检测氧化还原客体的荧光探针设计、合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化还原过程与信号传导、衰老、疾病等生理过程密切相关,具有重要的研究意义。本论文基于PeT、ICT等荧光探针设计机理,针对活性氧次氯酸、肿瘤细胞的氧化还原过程相关客体,设计合成了几类荧光分子探针。光谱性质及离体水平测试结果表明,这些探针能高灵敏、高选择性识别氧化还原过程相关客体。
     1.次氯酸根荧光探针:以4-氨基苯酚为受体、1,8-萘酰亚胺为荧光团,设计、合成了两个次氯酸根荧光探针PA和HA。体外荧光测试表明,探针PA是荧光增强型次氯酸探针,而双荧光发射的探针HA可用于活细胞内应用研究。探针HA可通过双峰/单峰发射区分次氯酸根、活性氮以及其它活性氧。活细胞影像结果表明,探针HA具有很好的细胞膜渗透性、低毒性,可用于HeLa细胞中的CIO-检测和成像。
     2.近红外硝基还原酶及乏氧荧光探针:以尼罗蓝染料为荧光团、对硝基甲酸苄酯为受体,设计、合成了新型近红外乏氧荧光探针NBP。酶水平测试结果表明,探针NBP在NADH存在下可被硝基还原酶催化还原释放荧光团NBF,荧光明显增强。与其它内源性还原物质的竞争性实验进一步证实探针NBP对硝基还原酶的高选择性。NBP透膜性较好,能够对肿瘤细胞A549的乏氧环境进行荧光检测和成像,对实体瘤的早期诊断具有潜在应用价值。
     3.近红外荧光发色团及pH荧光探针:以半菁染料为荧光团,设计合成了两个新型近红外荧光染料H1和H2。探针HI的pKa为6.1,在pH3.5~7.0范围内紫外响应灵敏。HI在470nm和630nm处实现比色检测,可用于酸性环境pH的检测。探针H2的pKa为5.7,在pH5.0~7.0范围内荧光响应灵敏。酸性条件(pH<5.0)下,探针H2在690nm处有强荧光发射。作为近红外荧光探针,探针H2的pKa与肿瘤细胞或酸性细胞器相匹配,具有活细胞荧光成像的潜在应用价值。
     4.手性二酸荧光探针:以1,1-联萘为手性识别基团、1,8-萘酰亚胺为荧光团,选用乙二胺或(S,S)-环己二胺为连接臂,设计、合成了两个新型手性荧光探针SP1和SP2。该类探针在500nm处有荧光发射峰。针对手性羧酸,探针SP1和SP2的荧光强度变化不同,其检测手性二酸的潜在应用价值在进一步研究中。
Oxidation-reduction (redox) reaction has broad consequences for health, aging and disease and becomes an expanding research area. In this present work, based on the mechanism of photo-induced electron transfer and intramolecular charge transfer, several series of fluorescent probes were developed, which showed selective and sensitive response for guests such as reactive oxygen species, hypoxia and pH.
     1. Fluorescence probes for hypochloric acid:Two fluorescence probes PA and HA were developed by tethering redox active4-aminophenoxyl to a fluorescent1,8-naphthalimide scaffold. The probe PA showed dramatic fluorescence enhancement toword ClO-.The probe HA exhibited good selectivity against CIO-among various endogenous reactive oxygen or nitrogen species including ONOO-, H2O2, ClO-, O2·-, etc. Importantly, HA displayed a unique two channel ratiometric signal, which renders it advantageous in vitro experiments. HA also exhibited good biocompatibility with its fair aqueous solubility, cell permeability and low cytotoxicity.
     2. A NIR fluorescence probe for nitroreductase and hypoxia:A Near-infrared fluorescence probe NBP was developed for detection of nitroreductase and hypoxia. Reduction of the p-nitrobenzyl moiety will trigger a cascade reaction to release the Nile Blue fluorophore from a self-collapsible carbamate linkage with a fluorescence enhancement at658nm. A detection limit as low as0.18μg mL-1was calculated. NBP also displayed high reactivity toward other biological reducing agents such as Cys, Hys and GSH. It works well for cell assays and clearly has potentials for in vivo experiments due to its near infrared emission.
