耐温耐盐降滤失剂的合成及与蒙脱土的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外石油工业的发展和对石油需求的不断增长,油田勘探开发逐渐从浅部地层向深部地层、由浅海向深海转变,对钻井液提出了更高的抗温和抗盐要求。本文拟通过提高处理剂自身耐温耐盐性能来加强水基钻井液高温稳定性,采用分子结构设计理论,优选出四种不同的单体:2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)、N,N-二甲基丙烯酰胺(DMAM)、N-乙烯吡咯烷酮(NVP),利用自由基水溶液聚合法合成了P(AMPS-AM-DMAM-NVP)四元共聚物作为高温水基钻井液降滤失剂,有效地提高了水基钻井液耐温耐盐性能。
     一、P(AMPS-AM-DMAM-NVP)四元共聚物的合成与表征
     P(AMPS-AM-DMAM-NVP)四元共聚物的自由基水溶液聚合实验采用正交实验法和改变单体浓度法得到了最佳反应条件:引发剂过硫酸钾(KPS)用量0.3wt%(占单体质量分数),单体摩尔比AMPS:AM:DMAM:NVP=3:4:2:1,络合剂乙二胺四乙酸(EDTA)用量0.15wt%(占单体质量分数),温度75℃,单体浓度30wt%(质量分数),反应时间6 h。红外光谱分析验证了四元共聚物中各单体的存在以及反应的完全性;元素分析实验基本证明了合成聚合物与设计聚合物组成一致;特性粘度实验确定了四元共聚物的粘均分子量约为72.23万;热重-差示扫描量热(TG-DSC)实验和特性粘度保留率实验表明合成共聚物具有良好的耐温性。
     二、P(AMPS-AM-DMAM-NVP)四元共聚物在不同泥浆体系中的降滤失效果评价
     通过流变和滤失实验,发现共聚物浓度、温度、NaCl浓度、老化时间等对泥浆体系流变和滤失性质具有重要的影响。共聚物的加入使得淡水泥浆、盐水泥浆、复合盐水泥浆和饱和盐水泥浆在高温老化后具有不增粘以及良好的降滤失效果。与国外产品Driscal D相比发现,高温老化后,在淡水泥浆、复合盐水泥浆中两者降滤失效果相当;在盐水泥浆、饱和盐水泥浆中,共聚物降滤失效果优于Driscal D。这表明此共聚物有望在深井钻探中得到应用。
     三、P(AMPS-AM-DMAM-NVP)四元共聚物与蒙脱土的相互作用研究
     为了更好的解释共聚物在粘土分散体系中的耐温耐盐性,利用总有机碳分析实验和流变实验研究了共聚物与蒙脱土的相互作用。结果发现:随着共聚物浓度增加,其在蒙脱土颗粒表面的吸附量增加并逐渐达到吸附平台,符合Langmuir型吸附等温线;电解质的加入使共聚物在钠蒙脱土颗粒表面吸附量增加,在较低浓度下,CaCl2对共聚物在颗粒表面吸附的影响程度大于NaCl;继续增加电解质浓度,随CaCl2浓度增加出现饱和吸附平台,而随NaCl浓度增加并未出现饱和吸附的趋势;温度增加,共聚物在颗粒表面吸附量降低。流变实验结果表明,共聚物水溶液符合幂律模型,随浓度增加,流型曲线上升;随剪切速率增加,粘度降低,具有剪切稀释性;而钠蒙脱土分散体系及共聚物-钠蒙脱土复合体系均符合Herschel-Bulkely模型,随着共聚物浓度增加,屈服值和稠度系数随之增加而流型指数减小,这与振荡频率扫描实验结果一致;无论是钠蒙脱土分散体系还是共聚物-钠蒙脱土复合体系,随着NaCl浓度的增加,体系屈服值和稠度系数均表现出先增大后减小的趋势,流型指数正好相反。
     四、P(AMPS-AM-DMAM-NVP)四元共聚物降滤失机理研究
     从胶体与界面化学的基本理论出发,初步提出了共聚物的降滤失机理,可以概括为:(1)利用共聚物在颗粒表面吸附提高静电排斥力、疏水作用力、水化膜斥力来稳定粘土颗粒;(2)共聚物对粘土分散体系起增粘作用,降低了滤液的流动性,增加了渗滤阻力;(3)共聚物的加入有助于粘土分散体系中结构网的形成,提高聚结稳定性;(4)共聚物本身的分子尺寸在胶体颗粒范围之内,它的加入相当于增加了胶体颗粒的含量,对滤饼起到封堵孔隙的作用。
With the development of oil industry at home and abroad and the ever-increasing demand for oil, the exploitation and development of oilfield was shifted from shallow strata to deep strata and from shallow sea to deep sea, which has made a claim for higher temperature and higher salt concentrations in drilling fluid. Polymer with improved high temperature resistance and salt tolerance was collected as additive to enhance the high temperature stability of water-base drilling fluid. According to the theories of molecular structure design, four different monomers were optimized as follows:2-acrylamido-2-methyl-propane sulfonic acid (AMPS), acrylamide(AM), N,N-dimethyl acrylamide (DMAM) and N-vinylpyrrolidone (NVP). Quadripolymer as high temperature fluid loss reducer was synthesized by adopting free radical water solution polymerization method, which effectively improved the performance of water-base drilling fluid with high temperature resistance and salt tolerance.
