杂多蓝的合成策略、多维结构组装和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属氧酸盐(Polyoxometalates,简写为POMs)能够获得一个或几个电子并保持结构不变。还原后的混价(V, VI)还原体系通常呈现出深蓝色因此也成还原态多酸为“杂多蓝”(Heteropoly blues,简写为HPBs)。杂多蓝中的还原电子既可以定域在某些特定的金属中心上,又可以离域在几个金属中心或整个多酸骨架上。因此,杂多蓝中还原电子的存在能够使杂多蓝端氧上的电子密度得到修饰,而这样的修饰不仅可以影响杂多蓝表面氧原子的配位能力,还可以影响其物理化学性质性质。杂多蓝也因此在很多领域都有其独特的应用前景,例如磁性,抗病毒,光催化和质子传导等领域。尽管杂多蓝在这些领域具有如此广阔的前景,但是与杂多酸相比,对杂多蓝合成和性质的研究却很少,关于杂多蓝的晶体结构报道也并不多。这主要是杂多蓝在合成和稳定性方面存在困难。极大地阻碍了杂多蓝的研究进展。因此开发稳定型杂多蓝的合成策略具有非常重要的意义。
     本论文中,我们开发并拓展了一条合成稳定型杂多蓝的策略,合成了十个杂多蓝化合物并测定了它们的晶体结构。这个策略不仅适用于Keggin和Dawson结构杂多蓝的合成,而且适用于MoVI-MoV混合型杂多蓝和WVI-MoV混合型杂多蓝。采用电喷雾质谱监测反应过程中的溶液,成功地监测到了大量带有草酸根的杂多蓝中间体,探明了此类杂多蓝的形成过程是带有草酸根的[Mo_2~VO_4]~(2+)基团先嵌入到缺位多酸中,形成了带有草酸根的杂多蓝中间体,然后脱去草酸根形成目标杂多蓝。磁性研究发现,WVI-MoV混合型杂多蓝在室温下为顺磁性,而MoVI-MoV混合型杂多蓝在室温下为抗磁性,还原Mo的个数和位置也对这些杂多蓝的磁性产生了很大的影响。研究表明,通过调节还原Mo的个数和位置,能够实现对杂多蓝表面电子分布的调节。
     1.采用[GeW_(10)Mo_2O_(40)]~(6-)作为建筑块,合成了两个杂多蓝配合物:H_2[α-GeW_(10)Mo~V_2O_(40)][Cu(DMF)_3H_2O]_25H_2O (1)H_4[α-GeW_(10)Mo~V_2O_(40)]_2[CuK_2(DMF)_6][K_4(DMF)_6](2)
     这两个化合物代表了首例直接用W-Mo混合型杂多蓝作为建筑块,形成的基于杂多蓝的多维结构。研究表明,通过调节原料铜的用量能够实现对化合物维度的调控。磁性研究表明,这种两电子杂多蓝在室温下呈现出顺磁性。这与以往报道的两电子杂多蓝为抗磁性有所不同,这种磁性行为在杂多蓝中非常少见。
     2.采用[α-SiW_(10)Mo_2O_(40)]~(6-)作为建筑块,在常规条件下合成了四个杂多蓝配合物:H_2[α-SiW_(10)Mo_2O_(40)][Cu(PDA)_2·H_2O]_2(3),H_2[α-SiW_(10)Mo_2O_(40)][Cu(DEF)_3·H_2O][Cu(DEF)_2·2H_2O]·6H_2O (4),H_2[α-SiW_(10)Mo_2O_(40)][Cu(DMF)_3H_2O]_26H_2O (5),H_4[α-SiW_(10)Mo_2O_(40)]_2[CuK_2(DMF)_6][Na_(0.75)K_(3.25)(DMF)_6](6)[PDA=propanediamide, DEF=N,N-diethylformamide and DMF=N,N-dimethyl formamide]。
     化合物3-6是分别是零维结构,一维链结构,二维格子结构和三维结构。合成与稳定性研究表明:1,通过选择不同的配体和调节原料铜的用量可以实现对化合物维度的调控;2,四个化合物具有良好的热稳定性,氧化稳定性和酸碱稳定性。磁性研究表明,这种两电子杂多蓝在室温下呈现出顺磁性,这与以往报道的两电子杂多蓝为抗磁性有所不同。
     3.拓展了一个新的常规合成杂多蓝的策略,合成了四个化合物:[(CH_3)_4N]_4H_2[GeW_(10)Mo_2O_(40)]·7H2O (7)[(CH_3)_4N]_3H_3[GeMo~(VI)_(10)Mo~V_2O_(40)]·12H_2O (8)[C_3N_2H_5]_7H[P_2_(W16)Mo~V_2O_(62)]·20H)2O (9)[CH_3)_4N]_7H_7Na[P)2W_(12)Mo~(VI2)Mo~V_4O_(62)]_(1.5)·18H_2O (10)
     化合物7和8分别为WVI-MoV混合和MoVI-MoV混合的Keggin结构。化合物9和10分别为两电子还原和四电子还原的WVI-MoV混合Dawson结构。通过电喷雾质谱监测反应过程中的溶液,监测到了带有草酸根的杂多蓝中间体,探明了此类杂多蓝的形成机理。磁性研究发现,化合物7在室温下为顺磁性,化合物8在室温下为抗磁性,而具有不同还原电子数的化合物9和10的室温XmT值非常接近。研究表明,通过调节还原Mo的个数和位置能够调节电子在杂多蓝表面的分布。鉴于此类固体化合物可能体现出类半导体性质,通过测定固体紫外漫发射光谱,推导出了化合物7-10的能级差。
Numerous heteropoly complexes (Pope's "Type I") can be reduced by addition of variousnumbers of electrons. The reduced systems of mixed valence (V, VI), which typically retainthe general structures of their oxidized parents and generally display dark blue color, comprisea large and potentially very important group of complexes generally known as the‘‘heteropoly blues”(HPBs). The excess electrons in blue species could be either localized ona certain metal center or delocalized as “extra” electrons over numerous metal centers, so thatthe electron density on outward oxygen atoms of POMs cluster are effectively modified.Consequently, such a modification could influence not only HPBs' coordination ability inassembling HPBs-based crystal frameworks, but also its electronic and molecular properties.Generally, heteropoly blues could behave as a special kind of solid materials with potentialfunction in magnetic, antiviral activity, photocatalytic and proton conductive properties.Several previous researches have demonstrated that heteropoly blues have unusualapplications in some areas.
