乙醇在铈基阳极SOFC上发电性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界各国经济的迅猛发展,能源问题和环境污染问题成为当今社会亟待解决的问题。具有污染少、效率高、不需要贵重金属催化剂等特点的固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)在能源与环境日益紧张的今天受到了格外的重视。但其广泛应用仍面临极大的挑战性。
     本文主要研究了乙醇应用到高温固体氧化物燃料电池上的发电性能;探究了其发电性能随操作条件的变化规律;同时制备了新型抗积碳催化剂,测试了其抗积碳性能。具体工作及结论如下:
     (1)以乙醇的水蒸汽重整反应为基础,将其应用到高温固体氧化物燃料电池中。以添加水蒸汽的乙醇蒸汽为燃料对电解质支撑的Ni-YSZ/YSZ/LSM单体进行了发电性能测试。实验结果表明:电池的性能曲线很平滑,规律性很好。但是,阳极积碳严重,严重影响了电池运行的稳定性,亟待解决。
     (2)采用柠檬酸溶胶.凝胶法制备了Ce1.16Ni0.36Zno.32O3-δ(CNZ)乙醇水蒸气重整反应及阳极抗积碳的催化剂材料。通过XRD表征,制备的催化剂在1200℃焙烧后能够形成完整的晶相,并出现ZrO2的四方晶相和单斜晶相特征峰,且以四方晶相为主。TEM分析了催化剂颗粒的微观性状,无明显团聚。
     (3)制备了CNZ-YSZ阳极SOFC单体,进行发电试验。并将其与Ni-YSZ阳极SOFC的发电性能进行了对比。结果发现,前者的发电性能明显优于后者,且前者对添加水蒸汽的乙醇蒸汽重整反应的催化性能及抗积碳性能比后者好得多。
     (4)探究了不同操作条件下以添加水蒸汽的乙醇蒸汽为燃料时,CNZ-YSZ阳极SOFC的发电性能及其随操作条件的变化规律。开路状态下对阳极尾气进行气相色谱分析;实验结束后对电池阳极表面进行了SEM表征。结果表明:该催化剂对改善阳极积碳现象效果明显。
Energy shortage and environmental pollution become serious problems in today society with the rapid development of the world economy. Solid oxide fuel cell (SOFC), with the advantage of high efficiency, little pollution and no expensive metal catalyst, attracts more and more attention all over the world. However, its wide application is still facing great challenges.
     The power generation performances of high temperature solid oxide fuel cell with ethanol as fuel are mainly studied in this paper; the laws of its power generation performances with the variation of operating conditions are explored; a new anti-carbon deposition catalyst is prepared, and its resistance to carbon formation is tested. The specific work and conclusions are as the follows:
     (1) Mixture of ethanol and water vapor is applied to high temperature solid oxide fuel cell based on the ethanol steam reforming reaction. The performances of electrolyte-supported Ni-YSZ/YSZ/LSM with mixture of ethanol and water vapor as fuel are tested. The experimental results show that the cell has a good power generation performance. But carbon deposition is very serious on the anode, which seriously affects the operational stability of the cell, need to be solved.
     (2) Ce1.16Ni0.36Zn0.32O3-δ(CNZ) catalyst is prepared by citric acid sol-gel method, which can promote ethanol steam reforming reaction and reduce the carbon deposition. It can be seen that catalyst is well crystallized at 1200℃from the XRD spectrum. The characteristic peaks of cubic and orthorhombic phase of ZrO2 can be found in the XRD spectrum, and the cubic phase is the main phase. The microcosmic shape of the catalyst particles is analyzed through TEM, and no apparent reunion.
     (3) The SOFC with CNZ-YSZ anode is prepared, and its power generation performances are tested. And it is compared with those of the SOFC with Ni-YSZ anode. The comparison results show that the power generation performances of the former are much better than the latter's, and the performances of promoting ethanol steam reforming reaction and reducing the carbon deposition of the former are also much better than the latter's.