     1. Preparation and characterization of P(AMPS-AM-DMAM-NVP) quadripolymer
     The optimum conditions of synthesis were determined through orthogonally designed experiments and altering monomer concentration methods as follows:the initiator potassium persulfate (KPS) dosage 0.3 wt% (of monomer concentration), the monomer molar ratio AMPS:AM:DMAM:NVP=3:4:2:1, the chelator ethylene diamine tetraacetic acid (EDTA) dosage 0.15 wt% (of monomer concentration), the reaction temperature 75℃, the monomer concentration 30 wt% and the reaction time 6h. The Fourier transform infrared (FTIR) spectroanalysis revealed the presence of four monomers and confirmed the effectiveness of the reaction. The Element analysis showed the composition of synthetic polymer was in accord with designed polymer. The average viscosimetric molecular weight of quadripolymer was obtained by the intrinsic viscosity method, which was 72.23x 104. Both thermogravimetric-differential scanning calorimetry (TG-DSC) method and the retainable ratio of intrinsic viscosity showed the synthetic polymer had good high temperature resistance property.
     2. Evaluation of filtration control properties about P(AMPS-AM-DMAM-NVP) quadripolymer at different mud
     The results of rheological and filtration experiments showed quadripolymer concentrarions, temperature, NaCl concentrations and aging time had an important effect on the rheological and filtration properties of mud. Fresh water mud, salt water mud, compound salt water mud and saturated saline-water mud didn't increase viscosity and had good filtration properties after high temperature aging with the addition of quadripolymer. For fresh water mud and compound salt mud, the quadripolymer had same performance in controlling the filtration compared with the Driscal D. For salt water mud and saturated saline-water mud, it had better performance in controlling the filtration compared with the Driscal D. This shows that quadripolymer can be expected to be applied in deep drilling.
     3. Research on the interaction of P(AMPS-AM-DMAM-NVP) quadripolymer with montmorillonite
     In order to explain better the high temperature resistance and salt tolerance of quadripolymer in clay dispersion, the total organic carbon analysis experiments(TOC) and rheological experiments were used to research the interaction of quadripolymer with montmorillonite. The results showed the adsorbance increased with increasing quadripolymer concentration until a plateau region presented, which confirmed Langmuir adsorption isotherms. The addition of electrolytes made the adsorbance of quadripolymer in the surface of particles increase. At lower concentrations, the effect of CaCl2 were more significant than NaCl. Saturated adsorption platform appeared with the increase of CaCl2 concentration, while the adsorbance continued to increase with the increasing NaCl concentration without the tendency of saturated adsorption.
     The results of rheological experiments revealed that the flow curves of quadripolymer solution could be well described by the power law model. The flow curves raised with increasing quadripolymer concentration. The viscosity decreased with increasing shear rate, which exhibited the shear shinning properties. For montmorillonite dispersion and quadripolymer-montmorillonite dispersions, flow curves could be discribed by the Herschel-Bulkely model. With the increase of quadripolymer concentrations, yield value and consistency coefficient increased and flow indices decreased, which was confirmed with the oscillatory frequency scan measurements. With the addition of NaCl, yield value and consistency coefficient increased firstly and then decreased, while flow indices had the opposite tendency.
     4. Research on mechanisms of P(AMPS-AM-DMAM-NVP) quadripolymer in controlling filtration
     According to theory of Colloid and Interface Chemistry, some mechanisms of quadripolymer in controlling filtration were initially proposed. It can be summarized as follows:(1) Electrostatic repulsive force, hydrophobic interaction and hydration repulsion force between particles were enhanced by using the adsorption of polymer in the particle surface, which stabilized the clay particles; (2) The viscosity of mud increased with the addition of polymer, which reduced the liquidity of filtrate and increased the resistance of percolation; (3) The network structure of clay system was formed with the addition of polymer, which improved coagulation stability of clay system. (4) The molecular size of polymer was within the scope of the colloidal particles. Hence, the addition of polymer was equivalent to increasing the content of colloid particles, which had an effect on plugging the pores of the filter cake.