     Although heteropoly blues have considerable potential in application, in contrast withoxidative POMs, little attention has been paid to study the assembly and functionalization ofHPBs, which is mainly because that the instability and the difficulty in preparation of HPBsgreatly limit the research progress on HPBs. Therefore, it is of great interest to developapproaches to synthesize stable HPBs and study their electron properties.
     In this paper, we develop a new strategy with general applicability to the synthesis ofHPBs. This strategy is not only applicable to the system of Keggin-type HPBs andDawson-type HPBs, but also applicable to the synthesis of MoVI-MoVmixed HPBs andWVI-MoVmixed HPBs. The electrospray ionization mass spectrometry (ESI-MS) was used toanalysis the assembly mechanism of this kind of HPBs. A detailed study of the magneticproperties was also carried out, which shows that the number of MoVand their location iscapable of adjusting the electron distribution in HPBs.
     1.Utilizing heteropoly blue of [GeW_(10)Mo_2O_(40)]~(6-)as a building block, we synthesized twoheteropoly blue-based crystal architectures:H2[α-GeW_(10)Mo~V_2O_(40)][Cu(DMF)_3H_2O]_25H_2O (1)H_4[α-GeW_(10)Mo~V_2O_(40)]_2[CuK_2(DMF)_6][K_4(DMF)_6](2)
     To our best knowledge, these two complexes represent the first example ofmultidimensional crystal frameworks directly using a heteropoly blue of mixedmolybdenum–tungsten as building block. In addition, we found that the different amount of the starting materials of Cu(II) could result in the structural assembly of2D and3D whileother experimental conditions remained.
     2. Four heteropoly blue complexes constructed from Keggin-type heteropoly blue ofmolybdenum–tungsten clusters and Cu(II) ions as linkers:H_2[α-SiW_(10)Mo_2O_(40)][Cu(PDA)_2·H_2O]_2(3),H_2[α-SiW_(10)Mo_2O_(40)][Cu(DEF)_3·H_2O][Cu(DEF)_2·2H_2O]·6H_2O (4),H_2[α-SiW_(10)Mo_2O_(40)][Cu(DMF)_3H_2O]_26H_2O (5),H_4[α-SiW_(10)Mo_2O_(40)]_2[CuK_2(DMF)_6][Na_(0.75)K_(3.25)(DMF)_6](6)[PDA=propanediamide, DEF=N,N-diethylformamide and DMF=N,N-dimethyl formamide]. have been synthesized byconventional reactions and characterized by single-crystal X-ray diffraction, elementalanalysis, IR spectroscopy, thermogravimetry, X-ray powder diffraction (XRD) and UVspectra. The amount of Cu(II) and the nature of the ligand (DMF, DEF and PDA) can controlboth the linkage pattern of Cu(II) ions and the dimensionality of the frameworks; thisdemonstrates for the first time the possibility to assemble heteropoly blue architectures indifferent dimensionality ranging from zero-dimensional (0D) to one-dimensional (1D),two-dimensional (2D) and three-dimensional (3D). The magnetic investigation showed thatthe positive magnetic moment could be observed under room temperature, which should be ofunusual results in magnetochemistry of the two-electron reducted heteropoly blue. Thestability and formation conditions of the four compounds are also discussed.
     3. A new strategy with general applicability to the synthesis of HPBs has been developedand four representative stable heteropoly blues (HPBs) were obtained:[(CH_3)_4N]_4H_2[GeW_(10)Mo_2O_(40)]·7H_2O (7)[(CH_3)_4N]_3H_3[GeMo~(VI)_(10)Mo~V_2O_(40)]·12H_2O (8)[C_3N_2H_5]_7H[P_2_(W16)Mo~V_2O_(62)]·20H)2O (9)[CH_3)_4N]_7H_7Na[P)2W_(12)Mo~(VI2)Mo~V_4O_(62)]_(1.5)·18H_2O (10)
     The electrospray ionization mass spectrometry (ESI-MS) was used to analysis theassembly mechanism of this kind of HPBs. A detailed study of the magnetic properties wasalso carried out, which shows that the number of MoVand their location is capable ofadjusting the electron distribution in HPBs. Finally, the optical band gaps of1–4have alsobeen investigated in details to explore conductivity potentials.
引文
[1]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1998.1.
    [2] Pope M T著,王恩波等译.杂多和同多金属氧酸盐[M].长春:吉林大学出版社,1991.
    [3]Berzelius J. The preparation of the phosphomolybdate ion [PMO312O40]-[J]. Pogg Ann,1826,6:369.
    [4] Hagrman P J, Hagrman D and Zubieta J. Organic–Inorganic Hybrid Materials: From “Simple” CoordinationPolymers to Organodiamine-Templated Molybdenum Oxides[J]. Angew Chem Int Ed,1999,38,2639.
    [5] Kortz U, Hussain F, Reicke M, et al. The Ball-Shaped Heteropolytungstates
    [{Sn(CH3)2(H2O)}24{Sn(CH3)2}12(A-XW9O34)12]36[J]. Angew Chem Int Ed,2005,44,3773-3777.
    [6] AlDamen M A, Clemente-Juan J M and Coronado E. Mononuclear Lanthanide Single-Molecule MagnetsBased on Polyoxometalates[J]. J Am Chem Soc,2008,130,8874–8875.
    [7] Sadakane M, Dickman M H and Pope M T. Controlled Assembly of Polyoxometalate Chains from LacunaryBuilding Blocks and Lanthanide-Cation Linkers[J]. Angew Chem Int Ed,2000,39,2914-2916.
    [8](a) Gao G G, Li F Y, Xu L, et al. CO2Coordination by Inorganic Polyoxoanion in Water[J]. J Am Chem Soc,2008,130,10838-10839;(b) Li Y G, Xu L and Gao G G. New fabrication of lanthanide complexes based on thepolyoxometalate ligand of the [α(1,4)-GeW110O38]2-anion[J]. CrystEngComm,2009,11,1512-1514.