     (4) The power generation performances of the SOFC with CNZ-YSZ anode fed with mixture of ethanol and water vapor are studied at different operating conditions, simultaneously, the laws of which with the variation of operating conditions are studied. The anode exhaust gas is analyzed by the gas chromatography at the condition of open circuit. The surfaces of the cells are characterized by SEM after experiments. The results show that the catalyst can improve carbon formation on the anode obviously.
引文
[1]Grove W R. On voltaic series and the combination of gases by platinum [J]. Philosophical Magazine A,1839,14:127-130.
    [2]Prater KB. Solid polymer fuel cell developments at ballard [J]. Journal of Power Sources,1993,37:181-186.
    [3]衣宝廉.燃料电池:原理·技术·应用[M].北京:化学工业出版社,2003.
    [4]杨润红,陈允轩,陈庚,等.燃料电池的应用和发展现状[J].平顶山学院学报,2006,21(2):79-83.
    [5]刘建国,孙公权.燃料电池概述[J].物理学与新能源材料专题,2004,33(2):79-84.
    [6]魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展.稀有金属,2003,2(27):286-298.
    [7]李瑛,王林山编著.燃料电池[M].北京,冶金工业出版社,2000.
    [8]Singhal S C. Advances in solid oxide fuel cell technology [J]. Solid State Ionics, 2000,135:305-313.
    [9]Mogensen M, Jensen K V, Jorgensen M J, et al. Progress in understanding SOFC electrodes [J]. Solid State Ionics,2002,150:123-129.
    [10]Atkins on A, Barnett S, Gorte RJ, et al. Advanced anodes for high-temperature fuel cells [J]. Nature Materials,2004,3:17-27.
    [11]Wincewicz K C, Cooper J S. Taxonomies of SOFC material and manufacturing alternatives [J]. Journal of Power Sources,2005,140:280-296.
    [12]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells [M]. Torrance, California, USA:1995.
    [13]Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells [J]. Materials Science and Engineering,2003,348(122):227-243.
    [14]Helmut Ringl, Niederzier (DE). Interconnector for high temperature fuel cells: US,20090061300[P/OL].2007-09-24[2006-02-16]. http://www4. drugfuture. com/ uspat/PatentSearch. aspx?Number=20090061300.
    [15]Damien Gallet, Avignon (FR); Jean-Luc Sarro. Fuel cell module with flexible interconnects:US,20090130528[P/OL].2007-04-25[2005-10-26]. http://www4. drugfuture. com/uspat/PatentSearch. aspx?Number=20090130528.
    [16]Zhu W Z, Deevi S C. Opportunity of metallic interconnects for solid oxide fuel cells:a status on contact resistance. [J] Materials Research Bulletin,2003, 38:957-972.
    [17]Horita T, Yamaji K, et al. Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale. [J] Solid State Ionics,2004,175:157-163.
    [18]彭苏萍,韩敏芳,杨翠柏.固体氧化物燃料电池[J].物理学与新能源材料专题,2004,2:90-94.
    [19]Westinghouse Electric Corporation. Solid Oxide Fuel Cell Power Generation System [R]. The Status of the Cell Technology-A Topical Report, Report No. DOE/ET/17089-15, U. S. Department of Energy, Washington, DC,1988.
    [20]K. Scott Weil, Richland, WA(US); Dean M. Paxton, Kennewick, WA(us);Kerry D. Meinhardt, Kennewick, WA(US). Solid oxide fuel cell frames and method of manufacture:US,20040265666[P/OL].2004-12-30[2003-06-27]. http://www4. drugfuture. com/uspat/PatentSearch. aspx?Number=20040265666.
    [21]李箭,肖建中.固体氧化物燃料电池的现状与发展[J].中国科学基金,2004,3:145-149.
