果糖基转移酶融合基因转化玉米胚乳中果聚糖的积累
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果聚糖是以β(2→1)和/或β(2→6)糖苷键连接的线性或分支型果糖聚合物,通常在末端连接一个葡萄糖残基,是水溶性的非还原性多糖。果聚糖广泛存在于细菌、真菌以及超过40000种高等植物中。研究较多的是菊糖型果聚糖,是一个蔗糖以β(2→1)糖苷键与多个果糖相连的线性分子。
     果聚糖作为一种功能性食品,不仅可以增强人体钙的吸收,还被用作低热量值的甜味剂、食品添加剂中的水溶性膳食纤维等,更重要的是,它不能被人体代谢吸收,可以作为一种益生素,因此成为近年研究的热点。
     菊糖型果聚糖代谢中主要涉及两个关键酶:蔗糖-1-果糖基转移酶(1-SST,EC2.4.1.99)和果聚糖-1-果糖基转移酶(1-FFT,EC2.4.1.100)。1-SST催化蔗糖转变为蔗果三糖(DP=3),1-FFT负责糖链的延长,将蔗果三糖转变为高聚合度的果聚糖。
     在前期研究中已将由莴苣(Lactuca sativa)中克隆得到的1-SST、1-FFT基因分别与玉米醇溶蛋白基因启动子结合,构建目标基因串联的植物表达载体,使用农杆菌介导的芽尖转化法转化玉米自交系,获得初步鉴定的转基因植株。在此基础上,本研究以T_2代转基因植株为材料,通过除草剂初步筛选和PCR检测鉴定转基因植株,进而通过RT-PCR筛选出目标基因表达较高的株系,通过连续自交获得转基因纯合系。Southern分析表明,在入选材料中编码这两个酶的基因在玉米基因组中是以单拷贝的形式存在。对转基因植株的生长发育进行系统观察,与未转基因对照植株相比,转基因植株未出现明显不同的变化。
     对转基因表达强度较高的株系,使用TLC(薄板层析)分离和鉴定玉米籽粒可溶性糖提取液中的各种糖分,同时采用高效液相色谱结合示差折光检测器测定技术,对玉米籽粒糖提取液中的可溶性糖进行定量分析。结果表明,在玉米籽粒中合成了一定量的果聚糖,合成量在0.05~2.0mg/g范围。蔗糖、葡萄糖、果糖其他可溶性糖的含量与对照植株差异不明显。
     对玉米籽粒的蛋白提取液进行酶活性测定,确定了最适底物及浓度为100mmol/L蔗糖,最适反应时间为3h。然后从3个转基因株系籽粒中分别提取酶蛋白,进行酶活性测定。结果显示,该提取液具有果糖基转移酶活性,能以蔗糖为底物,生成果聚糖。这表明向不合成果聚糖的植物导入1-SST和1-FFT基因能够合成高分子量果聚糖。
     本研究通过对转基因植株糖组分的分析和酶活性的测定,证明转入玉米中的果糖基转移酶1-SST和1-FFT发挥了作用,得到了能在玉米胚乳中积累果聚糖的新种质。该工作对于研究植物糖代谢网络及其调控机制也有启示作用。
Fructans are linear or branched polymers of repeating fructose residues connected byβ(2→1) and/orβ(2→6) fructosylfructose linkages,optionally including one terminal glucosyl unit.They are water-soluble and non-oxidative.Fructans are widely distributed in nature occurring in bacteria,fungi and over 40,000 higher plant species.The best characterized fructan is the inulin type,which has linear fructose chains attached to sucrose withβ(2→1) fructosylfructose linkages.
     Many important nutritional and functional characteristics are attributed to inulin-type fructans.They can increase calcium absorbance,act as a low calorie sweetener or be used as a water-soluble dietary fiber in food ingredients.More importantly,inulin is not metabolized by humans and animals and can act as a prebiotic.
     It is generally believed that inulin-type fructan biosynthesis in plants occurs through the concerted action of two enzymes,1-SST(sucrose:sucrose 1-fructosyltransferase,EC2.4.1.99) and 1-FFT(fructan:fructan 1-fructosyltransferase,EC2.4.1.100).1-SST catalyzes the conversion of sucrose to the trisaccharide 1-kestose(DP3).The elongation of 1-kestose to fructan(of DP up to 200) is catalyzed by 1-FFT.
     During previous work,a coexpression vector was constructed including 1-SST and 1-FFT separately promoted by the zein promoter,which introduced fructan biosynthesis pathway into maize endosperms.This vector was transformed into maize bud using agrobacterium-mediated method.On this founation,transformants were selected on bialaphos and PCR assay.Transgenic lines that overexpressed target genes were confirmed by RT-PCR.Southern blot analysis suggested that these two enzymes are probably encoded by single-copy gene.Plant growth and kernel development were not affected.
     Transgenic lines that overexpressed target genes were chosen for determination of carbohydrate content,using TLC for separation and HPLC for precise quantitative analysis.Data showed that,transgenic maize plants produced inulin-type fructan in the endosperms,ranging from 0.05~2.0 mg/g kernels.The levels of glucose,fructose and sucrose in these transgenic lines were not significantly different from WT plants.
     To test the enzyme activity of 1-SST and 1-FFT,protein extracts of transgenic maize kernels were incubated with 100 mmol/L sucrose solution at 27℃and 3 h,and produced some fructan.These results suggested that the protein extracts had some level of fructosyltransferase activity,they can use sucrose as substrate to pruduce fructan.
     In this study,we confirmed that the 1-SST and 1-FFT transformed into maize plants were active through carbohydrate analysis and measurement of enzyme activity,which means that the complete plant fructan biosynthesis pathway has been cloned into maize.We had obtained new type of maize lines which can be used to produce functional food in the future.
引文
[1] Dedonder R. Levansucrase from Bacillus subtilis. Methods Enzymol, 1966, 8: 500-505.
    