    [9] Wang W J, Xu L, Gao G G, et al. The first ε-Keggin core of molybdogermanate in extended architectures ofnickel (II) with N-donor ligands: syntheses, crystal structures and magnetic properties[J]. CrystEngComm,2009,11,2488-2493.
    [10] Okun N M, Anderson T M, Hardcastle K I, et al. Cupric Decamolybdodivanadophosphate. A CoordinationPolymer Heterogeneous Catalyst for Rapid, High Conversion, High Selectivity Sulfoxidation Using the AmbientEnvironment[J]. Inorg. Chem.,2003,42,6610-6612.
    [11] Liu S P, Xu L, Li F Y, et al. Enhanced electrochromic performance of composite films by combination ofpolyoxometalate with poly(3,4-ethylenedioxythiophene)[J]. J Mater Chem,2011,21,1946-1952.
    [12] Yang Y B, Xu L, Li F Y, et al. Enhanced photovoltaic response by incorporating polyoxometalate into aphthalocyanine-sensitized electrode[J]. J Mater Chem,2010,20,10835-10840.
    [13] Proust A, Thouvenot R, and Gouzerh P. Functionalization of polyoxometalates: towards advancedapplications in catalysis and materials science[J]. Chem Commun,2008,1837-1852.
    [14] Wang L S, Yin P C, Zhang J, et al. χ-Octamolybdate [MoVV4-4MoI4O24]: An Unusual Small Polyoxometalatein Partially Reduced Form from Nonaqueous Solvent Reduction [J]. Chem Eur J,2011,17,4796-4801.
    [15] Buckley R I and Clark R J H, Structural and electronic properties of some polymolybdates reducible tomolybdenum blues[J]. Coord Chem Rev,1985,65,167-218.
    [16] Kozik M, Casan-Pastor N, Hammer C F, et al. Ring currents in wholly inorganic heteropoly blue complexes.Evaluation by a modification of Evans' susceptibility method[J]. J Am Chem Soc,1988,110,7697-7701.
    [17]吴宪.J Biol Chem.1920,43:189.
    [18] Dumas E, Debiemme-Chouvy C, Sevov S C, A Reduced Polyoxomolybdenum Borophosphate AnionRelated to the Wells-Dawson Clusters[J]. J Am Chem Soc,2002,124:908-909.
    [19] Artero V, Proust A, Reduction of the Phosphododecamolybdate Ion by Phosphonium Ylides andPhosphanes[J]. Eur J Inorg Chem,2000,2393-2400.
    [20] Fay N, Bond A M, Baffert C, et al. Structural, Electrochemical, and Spectroscopic Characterization of aRedox Pair of Sulfite-Based Polyoxotungstates: α-[W18O54(SO3)2]4-and α-[W-18O454(SO3)2][J]. Inorg Chem,2007,46:3502-3510.
    [21] Boskovic C, Sadek M, Brownlee R T C, et al. Electrosynthesis and solution structure of six-electronreduced forms of metatungstate,[H6–2W12O40][J]. Dalton Trans,2001,187-196.
    [22] Yuan M, Li Y G, Wang E B, et al. Modified Polyoxometalates: Hydrothermal Syntheses andCrystalStructures of Three Novel Reduced and Capped Keggin Derivatives Decorated by Transition MetalComplexes[J]. Inorg Chem,2003,42:3670-3676.
    [23] Liu C M, Zhang D Q, Xiong M, et al. A novel two-dimensional mixed molybdenum-vanadiumpolyoxometalates with two types of cobalt(II) complex fragments as bridges[J]. Chem Commun,2002,1416-1417.
    [24] Liu Y B, Cui X B, Xu J Q, et al. Hydrothermal synthesis and characterization of three one-dimensionalchain materials formed by reduced tetra-capped Keggin polyoxoanions and [M(en)+2]2(M=Cu, Co and Ni)cations[J]. J Mol Struc,2006,825:45-52.
    [25] Chen Q, Hill C L, A Bivanadyl Capped, Highly Reduced Keggin Polyanion,[PMoVVII6Mo6O40(VVO)2]5-[J].Inorg Chem,1996,35:2403-2405.
    [26] Jin H, Qi Y F, Wang E B,et al. Molecular and Multidimensional Organic-Inorganic Hybrids Based onPolyoxometalates and Copper Coordination Polymer with Mixed4,4`-Bipyridine and2,2`-Bipyridine Ligands[J].Cryst Growth Des,2006,6:2693-2698.
    [27] Bai Y P, Li Y G, Wang E B, et al. A novel reduced α-Keggin type polyoxometalate coordinated to two anda half copper complex moieties:[Cu(2,2`-bipy)2][PMoVI8MoV4O40{Cu(2,2`-bipy)2.5}.H20[J]. J. Mol. Struc,2005,752:54–59.
    [28] Yu H H, Cui X B, Cui J W,et al. Hydrothermal synthesis and structural characterization of the first mixedMolybdenum-tungsten capped-keggin polyoxometal complex:{[Co(dien)4[AsVOV4MoV8WI4O33(μ2-OH)3]].2H2O[J]. Dalton Trans,2008,195-197.
    [29] Burkholder E, Golub V, Connor C J O, et al. Hydrothermal synthesis of a one-dimensional bimetallic,mixedvalence oxide [{Cu(terpy)4(PO4)(H2O)2}{W10(VI)W2(V)O36(PO4)}].5H2O, a material constructed from{PW512O40}-and{Cu4(terpy)4(PO4)(H52O)2}+cluster building blocks[J]. Inorg Chem Commun,2004,7:363-366.
    [30] Peloux C D, Dolbecq A, Mialane P, et al. A New Family of Layered Molybdenum(V) Cobalto-PhosphatesBuilt up of [H10-14(Mo16O32)Co16(PO4)24(H2O)20]Wheels[J]. Angew Chem Int Ed,2001,40:2455-2457.
    [31] Yuan M, Wang E B, Lu Y, et al. A two-dimensional molybdenum(V) phosphate with covalently bondedtransition metal coordination complexes: hydrothermal synthesis and structure characterization ofNa2[{Mn(phen)2(H2O)}{Mn(phen)2}3{MnMoV12O24(HPO4)6(PO4)2(OH)6}]4H2O[J]. J Solid State Chem,2003,170:192-197.