    [22]Bernhard A. Fischer, GREER, SC (US). Methods and apparatus for fueling a solid oxide fuel cell stack assembly:US,2008029922[P/OL].2008-11-27[2007-05-22]. http://www4. drugfuture. com/uspat/PatentSearch. aspx?Number=2008029922.
    [23]Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells [J]. Materials Science and Engineering A,2003,362:228-239.
    [24]Takehisa F, Ohara S, Makio N, et al. Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles [J]. Journal of Power Sources,2002, 110:91-95.
    [25]Xia C R, Liu ML. Microstructures, conductivities, and electro-chemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs [J]. Solid State Ionics, 2002,152/153:423-430.
    [26]Kharton V V, Figueiredo FM, Frade J R, et al. Ceria-based materials for solid oxide fuel cells [J]. Journal of Materials Science,2001,36(5):1105-1117.
    [27]Steele B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃ [J]. Solid State Ionics,2000,129:95-110.
    [28]Murray E P, Tsai T, Barnett S A. A diect methane fuel cell with a ceria based a-node [J]. Nature,1999,400:649-651.
    [29]Zhu W, Xia C R, Meng G Y, et al. Ceria coated Ni as anodes for direct utilization of methane in low-temperature solid oxide fuel cells [J]. Journal of Power Sources, 2006,160:897-902.
    [30]Simwonis D, Tietz F, Stover D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells [J]. Solid State Ionics,2000,132:241-251.
    [31]Steele B C H, Kelly I, Rudkin R, et al. Oxidation of methane in solid state electrochemical reactors [J]. Solid State Ionics,1988,28/30:1547-1552.
    [32]Matsuzaki Y, Y asuda I. The poisoning effect of sulfur-containing impurity gas on a SOFC anode:Part I. Dependence on temperature, time, and impurity concentration [J]. Solid State Ionics,2000,132:261-269.
    [33]Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404:265-267.
    [34]Vohs J M, Gorte R J. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons [J]. Journal of Catalysis,2003,216:477-486.
    [35]Mclntosh S, Gorte R J. Direct Hydrocarbon Solid Oxide Fuel Cells [J]. Chemical Reviews,2004,104:4845-4865.
    [36]Zhang WQ, Yu B, Zhang P, et al. Progress on the Anode Materials for Solid Oxide Fuel Cells (SOFC) and Its Application for Hydrogen Production through High Temperature Steam Electrolysis [J]. Progress in Chemistry,2006,18 (6):832-840.
    [37]Boukamp B A. Fuel cells:The amazing perovskite anode [J]. Nature Materials,2003, 2:294-296.
    [38]Tsipis E V, Kharton V V, Frade J R. Mixed conducting components of solid oxide fuel cell anodes [J]. Journal of the European Ceramic Society,2005,25:2623-2626.
    [39]Reich CM, K aiser A, Irvine J T S. Niobia Based Rutile Materials as SOFC Anodes [J].Fuel Cells,2001,1:249-255.
    [40]Porat 0, Hermans C, Tuller H L. Stability and mixed ionic electronic conduction in Gd2(Tii-,Mox)207 under anodic conditions [J]. Solid State Ionics,1997,94:75-83.
    [41]Slater P R, Irvine J T S. Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells:synthesis and electrical characterisation [J]. Solid State Ionics,1999,120:125-134.
    [42]孙明涛,孙俊,季世军.固体氧化物燃料电池阳极研究[J].硅酸盐通报,2005,1:55-59.
    [43]PUDMICH G, BOUKAMP B A, GONZALEZ-CUENCM, et al. Chromite/titanate based pervskites for application as anodes in solid oxide fuel cells [J]. Solid State Ionics,2000, 135:433-438.
    [44]W Z, ZHU S C, DEEVI. A review on the status of anode materials for solid oxide fuel cells [J]. Materials Science and Engineering,2003,362:228-239.