    [2]Hendry G A R Evolutionary origins and natural functions of fructans a climatological, biogeographic and mechanistic appraisal. New Phytol, 1993, 123: 3-14.
    
    [3]Van Laere A, van den Ende W. Inulin metabolism in dicots: chicory as a model system.. Plant Cell and Environment, 2002, 25: 803-813.
    
    [4]Boneet G D, Sims I M, Simpson R J, Cairns A J. Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol, 1997, 136: 11-17.
    
    [5]Henson CA, Livingstone DP. Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages. Plant Physiol.Biochem, 1998, 36: 715-720.
    
    [6]Timmermans J W, Slaghek T, Iizuka M, Roover D J, et.al. Isolation and structural analysis of new fructans produced by chicory [J]. Carbohydr.Chem., 2001, 20: 375-395.
    
    [7]Henry G A F, Wallace R K. The origin distribution and evolutionnary significance of fructans in:suzuki M, Chatterton N J, eds. science and technology of fructan. Boca Ralon F L, USA: CRC Press, 119-139.
    
    [8]Pollock C J, Cairns A J. Fructan metabolism in grasses and cereals. Ann Rev of Plant Physiol and Plant Mol Biol, 1991,42:77-101.
    
    [9]Nelson C J, Spollen W G. Fructans, Physiol Plant, 1987,71: 512-516.
    
    [10]Pollock C J. Fructans and the metobolism of sucrose in higher plants, New Phytol, 1986, 104: 1-24.
    
    [11]Housley T L, Pollock C J. Photosynthesis and carbohydrate metabolism in detached leaves of Lolium L, New Physiol, 1985, 119: 491-497.
    
    [12]Pollock C J, Jones T. Seasonal patterns of fructan metabolism in forage grasses. New Phytol, 1979, 83: 8-15.
    