    [32] Ma Y, Li Y G, Wang E B, et al. Self-assembly of four new extended architectures based on reducedpolyoxometalate clusters and cadmium complexes[J]. J Solid State Chem,2006,179:2367-2375.
    [33] Yu K, Li Y G, Zhou B B, et al. A Basket-Like [SrPV10-6Mo4MoVI14O73]Polyoxoanion Modified with{Cu(phen)(H2O)x}(x=1-3) Fragments: Synthesis, Structure, Magnetic, and Electrochemical Properties[J]. Eur JInorg Chem,2007,36:5662-5669.
    [34] Prados R A, Meiklejohn P T, Pope M T, Nature of electron delocalization in a heteropoly blue anion.Evidence for valence trapping at low temperatures[J]. J Am Chem Soc,1974,96:1261-1263.
    [35] Tézé A, Cadot E, Béreau V, et al. About the Keggin Isomers: Crystal Structure of [N(C4H9)4]4-γ-[SiW12O40],the γ-Isomer of the Keggin Ion. Synthesis and183W NMR Characterization of the Mixed γ-{SiMon-2W10O40}(n=4or6)[J]. Inorg Chem,2001,40:2000-2004.
    [36] Varga G M, Papaconstantinou E, Pope M T, Heteropoly blues. IV. Spectroscopic and magnetic properties ofsome reduced polytungstates[J]. Inorg Chem,1970,9:662-667.
    [37] Mariusz K, Casan-Pastor N, Charles F, et al. Ring Currents in Wholly Inorganic Heteropoly BlueComplexes. Evaluation by a Modification of Evans`s Susceptibility Method[J]. J Am Chem Soc,1988,110:7697-7701.
    [38] Vu T, Bond A M, Hockless D C R, et al. Electrochemical Synthesis and Structural and PhysicalCharacterization of One-and Two-Electron-Reduced Forms of [SMo12O40]2-[J]. Inorg Chem,2001,40:65-72.
    [39]王恩波,王力耕,王惠忠等α-Keggin结构钼硅四电子杂多蓝的量子化学研究[J].化学学报1994,52,1145.
    [40]杨胜勇,肖慎修,陈天朗. Anderson型和Waugh型杂多阴离子的电子结构及其催化性能研究[J].高等学校化学学报,1994,15(9):1369-1372.
    [41] Suaud, N, Gaita-Ari o, A and Clemente-Juan, J. M, et al. Electron Delocalization and ElectrostaticRepulsion at the Origin of the Strong Spin Coupling in Mixed-Valence Keggin Polyoxometalates: Ab InitioCalculations of the One-and Two-Electron Processes[J]. Chem Eur J,10:4041–4053.
    [42] Clemente-Juan J M, Coronado E, Gaita-Ari o A, et al. Mixed-Valence Polyoxometalates: Spin-Couplingand Electron Distribution in the Decawolframate Anion Reduced by Two Electrons[J]. J Phys Chem A,2007,111,9969-9977.
    [43]刘术侠,刘彦勇,王恩波,13-钒镍(锰)杂多酸稀土盐的合成及其镨盐抗肿瘤活性的研究[J].化学学报,1996,54,673-678.
    [44]刘术侠,刘彦勇,王恩波,Keggin结构杂多蓝配合物抗艾滋病病毒(HIV-1)活性研究(Ⅱ)[J].东北师大学报,1996,1,53
    [45]刘术侠,刘彦勇,王恩波,钼系杂多、同多配合物抗肿瘤活性(II)[J].应用化学,1996,13(2),104
    [46] Liu, S X, Liu Y Y, Wang E B, Chin. Chem. Lett.1996,7(8);777
    [47]刘术侠,刘彦勇,王恩波等,高等学校化学学报,1996,17(8),1188
    [48]刘杰,周云山,彭军,王恩波,中国稀土学报,1997,18(8),1202
    [49] I. P. Alimarin, Z. F. Shakhova, and R. K. Motorkina, Dokl. Akad. Nank SSSR,106,61(1956).
    [50] E. Bamann, K. Schriever, A. Freytag, and R. Toussaint, Ann. Chem.,605,65(1957).
    [51](a) P. Souchay and R. Illassart, Compt. Rend.,1961,253,1699(b) R. Massart and P. Souchay, Compt.Rend.,1963,256,4671.
    [52](a) H. Hahn and F. Hahn, Naturwissenschaften,49,539(1962);(b) H. Hahn and G. Schmidt, Naturwissenschaften,49,539(1962);(c) H. Hahn and W. Becker,Naturwissenschaften,49,513(1962);(d) H. Hahn and W. Becker, Naturwissenschaften,50,402(1963).
    [53] Pope M T, Varga G M, Heteropoly Blues.1. Reduction Stoichiometries and Reduction Potentials ofSome12-Tungstates[J]. Inorg Chem,1966,5(7):1249-1254.
    [54] Pope M T, Elias Papaconstantinou, Heteropoly blues. II. Reduction of2:18-tungstates [J] Inorg. Chem.,1967,6(6), pp1147–1152
    [55] Pope M T, Elias Papaconstantinou, Heteropoly blues. III. Preparation and stabilities of reduced18-molybdodiphosphates[J]. Inorg. Chem.,1967,6(6),1152–1155
    [56] Pope M T, Elias Papaconstantinou, Heteropoly blues. V. Electronic spectra of one-to six-electron blues of18-metallodiphosphate anions[J]. Inorg. Chem,1970,9(3),667–669
    [57] Altenau J, Pope M T, Prados R A, et al. Models for heteropoly blues. Degrees of valence trapping invanadium(IV)-and molybdenum(V)-substituted Keggin anions[J]. Inorg Chem,1975,14:417-421.
    [58] Jeannin Y, Launay J P, Seid Sedjadi M A, Crystal and molecular structure of the six-electron-reduced formof metatungstate Rb4H8[H2W12O40]·18H2O: occurrence of a metal-metal bonded subcluster in a heteropolyanionframework[J]. Inorg Chem,1980,19(10):2933-2935.
    [59]许林. Keggin结构钼系杂多兰和稀土配合物杂多兰的离析和性质研究[D]:[硕士学位论文].长春:东北师范学化学学院,1990.
