210-227.
    [75] J. Wright and Y. Ma, Dense Error Correction via l1-Minimization[J], Submitted to IEEETrans on Information Theory.
    [76] E. J. Candès, Ridgelets: Theory and Applications[R], Department of Statistics StanfordUniversity,1998.
    [77] E. J. Candès and D. Donoho, Ridgelets: A key to higher-dimension intermittency?[J], PhilTrans R Scotland,1998, pp.2495-2509.
    [78] E. J. Candès, on the representation of mutilated sobolev functions[J], SIAM Journal onMathematical Analysis, vol.33, no.2,1999, pp.2495-2509.
    [79] E. J. Candès, Monoscale ridgelets for the representation of images with edges[R]. California:Stanford University, Department of Statistics,1999.
    [80] E. J. Candès and D. Donoho, Curvelets-a surprisingly effective on adaptive representation forobjects with edges[M], Nashville: Vanderbilt University Press,2000.
    [81] E. J. Candès and D. Donoho, New tight frames of curvelets and optimal representations ofobjects with C2singularities[J], Communications on Pure and App lied Mathematics, vol.57,no.2,2004, pp.219-266.
    [82] E. J. Candès, L. Demanet and D. Donoho., Fast discrete curvelet transforms[J], Applied andComputational Mathematics, California Institute of Technology,2005, pp.1243.
    [83] M. N.Do and M. Vetterli, Contourlets: a directional multiresolution image representation[J],IEEE International Conference on Image Processing,2002.
    [84] M. N.Do and M. Vetterli, The contourlet transform:an efficient directional multiresolutionimage representation[J], IEEE Trans on Image Processing, vol.14, no.12,2005, pp.2091-2106.
    [85] B. S. Manjunath and W. Y. Ma, Texture features for browsing and retrieval of image data[J],IEEE Trans on Pattern Analysis and Machine Intelligence, vol.18, no.8,1996, pp.837-842.
    [86] J. L. Starck, M. Elad and D. Donoho, Redundant multiscale transforms and their applicationfor morphological component analysis[J], Advances in Imaging and Electron Physics, vol.132, no.82,2004, pp.287-348.
    [87] K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets[J],SIAM J. Math Anal., vol.9,2007, pp.298-318.
    [88] R.Neff and A.Zakhor.Very low bit-rate video coding based on matching pursuits[J].IEEETransaction on Circuits System I,7(1),1997,158–171.
    [89] D. Donoho and X. Huo, Uncertainty principles and ideal atomic de-compositions[J], IEEETrans Inform Theory, vol.47,2001,pp.2845-2862.
    [90] M. Elad and A. M. Bruckstein, A generalized uncertainty principle and sparse representationin pairs of bases[J], IEEE Trans on Information Theory, vol.48,2002, pp.2558-2567.
    [91] A. Feuer and A. Nemirovsky, On sparse representation in pairs of bases[J], IEEE Trans onInformation Theory, vol.49,2003, pp.1579-1581.
    [92] J. Tropp, Greed Is Good: Algorithmic Results for Sparse Approximation[R],Texas Institutefor Computational Engineering and Sci-ences, Technical Report,2003.
    [93] D. Donoho and Elad M. Maximal, sparsity representation via L1minimization[J], in ProcNatl Acad Sci USA, vol.100,2003, pp.2197-2202.
    [94] S. Ji, Y. Xue, and L. Carin, Bayesian compressive sensing[J], IEEE Trans on SignalProcessing, vol.56, no.6,2008, pp.2346–2356.
    [95] M. Unser, Sampling-50Years after Shannon[J], Proceedings of the IEEE,88(4),2000,pp.569-587.
    [96] R. G Baraniuk, V.Cevher, M. F. Duarte, and. C.Hegde, Model-based compressive sensing[J].IEEE. Trans. Inform. Theory,56(4),2010, pp.1982–2001.
    [97] V. Cevher, P.Indyk, C. Hegde, and R. G. Baraniuk, Recovery of clustered sparse signalsfrom compressive measurements[C], DTIC Document,2009.
    [98] L.He and L.Carin, Exploiting structure in wavelet-based Bayesian compressive sensing[J],IEEE Transactions on Signal Processing,57(9),2009, pp.3488-3497.
    [99] S. F. Cotter, B. D. Rao, K. Engan, Sparse solutions to linear inverse problems with multiplemeasurement vectors[J], IEEE Transactions on Signal Processing,53(7),2005,pp.2477-2488.
    [100] N.Vaswani and W.Lu, Modified-CS: Modifying compressive sensing for problems withpartially known support[J], IEEE Transactions on Signal Processing,58(9),2010,pp.4595-4607.
    [101] R. Jenatton,J. Audibert,F. Bach, Structured variable selection with sparsity-inducingnonns[R].Techenical Report, INRIA,2009.
    [102] J. Yang, Y. Zhang, W. Yin, A fast alternating direction method for tvl1-l2signalreconstruction from partial Fourier data[J], IEEE Journal of Selected Topics in SignalProcessing4(2),2010, pp.288–297.
    [103] M. Lustig, D. Donoho, J. Santos, J. Pauly, Compressed sensing mri[J], IEEESignalProcessing Magazine25(2),2008, pp.72–82.
    [104] A. Beck, M. Teboulle, Fast gradient-based algorithms for constrained total variation imagedenoising and deblurring problems[J], IEEE Transactions on Image Processing18,2009,pp.2419–2434.
    [105] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverseproblems[J], SIAM Journal on Imaging Sciences2(1),2009, pp.183–202.
    [106] J. Eckstein, B. Svaiter, General projective splitting methods for sums of maximal monotoneoperators[J], SIAM Journal on Control and Optimization48(2),2010,pp.787.
    [107] P. L. Combettes and J. C. Pesquet, Fixed-Point Algorithms for Inverse Problems in Scienceand Engineering, chapter Proximal Splitting Methods in Signal Processing [M]. New York:Springer-Verlag,2010.
    [108] Y. Nesterov, Gradient methods for minimizing composite objective function [R].Technicalreport. Center for Operations Research and Econometrics (CORE), Catholic University ofLouvain,2007.
    [109] F. Bach, R. Jenatton, J. Mairal, et al. Convex optimization with sparsity-inducing norms
    [M].In: S. Sra, S. Nowozin and S. Wright, ed.“Optimization for Machine Learning”,Cambridge:MIT Press,2011.
    [110] J. Huang, S. Zhang, D. Metaxas, Efficient mr image reconstruction for compressed mrimaging [J], Medical Image Analysis15(5),2011, pp.670–679.
    [111] M. S. Crouse, R.D. Nowak, and R.G. Baraniuk,Wavelet-based statistical signal processingusing hidden markov models[J], Signal Processing, IEEE Transactions on, vol.46, no.4,1998, pp.886–902.
    [112] W. Deng, W. Yin, and Y. Zhang, Group sparse optimization by alternating directionmethod[R], TR11-06,Department of Computational and Applied Mathematics,RiceUniversity,2011.
    [113] J. Mairal, R. Jenatton, G. Obozinski, and F. Bach, Convex and network flow optimization forstructured sparsity[J], The Journal of Machine Learning Research, vol.12,2011, pp.2681–2720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700