    [45]OLGA C N, RAYMOND J G, JOHN M V. Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with Hz, CO, and syngas [J]. Journal of Power Sources, 2005,141:241-249.
    [46]MOGENSEN M, LINDEGAARD T, HANSEN U R, et al. Physical propertyes of mixed conductor solid oxide fuel cell snodes doped CeO2[J]. Journal of the electrochemical society,1994,141:2122-2118.
    [47]REMYREZ-CABREREE, ATKLNSONA, CHADWICKD. The. influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis [J]. Solid State Ionics,2000,136-137:825-831.
    [48]EGUCHI K, SETOGUCHI T, LNOUE T, et al. Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells [J]. Solid State Ionics,1992, 52(1/2/3):165-167.
    [49]XIA C R, LIU M L. Low-temperature SOFCs based on Gdo.1Ceo.9O1.95 fabricated by dry pressing[J]. Solid State Ionics,2001,144(3/4):249-250.
    [50]HIBINO T, HASHIMOTO A, YANO M, et al.High performance anodes for SOFCs operation in methane-air mixture at reduced temperatures [J]. Journal of the Electrochemical Society,2002,146(2):A133-135.
    [51]XIA C R, LIU M L. A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates [J]. Journal of the American Ceramic Society,2001,84(8):1903-1904.
    [52]HUANG X Q, LU Z, LIU W, et al.一种增加SOFC阳极三相反应区的方法[J].高等学校化学学报,2004,21(6):947-948.
    [53]尹红艳,李少玉,朱威,等.钙掺杂的氧化铈用于中温SOFCs阳极材料研究[J].中国稀土学报,2005,23(3):317-320.
    [54]MARINA 0 A, BAGGER C, PRIMDAHL S, et al. A solid oxide fuel cell with a gadolinia-doped ceria anode:preparation and performance [J]. Solid State Ionics. 1999,123:199-208.
    [55]日本NKK 2004年试销固体氧化物燃料电池[J].稀有金属,2004,27:306.
    [56]Zhongliang Zhan, Scott Barnett. An Octane-Fueled Solid Oxide Fuel Cell [J]. science, 2005,308:844-847.
    [57]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展[J].化学进展,1997,9(4):387-396.
    [58]John W Gosselink. Pathways to a more sustainable production of energy:sustainable hydrogen aresearch objective for shell [J]. International Journal of Hydrogen Energy,2002,27(11-12):1125-1129.
    [59]韩敏芳,尹会燕,唐秀玲等.固体氧化物燃料电池发展及展望[J].真空电子技术,2005,4:23-26.
    [60]毕忠合,程谟杰,吴合进等.以甲醇为燃料的中温固体氧化物燃料电池性能研究[J].高等学校化学学报,2005,26:1110-1113.
    [61]Ming-fei Liu, Ran-ran Peng, De-hua Dong et al. Direct liquid methanol-fueled solid oxide fuel cell [J]. Journal of Power Sources,2008,185:188-192.
    [62]Haruo Kishimoto, Teruhisa Horita, Katsuhiko Yamaji et al. Attempt of utilizing liquid fuels with Ni-ScSZ anode in SOFCs [J]. Solid State Ionics,2004,175: 107-111.
    [63]Hong-xia Gu, Ran Ran, Wei Zhou et al. Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine [J]. Journal of Power Sources, 2008,177:323-329.
    [64]Raghuram Chetty, Keith Scott. Direct ethanol fuel cells with catalysed metal mesh anodes [J]. Electrochimica Acta,2007,52:4073-4081.
    [65]Yu Yang, Jianxin Ma, Fei Wu. Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst [J]. International Journal of Hydrogen Energy,2006,31: 877-882.
    [66]Narcis Homs, Jordi Llora, Pilar Ramirez de la Piscina. Low-temperature steam reforming of ethanol over ZnO-supported Ni and Cu catalysts:the effect of nickel and copper addition to ZnO-supported cobalt-based catalysts [J]. Catalysis Today, 2006,116:361-366.