    [60]高爽.钨系杂多兰的合成,性质和结构研究[D]:[硕士学位论文].长春:东北师范学化学学院,1992.
    [61]王秀红.钨砷杂多兰的合成,性质及结构研究[D]:[硕士学位论文].长春:东北师范学化学学院,1993.
    [62] Duncan D C, Hill C L, Synthesis and Characterization of the Mixed-Valence DiamagneticTwo-Electron-Reduced Isopolytungstate [W6-10O32]. Evidence for an Asymmetric d-Electron Distribution overthe Tungsten Sites[J]. Inorg Chem,1996,35:5828-5835.
    [63]刘杰,彭军,周云山,王恩波,十一钼硅钴杂多蓝H8[SiMo11Co(H2O)O39]·20H2O的合成与晶体结构[J].结构化学,1998,17,225-229.
    [64]柳士忠,李建平,陈晋阳,张贞文,12-钼磷酸四丁基铵杂多蓝的光化学合成表征与晶体结构[J].结构化学,2002,21,646-650.
    [65] Li M Q, Jian X G, Han T M, et al. Acta Chimica Sinica2004,62(6),540
    [66] Rodriguez-Rivera G J, Kim W B, Evans S T, et al. Hydrogenation of Benzene Using Aqueous Solution ofPolyoxometalates Reduced by CO over Gold Catalysts[J]. J Am Chem Soc.2005,127,10790-10791.
    [67] Moll H E, Nohra B, Mialane P, et al. Lanthanide Polyoxocationic Complexes: Experimental and TheoreticalStability Studies and Lewis Acid Catalysis[J]. Chem Eur J,2011,17,14129–14138.
    [68] Nohra B, Moll H E, Albelo L M R, et al. Polyoxometalate-Based Metal Organic Frameworks (POMOFs):Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction[J]. J AmChem Soc,2011,133,13363–13374.
    [69] Zhang G. J, Keita B, Biboum R N, et al. Synthesis of various crystalline gold nanostructures in water: Thepolyoxometalate β-[H3-4PMo12O40]as the reducing and stabilizing agent[J]. J Mater Chem,2009,19,8639–8644.
    [70] Zhang G J, Keita B, Dolbecq A, et al. Green Chemistry-Type One-Step Synthesis of Silver NanostructuresBased on MoV–MoVIMixed-Valence Polyoxometalates[J]. Chem Mater,2007,19,5821-5823.
    [71] Keita B, Zhang G J, Dolbecq A, et al. MoV MoVIMixed Valence Polyoxometalates for Facile Synthesis ofStabilized Metal Nanoparticles: Electrocatalytic Oxidation of Alcohols[J]. J Phys Chem C,2007,111,8145-8148.
    [72] Dolbecq A, Compain J D, Mialane P, et al. Hexa-and Dodecanuclear Polyoxomolybdate Cyclic Compounds:Application toward the Facile Synthesis of Nanoparticles and Film Electrodeposition[J]. Chem Eur J,2009,15,733–741.
    [73] Shen Y, Peng J, Zhang H Q, et al. In situ immobilization of Ag nanoparticles on Keggin heteropoly bluemicrotubes[J]. J Mater Chem,2011,21,6995-6998.
    [74] Shen Y, Peng J, Zhang H Q, et al. Mo-Substituted Keggin Tungstosilicate Microtubes: Preparation andCharacterization[J]. Inorg Chem,2012,51,51465151.
    [75] Akutagawa T, Kudo F, Tsunashima R, et al. Hydrogen-Bonded Assemblies of Two-Electron ReducedMixed-Valence [XMo12O40](X=P and Si) with p-Phenylenediamines[J]. Inorg Chem,2011,50(14),6711–6718.
    [76]刘喜正,基于单/双缺位Keggin型阴离子的多酸配合物的合成、晶体结构和磁性研究[D]:[硕士学位论文].长春:东北师范学化学学院,2009.
    [1]吴宪.J Biol Chem.1920,43:189.
    [2] Prados R A, Meiklejohn P T, Pope M T, Nature of electron delocalization in a heteropoly blue anion.Evidence for valence trapping at low temperatures[J]. J Am Chem Soc,1974,96:1261-1263.
    [3]刘喜正,基于单/双缺位Keggin型阴离子的多酸配合物的合成、晶体结构和磁性研究[D]:[硕士学位论文].长春:东北师范学化学学院,2009.
    [4] Haraguchi N, Okaue Y, Isobe T, et al. Stabilization of Tetravalent Cerium upon Coordination of UnsaturatedHeteropolytungstate Anions[J]. Inorg Chem,1994,33,1015-1020.
    [5] Mialane P, Dolbecq A, Costaz G, et al. Synthesis and structure of the first dinuclear lanthanide oxalatocomplexes [{MoV2O4(C2O4)2(H2O)2}2{(Ln2(H2O)4)2(C2O4)}].7H2O (Ln=La3+,Ce3+)[J]. Inorg Chem Commun,2002,5,702–705.
    [6] Sheldrick G M, SHELXS97and SHELXL97[M]. University of G ttingen: Germany.1997.
    [7] Gao G G, Xu L, Wang W J, et al. Cobalt(II)/Nickel(II)-Centered Keggin-Type Heteropolymolybdates:Syntheses, Crystal Structures, Magnetic and Electrochemical Properties[J]. Inorg Chem,2008,47,2325-2333.
    [8] Pastor N C, Romero P G, Jamesson G B, et al. Crystal structures of.alpha.-[CoIIW6-12O40]and its heteropolyblue2e reduction product,.alpha.-[CoIIW8-12O40]. Structural, electronic, and chemical consequences of electrondelocalization in a multiatom mixed-valence system[J]. J Am Chem Soc,1991,113,5658-5663.
    [9] Gómez-García C J, Giménez-Saiz C, Triki S, et al. Coexistence of Magnetic and Delocalized Electrons inHybrid Molecular Materials. The Series of Organic-Inorganic Radical Salts (BEDT-TTF)8[XW12O40](solv)n (X=2(H+), BIII, SiIV, CuII, CoII, and FeIII; solv=H2O, CH3CN)[J]. Inorg Chem,1995,34,4139-4151.