     3. Novel NIR fluorophore and its application in detecion of pH:Two novel pH fluorescence probes H1and H2were designed and synthesized based on hemicyanine dye. Probe H1exhibits a pKa of6.1, while probe H2showed a pKa of5.7. With the agreement of the pKa of H2and pH of both tumor cells or lysosome, H2could be used as a potential NIR fluorescent probe in imaging of acid organelle in cells.
     4. Fluorescence probes for chiral carboxyli acid:By linking1,8-naphthalimide to chiral (S,S)-1,1-BINOL, we attempted to develop two novel fluorescent probes SP1and SP2for chiral recognition of chiral carboxylic acid. These probes exhibit dual emissions at500nm.
引文
[1]Wiseman H H, B., Damage to DNA by reactive oxygen and nitrogen species:role in inflammatory disease and progression to cancer, Biochem. J.,1996,313,17-29
    [2]Barnham K J, Masters C L,Bush A I, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discov.,2004,3(3),205-214
    [3]McCord J M, Free radicals and inflammation:protection of synovial fluid by superoxide dismutase. Science,1974,185(4150),529-531
    [4]Bove P F,van der Vliet A, Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation, Free Radical Bio. Med.,2006,41(4),515-527
    [5]Beckman J S, Beckman T W, Chen J, et al., Apparent hydroxyl radical production by peroxynitrite:implications for endothelial injury from nitric oxide and superoxide, Proc. Natl. Acad. Sci. USA,1990,87(4),1620-1624
    [6]Pacher P, Beckman J S,Liaudet L, Nitric Oxide and Peroxynitrite in Health and Disease, Physiol. Rev.,2007,87(1),315-424
    [7]Ferrer-Sueta G, Radi R, Chemical biology of peroxynitrite:kinetics, diffusion, and radicals, ACS Chem. Biol.,2009,4(3),161-177
    [8]Cadenas E, Basic mechanisms of antioxidant activity, BioFactors,1997,6(4),391-397
    [9]Sen C K,Packer L, Thiol homeostasis and supplements in physical exercise, Am. J. Clin. Nutr,2000,72(2 Suppl),653-669
    [10]Chen Y, Hu L, Design of anticancer prodrugs for reductive activation, Med. Res. Rev., 2009,29(1),29-64
    [11]Lehn J-M, Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization, Angew. Chem. Int. Ed., 1990,29(11),1304-1319
    [12]McQuade D T, Pullen A E,Swager T M, Conjugated polymer-based chemical sensors, Chem. Rev.,2000,100(7),2537-2574
    [13]Martinez-Manez R, Sancenon F, Fluorogenic and chromogenic chemosensors and reagents for anions, Chem. Rev.,2003,103(11),4419-4476
    [14]Pu L, Enantioselective fluorescent sensors:a tale of BINOL, Accounts of chemical research,2012,45(2),150-163
    [15]de Silva A P, Gunaratne H Q, Gunnlaugsson T, et al., Signaling Recognition Events with Fluorescent Sensors and Switches, Chem. Rev.,1997,97(5),1515-1566
    [16]J. R. Lakowicz e, Topics in Fluorescence Spectroscopy., Plenum Press:New York.,1991
    [17]Irvine D J. Purbhoo M A, Krogsgaard M, et al. Direct observation of ligand recognition by T cells, Nature,2002,419(6909),845-849
    [18]Pope A J, Haupts U M,Moore K J, Homogeneous fluorescence readouts for miniaturized high-throughput screening:theory and practice, Drug Discov. Today,1999,4(8),350-362
    [19]Callan J F, de Silva A P,Magri D C, Luminescent sensors and switches in the early 21st century, Tetrahedron,2005,61(36),8551-8588
    [20]Valeur B, Leray I, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev.,2000,205(1),3-40