引文
[1]赵忠举,徐同台.国外钻井液技术[J].钻井液与完井液,2000,17(2):32-36.
    [2]L.M. Zhang, D.Y. Yin. Novel Modified lignosulfonate as Drilling Mud Thinner Without Environmental Concerns [J]. J Appl Polym Sci,1999,74:1662-1668.
    [3]V.C. Kelessidis, G. Christidis, et al. Gelation of water-bentonite suspensions at high temperatures and rheological control with lignite addition [J]. Applied Clay Science,2007,36:221-231.
    [4]V.C. Kelessidis, C. Tsamantaki, et al. Greek lignites as additives for controlling filtration properties of water-bentonite suspensions at high temperatures [J]. Fuel, 2007,86:1112-1121.
    [5]V.C. Kelessidis, C. Papanicolaou, et al. Application of Greek lignite as an additive for controlling rheological and filtration properties of water-bentonite suspensions at high temperature:A review [J]. International Journal of Coal Geology,2009,77: 394-400.
    [6]Md. Amanullah, L. Yu. Environment friendly fluid loss additives to protect the marine environment from the detrimental effect of mud additives [J]. Journal of Petroleum Science and Engineering,2005,48:199-208.
    [7]L.M. Zhang, D.Q. Chen. Structure-Property Relationships of New Water-Soluble Grafted Starches with Amphoteric Character [J]. Macromol. Mater. Eng,2003,288: 252-258.
    [8]张高波,史沛谦,何国军,等.高温抗盐降滤失剂SPX树脂[J].钻井液与完井液,2001,18(2):1-5.
    [9]张健,李健,李春霞,等.两性磺化酚醛树脂降滤失剂APR的研制[J].油田化学,1999,16(4):295-298.
    [10]D.M. Giddings, D.G. Ries, A.R. Syrinek. Terpolymers for use high temperature fluid loss additive and rheology stabilizer for high pressure, high temperature oil well drilling fluids:US,4502966 [P].1985.
    [11]K.H. Heier. Synthetic polymer extends fluid loss control to HP/HT environments [J]. World oil,2005,7:75-76.
    [12]T. Soric, R. Huelke. Uniquely engineered water-base high-temperature drill-in fluid increases production, cuts costs in Croatia campaign [C]. SPE/IADC 79839, 2003.
    [13]王中华.钻井液化学品设计与新产品开发[M].西安:西北大学出版社,2006:52-53.
    [14]王中华.AM/AMPS/MAA三元共聚物的合成与性能[J].精细石油化工进展,2001,2(2):1-4.
    [15]王中华.AMPS/AM/DMAM共聚物钻井液降滤失剂的合成[J].天津化工,1998,4:28-30.
    [16]王中华.AM/AMPS/木质素磺酸接枝共聚物降滤失剂的合成与性能[J].精细石油化工进展,2005,6(11):1-3.
    [17]张宝庆,武玉民,单光云,等.耐高温降滤失剂AMPS/AM/IA共聚物的合成与表征[J].油田化学,2001,18(2):105-107.
    [18]武玉民,孙德军,吴涛,等.耐温抗盐降滤失剂AMPS/AM/IA共聚物泥浆性能的研究[J].油田化学,2001,18(2):101-104.
    [19]Y.M. Wu, D.J. Sun, B.Q. Zhang, et al. Properties of High-Temperature Drilling Fluids Incorporating Disodium Itaconate/Acrylamide/Sodium 2-Acrylamido-2-methyl-propanesulfonate Terpolymers as Fluid-Loss Reducers [J]. J Appl Polym Sci,2002, 83:3068-3075.
    [20]王松.抗高温钻井液降滤失剂JHW的评价与应用[J].精细石油化工进展,2001,2(8):10-12.
    [21]王松.抗盐抗温降滤失剂AMPS/AM/MAM三元共聚物的合成与性能评价[J].精细石油化工进展,2003,4(4):18-20.
    [22]杨小华,王厚燕.两性离子磺酸盐聚合物处理剂CPS-2000研究[J].钻井液与完井液,2002,19(6):9-12.
    [23]杨小华.AOIAS/AM/AA共聚物钻井液降滤失剂的合成[J].精细与专用化学品,2007,15(19):22-24.