    [10] Liu X Z, Gao G G, Xu L, et al. Electrochemical and magnetic properties of inorganic polymers constructedfrom Mn(II)/Co(II)-substituted heteropolymolybdates[J]. Solid State Sci,2009,11,1433–1438.
    [11]Keita B, Nadjo L. New aspects of the electrochemistry of heteropolyacids: Part IV. Acidity dependent cyclicvoltammetric behaviour of phosphotungstic and silicotungstic heteropolyanions in water andN,N-dimethylformamide[J]. J Electroanal Chem,1987,227,77-98.
    [12]Sadakane M, Steckhan E, Electrochemical Properties of Polyoxometalates as Electrocatalysts[J]. Chem Rev,1998,98:219-237.
    [13] Huang W L, Todaro L, Yap G P A, et al.51V Magic Angle Spinning NMR Spectroscopy of Keggin Anions[PV()-nW12-nO40]3+n: Effect of Countercation and Vanadium Substitution on Fine Structure Constants[J]. J AmChem Soc,2004,126:11564-11573.
    [14] Luo Q H, Howell R C, Dankova M, et al. Coordination of Rare-Earth Elements in Complexes withMonovacant Wells Dawson Polyoxoanions[J]. Inorg Chem,2001,40:1894-1901.
    [15] C. L. Hill,[J]Chem Rev.1998,98, special thematic issue.
    [16] Rusu D, Cr ciun C, Barra A L, et al. Spectroscopic and electron paramagnetic resonance behavior oftrinuclear metallic clusters encapsulated in [Mn+(183n)3(H2O)x(BiW9O33)2]heteropolyanion (Mn+=(VO)II,x=0and Mn+=CrIII, MnII, FeIII, CoII, NiII, CuII,x=3)[J]. J Chem Soc Dalton Trans,2001,2879–2887.
    [17] Liu H, Qin C, Wei Y G, et al. Copper-Complex-Linked Polytungsto-Bismuthate (-Antimonite) ChainContaining Sandwich Cu(II) Ions Partially Modified with Imidazole Ligand[J]. Inorg. Chem,2008,47,4166–4172.
    [18] Tao H, Yao J N, Photochromism in composite and hybrid materials based on transition-metal oxides andpolyoxometalates[J]. Prog Mater Sci,2006,51,810–879.
    [19] Ouahab L, Bencharif M, Mhanni A, et al. Preparations, x-ray crystal structures, EH band calculations, andphysical properties of [(TTF)6(H)(XM12O40)(Et4N)](M=tungsten, molybdenum; X=phosphorus, silicon):evidence of electron transfer between organic donors and polyoxometalates[J]. Chem Mater,1992,4,666-674.
    [20] Vu T, Bond A M, Hockless D C R, et al. Electrochemical Synthesis and Structural and PhysicalCharacterization of One-and Two-Electron-Reduced Forms of [SMo12O40]2-[J]. Inorg Chem,2001,40,65-72.
    [21] Juraja S, Vu T, Richardt P J S, et al. Electrochemical, Spectroscopic, Structural, and MagneticCharacterization of the Reduced and Protonated α-Dawson Anions in[Fe(η5-C5Me5)2]5[HS2Mo18O62]·3HCONMe2·2Et2O and [NBu4]5[HS2Mo18O62]·2H2O1[J]. Inorg Chem,2002,41,1072-1078.
    [22] Maguerès P L, Ouahab L, Golhen S, et al. Diamagnetic and Paramagnetic Keggin Polyoxometalate SaltsContaining1-D and3-D decamethylferrocenium Networks: Preparation, Crystal Structures and MagneticProperties of [Fe(C5Me5)2]4(POM)(solv)n (POM=[SiMo412O40]-,[SiW12O4-40]4-,[PMo12O40],[HFeW412O40]-;solv=H2O, C3H7ON, CH3CN)[J]. Inorg Chem,1994,33,5180-5187.
    [23] Suaud N, Ari o A G, Juan J M C, et al. Electron Delocalization and Electrostatic Repulsion at the Origin ofthe Strong Spin Coupling in Mixed-Valence Keggin Polyoxometalates: Ab Initio Calculations of the One-andTwo-Electron Processes[J]. Chem Eur J,2004,10:4041-4053.
    [24] Maestre J M, Lopez X, Bo C, et al. Electronic and Magnetic Properties of α-Keggin Anions: A DFT Studyof [XMn-III12O40],(M=W, Mo; X=Al, SiIV, PV, FeIII, CoII, CoIII) and [SiMm11VO40]-(M=Mo and W)[J]. J AmChem Soc,2001,123:3749-3758.
    [1]吴宪.J Biol Chem.1920,43:189.
    [2] Prados R A, Meiklejohn P T, Pope M T, Nature of electron delocalization in a heteropoly blue anion.Evidence for valence trapping at low temperatures [J]. J Am Chem Soc,1974,96:1261-1263.
    [3]刘喜正,基于单/双缺位Keggin型阴离子的多酸配合物的合成、晶体结构和磁性研究[D]:[硕士学位论文].长春:东北师范学化学学院,2009.
    [4] Wang Y C, Xu L, Jiang N, et al. Multidimensional frameworks constructed from Keggin-type heteropoly blueof molybdenum–tungsten cluster [J]. CrystEngComm,2011,13,410–413.
    [5] Haraguchi N, Okaue Y, Isobe T, et al. Stabilization of Tetravalent Cerium upon Coordination of UnsaturatedHeteropolytungstate Anions[J]. Inorg Chem,1994,33,1015-1020.
    [6] P Mialane, A Dolbecq, G Costaz, L Lisnard, J Marrot and F Sécheresse, Inorg. Chem. Commun.2002,5,702–705.
    [7] Sheldrick, G. M. SHELXS97and SHELXL97[M]. University of G ttingen: Germany.1997.
    [8] Suaud N, Ari o A G, Juan J M C, et al. Electron Delocalization and Electrostatic Repulsion at the Origin ofthe Strong Spin Coupling in Mixed-Valence Keggin Polyoxometalates: Ab Initio Calculations of the One-andTwo-Electron Processes[J]. Chem Eur J,2004,10:4041-4053.
    [9] Maestre J M, Lopez X, Bo C, et al. Electronic and Magnetic Properties of α-Keggin Anions: A DFT Study of
    [XMn-12O40],(M=W, Mo; X=AlIII, SiIV, PV, FeIII, CoII, CoIII) and [SiMm11VO40]-(M=Mo and W)[J]. J AmChem Soc,2001,123:3749-3758.