    [13]Blacklow W M, Darby Shire B, Pheloung P. Fructans polymerized and depolymerized in the internodes of winter wheat as grain-filling progressed. Plant Sci Let ,1984, 36: 213-218.
    
    [14]Suzuki M. Fructans in crop production and preservation. In: Suzuki M, Chatterton N J, eds. Science and Technology of Fructans, Boca Raton F1a: CRC Press, 1993: 227-247.
    
    [15]Archbold H K. Fructans in the monocotyledons. a review.New Phyto , 1940, 39: 185-219.
    
    [16]Escalada J A, Moss D N. Changes in nonstructural carbohydrate fractions of developing spring wheat kernels. Crop Sci,1976,16: 627-631.
    
    [17]Schnyder H, Ehses U, Bestajovksy J et al. Fructan in wheat kernels during growth and compartmentation in the endosperm and pericarp. Plant Physiol, 1988,132: 333-338.
    
    [18]Schnyder H G, Hinz J. Fructan contents and dry matter deposition in different tissues of the wheat grain during development. Plant Cell and Environment, 1993,16: 179-187.
    
    [19]Roth A, Luscher M, Sprenger N et al. Fructan and fructan metabolizing enzymes in the growth zone of barley leaves. New Phytol, 1997, 136: 73-79.
    