    [67]Larminie J, Dicks A. Fuel Cell Systems Explained [M]. Chichester:John Wiley & Sons, 2002,188-199.
    [68]乔金硕,孙克宁,张乃庆,等.固体氧化物燃料电池燃料重整技术研究进展[J].化工进展,2004,23(11):1189-1194.
    [69]Nabae Y, Y amanaka I, Hatano M, et al. Catalytic Behavior of Pd-Ni/Composite Anode for Direct Oxidation of Methane in SOFCs [J]. Journal of the electrochemical society,2006,153(1):A140-A145.
    [70]Larrondo S, Vidal M A, Irig oyen B, et al. Preparation and characterization of Ce/Zr mixed oxides and their use as catalysts for the direct oxidation of dry CH4 [J]. Catalysis Today,2005,107(8):53-59.
    [71]Olga Costa-Nunes, Raymond J. Gorte, John M. Vohs. Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas [J]. Journal of Power Sources,2005,141(2):241-249.
    [72]Venkatesan V. Krishnan, Steven McIntosh, et al. Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells [J]. Solid State Ionics,2004,166(1-2):191-197.
    [73]Steven McIntosh, Hongpeng He, Shung-Ik Lee, et al. An Examination of Carbonaceous Deposits in Direct-Utilization SOFC Anodes [J]. Journal of the electrochemical society,2004,151(4):A604-A608.
    [74]王卫平,席靖宇,王志飞,等.Ni-Fe催化剂乙醇部分氧化制氢的研究[J].物理化学学报,2002,18(5):426-431.
    [75]席靖宇,王志飞,王卫平,等.CuZnNi催化剂乙醇部分氧化制氢的研究[J].分子催化,2001,15(4):255-258.
    [76]荆泉,吴倩,黄民,等.乙醇氧化重整制氢的热力学分析[J].天然气化:[(C1化学与化工),2005,30(4):14-18.
    [77]王卫平,吕功煊.乙醇催化制氢研究进展[J].化学进展,2003,15(1):74-78.
    [78]黄贤良,赵海雷,吴卫江,等.固体氧化物燃料电池阳极材料的研究进展[J].硅酸盐学报,2005,33:1407-1413.
    [79]Pratihar S. K, Basu R. N, Mazumder S et al. Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI)[J]. The Electrochemical Society Proceedings Series,1999,513:17-22.
    [80]J.N. Amor. The multiple roles for catalysis in the production of H2 [J]. Applied Catalysis A,1999,176:159-176.
    [81]G. J. Saunders, J. Preece, K. Kendall. Formulating liquid hydrocarbon fuels for SOFCs [J]. Journal of Power Sources,2004,131:23-26.
    [82]刘宁,杨晓娟,王玉和.Co/ZrO2催化添加水蒸汽的乙醇蒸汽重整制氢反应的研究[J].化学工程师,2006,20(2):7-11.
    [83]高国栋.乙醇为燃料的固体氧化物燃料电池性能研究[D].大连:大连理工大学,2008.
    [84]赵玺灵,张兴梅,段常贵,等.基于析因试验的固体氧化物燃料电池热电联供系统设计参数研究[J].电网技术,2007,31(18):78-82.
    [85]Marsano F, Magistri L, Massardo A F. Ejector performance influence on a solid oxide fuel cell anodic recirculation system [J]. Journal of Power Sources,2004,129(2): 216-228.
    [86]Riensche E, Meusinger J, Stimming U, et al. Optimization of 200 kW SOFC cogeneration power plant[J]. Journal of Power Sources,1998,71(2):306-314.
    [87]方克明,邹兴,黄浪,等.纳米材料微观结构的透射电镜和高分辨电镜表征技术[J].纳米器件与技术,2005,2(3):26-29.