    [10] Ouahab L, Bencharif M, Mhanni A, et al. Preparations, x-ray crystal structures, EH band calculations, andphysical properties of [(TTF)6(H)(XM12O40)(Et4N)](M=tungsten, molybdenum; X=phosphorus, silicon):evidence of electron transfer between organic donors and polyoxometalates[J]. Chem Mater,1992,4,666-674.
    [11] Vu T, Bond A M, Hockless D C R, et al. Electrochemical Synthesis and Structural and PhysicalCharacterization of One-and Two-Electron-Reduced Forms of [SMo212O40]-[J]. Inorg Chem,2001,40:65-72.
    [12] Juraja S, Vu T, Richardt P J S, et al. Electrochemical, Spectroscopic, Structural, and MagneticCharacterization of the Reduced and Protonated α-Dawson Anions in
    [Fe(η5-C5Me5)2]5[HS2Mo18O62]·3HCONMe2·2Et2O and [NBu4]5[HS2Mo18O62]·2H2O1[J]. Inorg Chem,2002,41,1072-1078.
    [13] Maguerès P L, Ouahab L, Golhen S, et al. Diamagnetic and Paramagnetic Keggin Polyoxometalate SaltsContaining1-D and3-D decamethylferrocenium Networks: Preparation, Crystal Structures and MagneticProperties of [Fe(C5Me5)2]4(POM)(solv)n (POM=[SiMo4-12O40],[SiW12O40]4-,[PMo412O40]-,[HFeW4-12O40];solv=H2O, C3H7ON, CH3CN)[J]. Inorg Chem,1994,33,5180-5187.
    [14] Reinoso S, Vitoria P, Felices L S, et al. Analysis of Weak Interactions in the Crystal Packing of InorganicMetalorganic Hybrids Based on Keggin Polyoxometalates and Dinuclear Copper(II) Acetate Complexes[J].Inorg Chem,2006,45,108-118.
    [15] Děde ek J, Sobalík Z, Tvar kováZ, et al. Coordination of Cu Ions in High-Silica Zeolite Matrixes. Cu+Photoluminescence, IR of NO Adsorbed on Cu2+, and Cu2+ESR Study[J]. J Phys Chem,1995,99,16327-16337.
    [1] Dumas E, Debiemme-Chouvy C, Sevov S C, A Reduced Polyoxomolybdenum Borophosphate Anion Relatedto the Wells-Dawson Clusters[J]. J Am Chem Soc,2002,124:908-909.
    [2] Artero V, Proust A, Reduction of the Phosphododecamolybdate Ion by Phosphonium Ylides andPhosphanes[J]. Eur J Inorg Chem,2000,2393-2400.
    [3] Fay N, Bond A M, Baffert C, et al. Structural, Electrochemical, and Spectroscopic Characterization of aRedox Pair of Sulfite-Based Polyoxotungstates: α-[W418O54(SO3)2]-and α-[W18O54(SO3)2]4-[J]. Inorg Chem,2007,46:3502-3510.
    [4] Boskovic C, Sadek M, Brownlee R T C, et al. Electrosynthesis and solution structure of six-electron reducedforms of metatungstate,[H2W12O40]6–[J]. Dalton Trans,2001,187-196.
    [5] Moll H E, Nohra B, Mialane P, et al. Lanthanide Polyoxocationic Complexes: Experimental and TheoreticalStability Studies and Lewis Acid Catalysis[J]. Chem Eur J,2011,17,14129–14138.
    [6] Nohra B, Moll H E, Albelo L M R, et al. Polyoxometalate-Based Metal Organic Frameworks (POMOFs):Structural Trends, Energetics, and High Electrocatalytic Efficiency for Hydrogen Evolution Reaction[J]. J AmChem Soc,2011,133,13363–13374.
    [7] Zhang G. J, Keita B, Biboum R N, et al. Synthesis of various crystalline gold nanostructures in water: Thepolyoxometalate β-[H4PMo12O40]3-as the reducing and stabilizing agent[J]. J Mater Chem,2009,19,8639–8644.
    [8] Zhang G J, Keita B, Dolbecq A, et al. Green Chemistry-Type One-Step Synthesis of Silver NanostructuresBased on MoV–MoVIMixed-Valence Polyoxometalates[J]. Chem Mater,2007,19,5821-5823.
    [9] Keita B, Zhang G J, Dolbecq A, et al. MoV MoVIMixed Valence Polyoxometalates for Facile Synthesis ofStabilized Metal Nanoparticles: Electrocatalytic Oxidation of Alcohols[J]. J Phys Chem C,2007,111,8145-8148.
    [10] Dolbecq A, Compain J D, Mialane P, et al. Hexa-and Dodecanuclear Polyoxomolybdate Cyclic Compounds:Application toward the Facile Synthesis of Nanoparticles and Film Electrodeposition[J]. Chem Eur J,2009,15,733–741.
    [11] Mialane P, Dolbecq A, Lisnard L, et al.[ε-PMo12O36(OH)4{La(H2O)4}4]5+: The First ε-PMo12O40Keggin Ionand Its Association with the Two-Electron-Reduced α-PMo12O40Isomer[J]. Angew. Chem. Int. Ed.2002,41,2398-2401.
    [12] Akutagawa T, Kudo F, Tsunashima R, et al. Hydrogen-Bonded Assemblies of Two-Electron ReducedMixed-Valence [XMo12O40](X=P and Si) with p-Phenylenediamines[J]. Inorg Chem,2011,50(14),6711–6718.
    [13] Wang Y C, Xu L, Jiang N, et al. Multidimensional frameworks constructed from Keggin-type heteropolyblue of molybdenum–tungsten cluster [J]. CrystEngComm,2011,13,410–413.
    [14] Wang Y C, Li F Y, Xu L, et al. Coordinative assembly of multidimensional architectures based onheteropoly blue building block of [SiWV610Mo2O40]-: synthesis, crystal structures and magnetic properties.Dalton Trans.,2013,10.1039/c3dt32658f.
    [15] N Haraguchi, Y Okaue, T Isobe and Y Matsuda, Inorg. Chem.1994,33,1015-1020.