    [20]Pontis H G. Fructan and cold stress[J]. Journal of Plant Physiology, 1989, 134: 148-150.
    [21]Suzuki M,Nass H G.Fructan in winter wheat,triticale,and fall rye cultivars of varying cold hardiness[J].Can J Bot,1988,66:1723-1726.
    [22]Van C W,Capiau K,Montagu M V.Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase.Plant Physiology,1996,112:1703-1714.
    [23]Tognetti J A,Calderon P L,Pontis H G.Fructan metabolism Reversal of cold acclimation[J].Journal of Plant Physiology,1989,14:232-234.
    [24]Kerepesi I,Eva B S,Galiba G.Cold acclimation and abscisic acid induced alterations in carbohydrate content in calli of wheat genotypes differing in frost tolerance[J].Plant Physiol.,2004,161:131-133.
    [25]Kawakami A,Yoshida M.Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardeningg.Biosci.Biotechnol.Biochem.,2002,66:2297-2305.
    [26]Puebla A F,Salerno G L,Pontis H G.Fructan metabolism in two species of Bromus subjected to chilling and water stress[J].New Phytologist,1997,136(1):123-129.
    [27]Wilson R G,Kachman S D,Martin A R.Seasonal changes in glucose,fructose,sucrose,and fluctans in the roots of dandelion[J].Weed Science,2001,49(2):150-155.
    [28]Pollock C J.Fructan and the metabolism of sucrose in vascular plants.New Phytologist,1986,104:1-24.
    [29]Koops A J,Jonker H H.Purification and characterization of the enzymes of fructan biosynthesis in tubers of Helianthus tuberosus Colombia.Ⅱ.Purification of sucrose:sucrose l-fructosyltransferase and reconstitution of fructan synthesis in vitro with purified sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase.Plant Physiol.,1996,110:1167-1175.
    [30]Kerepesi I,Galiba G,Banyai E.Osmotic and salt stresses induced diferential alteration in water-soluble carbohydrate content in wheat seedlings[J].Journal of Agricultural and Food Chemistry,1998,46(12):5347-5354.
    [31]Rover J de,Vandenbranden K,Laere A van,et al.Drought induces fructan synthesis and 1-SST (sucrose:sucrose fructosyltransferase) in roots and leaves of chicory seedlings(Cichorium intybus L)[J].Planta,2000,210(5):808-814.
    [32]Amiard V,Morvan B A,Bilard J P,et al.Fructans,but not the sucrosyl-galactosides,raffinose and loliose,are affected by drought stress in perennial ryegrass[J].Plant Physiology,2003,132(4):2218-2229.
    [33]Clark G T,Zuther E,Outred H A,et al.Tisue-specific changes in remobilisation of fructan in the xerophytic tussock species Festuca novae-zelandiae in response to a water deficit[J].Functional Plant Biology,2004,31(4):377-89.
    [34]Elizabeth A H P,Ebskamp M J M,Paul M J,et al.Improved performance of transgenic fructan-accumulating tobacco under drought stress.Plant Physiol.,1995,107:125-130.
    [35]Elizabeth A H P,Norman T,Tobin S,et al.Enhanced drought resistance in fructan-producing sugar beet.Plant Physiol.Biochem.,1999,37:313-317.
    [36]Kerepesi I,Galiba G,Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings[J].Crop Science,2000,40(2):482-487.
    [37]Wim Van den Ende,An Michiels,Dominik Van Wonterghem,et al.Defoliation Induces Fructan 1-Exohydrolase Ⅱ in Witloof Chicory Roots,Cloning and Purification of Two Isoforms,Fructan 1-Exohydrolase Iia and Fructan 1-Exohydrolase Iib,Mass Fingerprint of the Fructan 1-Exohydrolase ⅡEnzymes[J].Plant Physiology,2001 126(3):1186-1195.
    [38]Albrecht G,Mustroph A,Fox T C.Sugar and fructan accumulation during metabolic adjustment between respiration and fermentation under low oxygen conditions in wheat roots[J].Physiologia Plantarum,2004,120(1):93-105.
    [39]Albrecht G,Biemelt S,Baumgartner S.Accumulation of fructans following oxygen deficiency stress in related plant species with different flooding tolerances[J].New Phytologist,1997,136(1):137-144.