    [88]Takashi Hibino, Atsuko Hashimoto, Masaya Yano et al. Ru-caalyzed anode materials for firect hydrocarbon SOFCs [J]. Electrochimica Acta,2003,48:2531-2537.
    [89]盖国胜.超微粉体技术[M].北京:化学工业出版社,2004.
    [90]Bj(?)rn Christian Enger, Rune Ldeng, Anders Holmen. Evaluation of reactor and catalyst performance in methane partial oxidation over modified nickel catalysts [J]. Applied Catalysis A:General,2009,364:15-26.
    [91]云虹,陈建华,张慧,等.ZrO2在Cu-ZnO-ZrO2甲醇水蒸汽重整制氢催化剂中的作用[J].物理化学学报,2004,20(5):550-553.
    [92]Pratihar S. K, Basu R. N, Mazumder S, et al. Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-Ⅵ)[J]. The Electrochemical Society Proceedings Series,1999,513:17-22.
    [93]MOGENSEN M, LINDEGAARD T, HANSEN U R, et al. Physical properties of mixed conductor solid oxide fuel cells anodes doped CeO2[J]. Journal of the Electrochemical Society, 1994,141:2122-2118.
    [94]REMYREZ-CABREREE, ATKLNSONA, CHADWICKD. The influence of point defects on the resistance of ceria to carbon deposition in hydrocarbon catalysis [J]. Solid State Ionics,2000,136-137:825-831.
    [95]L. Righi, P. Gorria, J.Gutierrez, et al. Influence of Fe in giant magneto resistance ratio and magnetic properties of La0.7Cao.3Mn1-xFexO3 perovskite type compounds [J]. Journal of Applied Physics,1997,81:5767-5769.
    [96]V.P. S. Awana, E. Schmitt, E. Gmelin et al. Effect of Zn substitution on para-to ferromagnetic transition temperature in La0.67Ca0.33Mn1-xZnxO3 colossal magneto resistance materials [J]. Journal of Applied Physics,2000,87:5034-5036.
    [97]李彬,梁义,石秋杰.Ni/ZnO-ZrO2催化低温乙醇水蒸气重整制氢[J].精细化工,2007,24(12):1207-1211.
    [98]Meng-Fei Luo, Yu-Peng Song, Xiang-Yu Wang, et al. Preparation and characterization of nano-structured Ce0.9Cu0.1O2-δ solid solution with high surface area and its application for low temperature CO oxidation [J]. Catalysis Communications,2007, 8:834-838.
    [99]E. Y. Garcia, M. A. Laborde. Hydrogen production by the steam reforming of ethanol: thermodynamic analysis [J]. International Journal of Hydrogen Energy,1991, 16:307-312.
    [100]K. Vasudeva, N. Mitra, P. Umasankar, S. C. Dhinggra, Steam reforming of ethanol for hydrogen production:thermodynamic analysis [J]. International Journal of Hydrogen Energy,1996,21:13-18.
    [101]Vinal, George Wood. Storage Batteries:4th ed. [M]. New York:Wiley,1955.
    [102]毛晓峰.以CH4-H2O、H2-CO为燃料的固体氧化物燃料电池发电性能研究[D].大连:大连理工大学,2004.
    [103]夏正才,唐超群,李衷贻,等.ZrO2基固体氧化物燃料电池中电荷输运研究[J].电源技术,2000,24:39-41.
    [104]FISHTIK I, AL EXAND ER A, DA TTA R, et al. A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions [J]. International Journal of Hydrogen Energy,2000,25 (1):31-45.
    [105]VASUDEVA K, MITRA N, UMASANKAR P, et al. Steam reforming of ethanol for hydrogen production:thermodynamic analysis [J]. International Journal of Hydrogen Energy, 1996,21 (1):13-18.
    [106]IOANNIDES T. Thermodynamic analysis of ethanol processors for fuel cell applications [J]. Journal of Power Sources,2001,92 (1-2):17-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700