    [16] P Mialane, A Dolbecq, G Costaz, L Lisnard, J Marrot and F Sécheresse, Inorg. Chem. Commun.2002,5,702–705.
    [17] Ginsberg A P, Editor, Inorganic Syntheses, Vol.27, Wiley (1990).107-108
    [18] Sheldrick G. M, SHELXS97and SHELXL97[M]. University of G ttingen: Germany.1997.
    [19] Patterson T A, Carver J C, Leyden D E, et al. A surface study of cobalt-molybdena-alumina catalysts usingx-ray photoelectron spectroscopy[J]. J Phys Chem,1976,80,1700–1708.
    [20] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer,Eden Prairie, Minnesota,1979.
    [21] Salvatl Jr L, Makovsky E L, Stencel J M, et al. Surface spectroscopic study of tungsten-alumina catalystsusing x-ray photoelectron, ion scattering, and Raman spectroscopies[J]. J Phys Chem1981,85,3700-3707.
    [22] Ng K T, Hercules D M, Studies of nickel-tungsten-alumina catalysts by x-ray photoelectron spectroscopy[J].J Phys Chem,1976,80,2094-2102.
    [23] Liu H, Qin C, Wei Y G, et al. Copper-Complex-Linked Polytungsto-Bismuthate (-Antimonite) ChainContaining Sandwich Cu(II) Ions Partially Modified with Imidazole Ligand[J]. Inorg. Chem,2008,47,4166–4172.
    [24] Tao H, Yao J N, Photochromism in composite and hybrid materials based on transition-metal oxides andpolyoxometalates[J]. Prog Mater Sci,2006,51,810–879.
    [25] Pankove J I, Optical Processes in Semiconductors; Prentice-Hall: Englewood Cliffs, New Jersey,1971.
    [26] Wesley W M, Harry W G H, Reflectance Spectroscopy; Wiley: New York,1966.
    [27] Rocchiccioli-Deltcheff C, Fournier M, Franck R, et al. Vibrational investigations of polyoxometalates.2.Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Kegginstructure[J]. Inorg. Chem.1983,22,207-216.
    [28] Kato H, Kobayashi H, Kudo A, Role of Ag+in the Band Structures and Photocatalytic Properties of AgMO3(M: Ta and Nb) with the Perovskite Structure[J]. J Phys Chem B2002,106,12441-12447.
    [29] Konta R, Kato H, Kobayashi H, et al. Photophysical properties and photocatalytic activities under visiblelight irradiation of silver vanadates Phys. Chem. Chem. Phys.2003,5,3061-3065.
    [30] Maggard P A, Yan B B, Luo J H, Pillared Hybrid Solids with Access to Coordinatively Unsaturated MetalSites: An Alternative Strategy[J]. Angew. Chem. Int. Ed Engl.2005,44,2553-2556.
    [31] Yan B, Capracotta M D, Maggard P A, Structural Origin of Chirality and Properties of a RemarkableHelically Pillared Solid[J]. Inorg Chem,2005,44,6509-6511.
    [32] Suaud, N, Gaita-Ari o, A and Clemente-Juan, J. M, et al. Electron Delocalization and ElectrostaticRepulsion at the Origin of the Strong Spin Coupling in Mixed-Valence Keggin Polyoxometalates: Ab InitioCalculations of the One-and Two-Electron Processes[J]. Chem Eur J,10:4041–4053.
    [33] Maestre J M, Lopez X, Bo C, et al. Electronic and Magnetic Properties of α-Keggin Anions: A DFT Studyof [XMn12O40]-,(M=W, Mo; X=AlIII, SiIV, PV, FeIII, CoII, CoIII) and [SiM11VO-40]m(M=Mo and W)[J]. J AmChem Soc,2001,123:3749-3758.
    [34] Kozik M, Hammer C F; Baker L C W, Direct determination by tungsten-183NMR of the locations of addedelectrons in ESR-silent heteropoly blues. Chemical shifts and relaxation times in polysite mixed-valencetransition metal species[J]. J Am Chem Soc,1986,108,2748-2749.
    [35] Kozik M, Casan-Pastor N, Hammer C F, et al. Ring currents in wholly inorganic heteropoly blue complexes.Evaluation by a modification of Evans' susceptibility method[J]. J Am Chem Soc,1988,110,7697-7701.
    [36] Brevard, C.; Schimpf, R.; Tourne, G.; Tourne, C. M. Tungsten-183NMR: a complete and unequivocalassignment of the tungsten-tungsten connectivities in heteropolytungstates via two-dimensional tungsten-183NMR techniques[J]. J Am Chem Soc,1983,105,7059-7063.
    [37] Ouahab L, Bencharif M, Mhanni A, et al. Preparations, x-ray crystal structures, EH band calculations, andphysical properties of [(TTF)6(H)(XM12O40)(Et4N)](M=tungsten, molybdenum; X=phosphorus, silicon):evidence of electron transfer between organic donors and polyoxometalates[J]. Chem Mater,1992,4,666-674.
    [38] Vu T, Bond A M, Hockless D C R, et al. Electrochemical Synthesis and Structural and PhysicalCharacterization of One-and Two-Electron-Reduced Forms of [SMo212O40]-[J]. Inorg Chem,2001,40:65-72.
    [39] Juraja S, Vu T, Richardt P J S, et al. Electrochemical, Spectroscopic, Structural, and MagneticCharacterization of the Reduced and Protonated α-Dawson Anions in[Fe(η5-C5Me5)2]5[HS2Mo18O62]·3HCONMe2·2Et2O and [NBu4]5[HS2Mo18O62]·2H2O1[J]. Inorg Chem,2002,41,1072-1078.
    [40] Maguerès P L, Ouahab L, Golhen S, et al. Diamagnetic and Paramagnetic Keggin Polyoxometalate SaltsContaining1-D and3-D decamethylferrocenium Networks: Preparation, Crystal Structures and MagneticProperties of [Fe(C4-5Me5)2]4(POM)(solv)n (POM=[SiMo12O40]4-,[SiW12O40],[PMo412O40]-,[HFeW12O40]4-;solv=H2O, C3H7ON, CH3CN)[J]. Inorg Chem,1994,33,5180-5187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700