    [40]Ende W vall den,Moors S,Hoenacker G van,et al.Efect of osmolytes on the fructan pattern in feeder roots produced during forcing of chicory(Cichorium intybus L)[J].JournaJ of Plant Physiology,1998,153(3/4):290-298.
    [41]王志敏.高等植物的果聚糖代谢[J].植物生理学通讯,2000,36(1),71-76.
    [42]Wang Chang-Wen,Tilberg J E.Efects of nitrogen deficiency on accumulation of fructan and fructan metabolizing euzyme activities in sink and source leaves of barley(Hordeum vulgare)[J].Physiologia Plantarum,1996,97(2):339-345.
    [43]Frossard R,Stadelmann F,Niederhauer J.Effects of different heavy metals on fructan,sugar,and starch content of rye grass.Plant Physiol,1989,134:180-183.
    [44]Knipp G,Honermeier B.Effect of water stress on proline accumulation of genetically modified potatoes (Solanum tuberosum L.) generating fructans.Plant Physiol.,2006,163:1-6.
    [45]Konstantinova T,Parvanova D,Atanassov A,Djilianov D.Freezing tolerant tobacco,transformed to accumulate osmoprotectants.Plant Sci.,2002,163:157-164.
    [46]Hisano H,Kanazawa A,Kawakami A,Yoshida M,et al.Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing.Plant Sci.,2004,167:861-868.
    [47]杜金友,陈晓阳,李伟,等.林木抗旱的渗透调节及其基因工程研究进展.西北植物学报,2004,24(6):1154-1159.
    [48]Oliver A E,Hincha D K,Crowe J H.Are sugurs sufficient for preservation of anhydrobiotes Preventing adventitious reactions at low water contents by amphiphilic solutes.Comp Biochem Physiol,2001,133:595-601.
    [49]Vereyken I J,Chupin V,Demel R A,et al.Fructans insert between the headgroups of phospholipids.Biochem.Biophys.Acta.,2001,1510:307-320.
    [50]Hincha D K,Hellwege E M,Heyer A G,et al.Plant fructan stabilize phosphatidycholine liposomes during freeze-drying.Eur.J.Biochem.,2000,267:535-540.
    [51]Hincha D K,Zuther E,Hellwege E M,et al.Specific effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying.Glycobiology,2002,12:103-110.
    [52]Parvanova D,Ivanov S,Konstantinova T,et al.Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress.Plant Physiol.Biochern.,2004,42:57-63.
    [53]Demel R A,Dorrepaal E,Ebskamp M J M,et al.Fructans interact strongly with model membranes.Biechim Biophys Acta.1998,1375:36-42.
    [54]李慧娟,尹海英,张学成等.转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性.山东大学学报,2007,42(1):89-94.
    [55]Coudray C.Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium,magnesium,iron and zinc in healthy young men.Eur J Clin Nutr,1997,51:375-380.
    [56]Van den Heuvel EG,Muys T,Van Dokkum W,et al.Oligofructose stimulates calcium absorption in adolescents[J].Am J Clin Nutr,1997,69:544-551.
    [57]Edelman J,Jefford T.The mechanism of fructans metabolism in higher plants as exemplified in Helianthus tuberosus.New Phytol.,1968,67:517-531.
    [58]L(u|¨)scher M,Erdin C,Sprenger N,et al.Inulin synthesis by a combination of purified fructosyltransferase from tubers of Helianthus tuberosus.FEBS Lett.,1996,385:39-42.
    [59]Van den Ende W,Roover DJ,van Laere A.In vitro synthesis of fructofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan:fructan fructosyltransferase.Physiol.Plant,1996,97:346-352.
    [60]Hellwege EM,Maik R,Dominique G,et al.Differences in chain length distribution of inulin from Cynara scolymus and Helianthus tuberosus are reflected in a transient plant expression system using the respective 1-FFT cDNAs.FEBS lett.,1998,427:25-28.
    [61]Sprenger N,Bortlik K,Brandt A,et al.Purification,cloning and functional expression of sucrose:fructan 6-fructosyltransferase,a key enzyme of fructan synthesis in barley.Proc.Natl.Acad.Sci.,1995,92:11652-11656.
    [62]Vijn I,Smeekens S.Fructan:more than a reserve carbohydrate.Plant Physiol.,1999,120:351-359.
    [63]Shiomi N.Properties of fructosyltransferases involved in the synthesis of fructan in Liliaceous plants.J.Plant Physiol.,1989,134:151-155.
    [64]Vijn I,van D A,Sprenger N,et al.Fructan of the inulin neoseries is synthesized in transgenic chicory plants(Cichorium.intybus.L.) harbouring onion(Allium.cepa.L.) fructan:fructan 6G- fructosyltransferase.Plant,1997,11:387-398.