    [24]齐德生,刘凡,于炎湖,等.蒙脱石对黄曲霉毒素B1的脱毒研究[J].中国粮油学报,2004,19(6):71-75.
    [25]T. Permien, G. Lagaly. The rheological and colloidal properties of bentonite dispersions in the presence of organic compounds V. Bentonite and sodium montmo-rillonite and surfactants [J]. Clays Clay Miner,1995,43(2):229-236.
    [26]G. Lagaly, M. Reese, S. Abend. Smectites as colloidal stabilizers of emulsions:I. Preparation and properties of emulsions with smectites and nonionic surfactants [J]. Appl Clay Sci,1999,14:83-103.
    [27]鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001:26-43.
    [28]E. Tombacz. Colloidal behavior of aqueous montmorillonite suspensions:the specific role of pH in the presence of indifferent electrolytes [J]. Applied Clay Science, 2004,27:75-94.
    [29]J.D.G. Duran, M.M. Ramos-Tejada, F.J. Arroyo, et al. Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions Ⅰ. Rheological Properties and Interparticle Energy of Interaction [J]. J. Colloid Interface Sci,2000, 229:107-117.
    [30]O. Heath, Th.F. Tadros. Influence of pH, electrolyte, and poly(vinyl alcohol) addition on the rheological characteristics of aqueous dispersions of sodium montmorillonite [J]. J. Colloid Interface Sci,1983,93:307-319.
    [31]H.V. Olphen. Internal Mutual Flocculation in Clay Suspensions [J]. J. Colloid Interface Sci,1964,19:313.
    [32]K. Norrish, J.A. Rausell-Colom. Low-Angle X-Ray Diffraction studies of the Swelling of Montmorillonite and Vermiculite [J]. Clays and Clay Minerals,1961,10: 123-149.
    [33]I.C. Callaghan, R.H. Ottewill, et al. Interparticle Forces in Montmorillonite Gels [J]. Chemical Society Reviews,1974,57:110-118.
    [34]C.E.C. Souza, M.V.Fonseca, C.H. Sa, et al. Inhibitive Properties of Cationic Polymers in a Borehole Environment [J]. J Appl Polym Sci,2006,102:2158-2163.
    [35]N. Greesh, P.C. Hartmann. V. Cloete, et al. Adsorption of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and related compounds onto montmorillonite clay [J]. J. Colloid Interface Sci,2008,319:2-11.
    [36]S.A. Tahoun, M.M.Mortland. Complexes of montmorillonite with primary, secondary, and tertiary amides. Ⅱ. Coordination of amides on the surface of montmorillonite [J]. Soil Sci,1966,102(5):314-321.
    [37]B.K.G Theng. Clay-polymer interactions:summary and perspectives [J]. Clays Clay Miner,1982,30(1):1-10.
    [38]张健,张黎明,李卓美,等.疏水化水溶性两性纤维素接枝共聚物与粘土的相互作用[J].物理化学学报,2002,18(4):315-320.
    [39]D.A. Larid. Bonding Between Polyacrylamide and Clay Mineral Surfaces [J]. Soil Sci.1997,162(11):826-832.
    [40]E. Volpert, J. Selb, F. Candau, et al. Adsorption of Hydrophobically Associating Polyacrylamides on clay [J]. Langmuir,1998,14(7):1870-1879.
    [41]Y. Deng, J.B. Dixon, G.N. White, et al. Bonding beteween polyacrylamide and smectite [J]. Colloids and Surfaces A,2006,281:82-91.
    [42]C. Breen, J.O. Rawson, B.E. Mann. Adsorption of polycations on clays:an in situ study using 133Cs solution-phase NMR [J]. J. Mater. Chem,1996,6:253-260.
    [43]S. Isci, E. Gunister, O.I. Ece, et al. The modification of rheologic properties of clays with PVA effect [J]. Materials Letters,2004,58:1975-1978.
    [44]N. Gungor, O.I. Ece. Effect of the adsorption of non-ionic polymer poly(vinyl) pyrolidone on the rheological properties of Na-activated bentonite [J]. Materials Letters,1999,39:1-5.
    [45]N. Gungor, S. Karaoglan. Interactions of polyacrylamide polymer with bentonite in aqueous systems [J]. Materials Letters,2001,48:168.
    [46]S. Rossi, P.F. Luckham, Th.F. Tadros. Influence of non-ionic polymers on the
    rheological behaviour of Na+-montmorillonite clay suspensions-Ⅰ Nonylphenol-polypropylene oxide-polyethylene oxide copolymers [J]. Colloids and Surfaces A, 2002,201:85-100.