    [65]Shiomi N.Reverse reactions of fructosyltransfer catalysed by asparagus 6G- fructosyltransferase.Carbohydr.Res.,1982,106:166-169.
    [66]Pavis N,Boucaud J,Prud M P.Fructan and fructan metabolizing enzymes in leaves of Lolium perenne. New Phytol.,2001b,150:97-109.
    [67]Pavis N,Chatterton N J,Harrison P A,et al.Structure of fructans in roots and leaf tissues of Lolium perenne.New Phytol.,2001a,150:83-95.
    [68]Sprenger N,Schellenbaum L,van Dun K,et al.Fructan synthesis in transgenic tobacco and chicory plants expressing barley sucrose:fructan 6-fructosyltransferase.FEBSLett.,1997,400:355-358.
    [69]Wei J Z,Chatterton N J.Fructan biosynthesis and fructosyltransferase evolution:expression of 6-SFT (sucrose:fructan 6-frucosyltransferase) gene in crested wheatgrass(Agropyron cristatum).J.Plant Physiol.,2001,158:1203-1213.
    [70]Nelson C J,Spollen W G.Fructans.Physiol.Plant,1987,71:512-516.
    [71]Van den Ende W,Michiels A,Katrien L R,van Laere A.Cloning of a vacuolar invertase from Belgian endive leaves.Physiologia Plantarum,2002,115:504-512.
    [72]Nagaraj V J,Galati V,L(u|¨)scher M,et al.Cloning and functional characterization of a cDNA encoding barley soluble acid invertase(HvINV1).Plant Sci.,2005,168:249-258.
    [73]Claessens C,Van Laere A,Proft D M.Purification and properties of an inulinase from chicory roots (Cichorium intybus L.).Plant Physiol.,1990,136:35-39.
    [74]Michiels A,de Roover J,Verhaert P,et al.Cloning and functional analysis of chicory root fructan 1-exohydrolase Ⅰ(1-FEHI):a vacuolar enzyme derived from a cell wall invertase ancestor Mass fingerprint of the 1-FEH Ⅰ enzyme.Plant,2000b,24:447-456.
    [75]Marx S P,Nosberger J,Frehner M.Seasonal variation of fructan-β-fructosidase(FEH) activity and characterization of a β-(2,1)-linkage specific FEH.New Phytol.,1997a,135:267-277.
    [76]Henson CA,Livingstone D P.Characterization of a fructan exohydrolase purified from barley stems that hydrolyzes multiple fructofuranosidic linkages.Plant Physiol.Biochem.,1998,36:715-720.
    [77]Van den Ende W,Yoshida M,Clerens S,et al.Cloning,characterization and functional analysis of novel 6-kestose exohydrolases(6-KEHs) from wheat(Triticum aestivum).New Phytologist,2005,166:917-932.
    [78]Wiemken A,Frehner M,Keller F,et al.Fructan metabolism,enzymology and compartmentation.Curr.Topics.Plant Biochem.Physiol.,1986,5:17-37.
    [79]Kawakami A,Yoshida M.Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening.Biosci.Biotechnol.Biochem.,2002,66:2297-2305.
    [80]Kawami A,Yoshida M.Fructan:fructan 1-fructosyltransferase,a key enzyme for biosynthesis of graminan oligomers in hardened wheat.Planta,2005,223:90-104.
    [81]Labharat Ch,Nosberger J,Nelson C J.Photosynthesis and degree of poly(A) merisation of fructan during reproductive growth of meadow fescue at two temperatures and two photon fluxes.J Exp Bot,1983,34:1037-1046.
    [82]Wagner W,Wiemken A.Properties and subcellular localization of fructan hydrolase in the leaves of barley.Plant Physiol,1986,123:429-439.
    [83]Winzeler M,Dubois D,Nosberger J.Absence of fructan degradation during fructan accumulation in wheat stems.Plant Physiol,1990,136:324-329.
    [84]Edelman J,Jefford T F.The mechanism of fructan metabolism in higher plants as examplified in Helianthus tuberosus.New Phytol,1968,39:185-219.
    [85]Livingston D P,Henson C A.Apoplastic sugars fructans fructan exohydrolase and invertase in winter oat:responses to second-phase cold hardening.Plant Physiol.,1998,116:403-408.
    [86]Wang N,Nobel PS.Phloem transport of fructans in the Crassulacean acid metabolism species Agave deserti.Plant Physiol.,1998,116:709-712.
    [87]Praznik W,Beck R H F,Spies T.Isolation and characterization of sucrose:sucrose 1-β-D-fructosyltransferase from tubers of Helianthus tuberosus L.Agric.Biol.Chem.,1990,54:2429-2431.
    [88]Edlman J,Dickerson A G.The metabolism of fructose polymers in plants,Transfructosylation in tubers of Helianthus tuberosus L.Biochemical Journal,1966,98:787-794.
    [89]Praznik W,Beck R H F,Spies T.Isolation and characterization of sucrose:sucrose 1-β-D-fructosyltransferase from tubers of Helianthus tuberosus L.Agric.Biol.Chem.,1990,54:2429-2431.
    [90]L(u|¨)scher M,Frehner M,Ntisberger J.Purification and characterization of fructan:fructan fructosyltransferase from Jerusalem artichoke(Helianthus tuberosus L.).New Phytol.,1993,123:717-724.
    [91]Ingrid M,van der Meer,Koops A J,et al.Cloning of the fructan biosynthesis pathway of Jerusalem artichoke.J.Plant,1998,15:489-500.
    [92]Shiomi N.Purification and characterization of 6G-fructosyltransferase from the roots of asparagus (Asparagus officinalis L.).Carbohydr.Res.,1981,96:281-292.
    [93]Hellwege E M,Czapla S,Jahnke A,et al.Transgenic potato(Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke roots.Proc.Natl.Acad.Sci.,2000,97:8699-8704.
    [94]R(o|¨)ber M,Geider K,Muller-R(o|¨)ber B,Willmitzer L.Synthesis of fructans in tubers of transgenic starch-deficient potato plants does not result in an increased allocation of carbohydrates.Planta,1996,199:528-536.
    [95]Gerrits N,Turk S C,van Dun K P M,et al.Sucrose metabolism in plastids.Plant Physiol.,2001,125:926-934.
    [96]Turk H J,de Roos K,Scott PA,et al.The vacuolar sorting domain of sporamin transports GUS,but not levansucrase,to the plant vacuole[J].New Phytologist,1997,136:29-38.
    [97]张慧,董伟,周骏马,等.果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育[J].生物工程学报,1998,14(2):181-186.
    [98]Pilon-Smits E A H,Ebakamp M J M,Jenken M J W,Weisbeek P J,Smeekens S C M,Improved performance of transgenic frucan-accumulating tobacco under drought stress[J].Plant Physiology,1995,107:125-130.
    [99]Konstantinova T,Parvanova D,Atanassov A,et al.Freezing tolerant tobacco,transformed to accumulate osmoprotectans[J].Plant Science,2002,163:157-164.
    [100]王关林,李铁松,方宏筠,等.番茄转果聚糖合酶基因获得抗寒植株[J].中国农业科学,2004,37(8):1193-1197.
    [101]Sevenier R,Hall R D,Van der Meer I M,et al.High level fructan accumulation in transgenic sugar beet[J],Nature Biotechnology,1998,16:843-846.
    [102]Ye XD,Wu XL,Zhao H,et al.Altered fructan accumulation in transgenic Lolium multiflorum plants expressing a Bacillus subtilis sacB gene.Plant Cell Reports,2001,20:205-212.
    [103]Cairns AJ.Fructan biosynthesis in transgenic plants.Journal of Experimental Botany,2003,54:549-567.
    [104]Sevenier R,Hall RD,Van der Meer IM,et al.High level fructan accumulation in a transgenic sugar beet.Nature Biotechnology,1998,16:843-846.
    [105]Caimi PG,McCole LM,Klein TM,et al.Fructan accumulation and sucrose metabolism in transgenie maize endosperm expressing a Bacillus amyloliquefaciens SacB gene..Plant Physiol.,1996,110:355-363.
    [106]Johan M.Stoop,Jeroen Van Arkel,Johanna C,et al.Develomental modulation of inulin accumulation in storage organs of transgenic maize and transgenic potato,Plant Science,2007,173:172-181.
    [107]T.Fukata,K.Sasai,T.Miyamoto,et al.Inhibitory effect of competitive exclusion and fructooligisaccharide,singly and in combination on Salmonella colonization of chicks.Food Protect,1999,62:229-233.
    [108]Marcel L(u|¨)scher,Curtis J,Nelson.Fructosyltransferase Activities in the Leaf Crowth Zone of Tall Fescue.Plant Physiol,1995,107:1419-1425.
    [109]Balk AB,Boer DA.Rapid stalk elongation in tulip(Tulipa gesneriana L.cv.Apeldoorn) and the combined action of cold induced invertase and water-channel protein γTIP.Planta,1999,209:346-354.
    [110]萨姆布鲁克D W,拉塞尔著,黄培堂等译.分子克隆实验指南.第三版.北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700