    [47]A. Alemdar, N. Oztekin, et al. Effects of polyethyleneimine adsorption on the rheological properties of purified bentonite suspensions [J]. Colloids and Surfaces A, 2005,252:95-98.
    [48]P. Mpofu, J. Ralston. Flocculation and dewatering behaviour of smectite dispersions:effect of polymer structure type [J]. Miner Eng,2004,17:411-423.
    [49]K.H. Hiller. Rheological Measurements on Clay Suspensions and Drilling Fluids at High Temperature and Pressures [J]. Journal of Petroleum Technology,1963,15: 779-789.
    [50]B.J. Briscoe, P.F. Luckham, et al. The Properties of Drilling Muds at High Pressures and High temperatures [J]. Philosophical Transactions of The Royal Society London Series A,1994,348:179.
    [51]O.M. Sadek, W.K. Mekhemer, F.F. Assaad, et al. Electrokinetic Potential of Kaolinite Clay in the Presence of Polystyrene Sulfonate [J]. J Appl Polym Sci,2006, 100:1705-1711.
    [52]牟伯中,罗平亚,李春霞等.蒙脱石粘土/水分散体系中颗粒的性质[J].油田化学,2001,18(1):1-3.
    [53]A. Alemdar, V. Butun. Interaction betwwen a Tertiary Amine Methacrylate Based Polyelectrolyte and a Sodium Montmorillonite Dispersion and Its Rheological and Colloidal Properties [J]. J Appl Polym Sci,2005,95:300-306.
    [54]X.J. Wang, D.J. Sun, Sh.Y. L. The effect of block copolymer EPE1100 on the colloidal stability of Mg-Al LDH dispersions [J]. J. Colloid Interface Sci,2005,289: 410-418.
    [55]Fernandez I J. Evaluation of Cationic Water-Soluble Polymers with Improved Thermal Stability [C]. SPE 93003,2005.
    [56]梁兵,代华,黄荣华.AM/DMAM/AMPS共聚物的合成及结构分析[J].油田化学,1997,14,3:248-251.
    [57]赵田红,王忠信,谷秋志等.阴离子型AM/AMPS共聚物的合成及性能评价[J].精细石油化工进展,2006,7,12:21-24.
    [58]卢红霞,刘福胜,于世涛等.阳离子聚丙烯酰胺P(AM-DMC)的合成与表征[J].高分子材料科学与工程,2008,24,4:46-49.
    [59]Y.M. Wu, Y.P. Wang, Y.Q. Yu, et al. Dispersion Polymerization of Acrylamide with 2-Acrylamido-2-methyl-l-propane Sulfonate in Aqueous Solution [J]. J Appl Polym Sci,2006,102:2379-2385.
    [60]钟传蓉,黄荣华,张熙等.AM-STD-NaAMPS三元疏水缔和共聚物的表征及耐热性能[J].高分子材料科学与工程,2003,19(6):126-130.
    [61]王友绍,王果庭,张春光.水解聚丙烯腈在钻井液中的热稳定性研究[J].石油与天然气化工,1996,25(2):91-94.
    [62]王友绍,王果庭,张春光等.CMC类聚合物在钻井液中的热稳定性[J].钻井液与完井液,1997,14(4):14-16.
    [63]王友绍,侯万国,王果庭等.磺化甲基酚醛树脂(Ⅰ)在钻井液中的热稳定性研究[J].石油与天然气化工,1998,27(1):46-50.
    [64]B. A. Mostafa, F. F. Assaad, M. Attia. Rheological and electrical properties of Egyptian bentonite as a drilling mud [J]. J Appl Polym Sci,2007,104:1496-1503.
    [65]M. Bacquet, B. Martel, M. Morcellet, et al. Adsorption of poly(4-vinylpyridine) onto bentonites [J]. Materials Letters,2004,58:455-459.
    [66]李阳,段友智.聚合物对石油磺酸盐体系驱油效率的影响[J].西南石油大学学报,2009,31,5:135-138.
    [67]袁志平,黄志宇,张太亮.钻井液降失水剂的合成研究[J].石油与天然气化工,2008,37,4:340-346.
    [68]G. Lagaly, S. Ziesmer. Colloid chemistry of clay minerals:the coagulation of montmorillonite dispersions [J]. Advances in Colloid and Interface Science,2003, 100-102:105-128.
    [69]S. Abend, G. Lagaly. Sol-gel transitions of sodium montmorillonite dispersions [J]. Applied Clay Science,2000,16:201-227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700