    [21]de Silva A P, de Silva S S K, Goonesekera N C W, et al, Analog Parallel Processing of Molecular Sensory Information, J. Am. Chem. Soc.,2007,129(11),3050-3051
    [22]Dodani S C, Leary S C, Cobine P A, et al., A Targetable Fluorescent Sensor Reveals That Copper-Deficient SCO1 and SCO2 Patient Cells Prioritize Mitochondrial Copper Homeostasis, J. Am. Chem. Soc.,2011,133(22),8606-8616
    [23]Wang J, Xiao Y, Zhang Z, et al., A pH-resistant Zn(Ⅱ) sensor derived from 4-aminonaphthalimide:design, synthesis and intracellular applications, J. Mater. Chem.,2005, 15(27-28),2836-2839
    [24]Ueno T, Urano Y, Setsukinai K-i, et al., Rational Principles for Modulating Fluorescence Properties of Fluorescein, J. Am. Chem. Soc.,2004,126(43),14079-14085
    [25]de Silva A P, McClenaghan N D, Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one- or two-ion receptors, Chemistry,2002,8(21),4935-4945
    [26]Grabowski Z R, Rotkiewicz K,Rettig W, Structural changes accompanying intramolecular electron transfer:focus on twisted intramolecular charge-transfer states and structures, Chem. Rev.,2003,103(10),3899-4032
    [27]徐兆超,基于ICT萘酰亚胺阳离子比率荧光探针的研究,[学位论文],博士
    [28]Xu Z, Xiao Y, Qian X, et al., Ratiometric and selective fluorescent sensor for Cull based on internal charge transfer (JCT), Org. Lett.,2005,7(5),889-892
    [29]Descalzo A B, Martinez-Manez R, Radeglia R, et al., Coupling Selectivity with Sensitivity in an Integrated Chemosensor Framework:Design of a Hg2+-Responsive Probe, Operating above 500 nm, J. Am. Chem. Soc.,2003,125(12),3418-3419
    [30]Srikun D, Miller E W, Domaille D W, et al., An ICT-Based Approach to Ratiometric Fluorescence Imaging of Hydrogen Peroxide Produced in Living Cells, J. Am. Chem. Soc., 2008,130(14),4596-4597
    [31]Luo J, Xie Z, Lam J W, et al., Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chem. Commun. (Camb),2001,18),1740-1741
    [32]Peng L, Wang M, Zhang G, et al., A Fluorescence Turn-on Detection of Cyanide in Aqueous Solution Based on the Aggregation-Induced Emission, Org. Lett.,2009,11(9), 1943-1946
    [33]Chen J, Law C C W, Lam J W Y.et al., Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles, Chem. Mater.,2003,15(7),1535-1546
    [34]Liu Y, Tang Y, Barashkov N N, et al, Fluorescent Chemosensor for Detection and Quantitation of Carbon Dioxide Gas, J. Am. Chem. Soc.,2010,132(40),13951-13953
    [35]Wu J, Liu W, Ge J, et al., New sensing mechanisms for design of fluorescent chemosensors emerging in recent years, Chem. Soc. Rev.,2011,40(7),3483-3495
    [36]Li Z,Wu S, The effect of molecular structure on the photophysical behavior of substituted styryl pyrazine derivatives, J Fluoresc,1997,7(3),237-242
    [37]Gaenko A, Devarajan A, Gagliardi L, et al., Ab initio DFT study of Z-E isomerization pathways of N-benzylideneaniline, Theor Chem Account,2007,118(1),271-279
    [38]Ray D, Bharadwaj P K, A Coumarin-Derived Fluorescence Probe Selective for Magnesium, Inorg. Chem.,2008,47(7),2252-2254
    [39]Li Z, Yu M, Zhang L, et al., A "switching on" fluorescent chemodosimeter of selectivity to Zn2+ nd its application to MCF-7 cells, Chem. Commun.,2010,46(38),7169-7171
    [40]Jung H S, Ko K C, Lee J H, et al., Rationally Designed Fluorescence Turn-On Sensors:A New Design Strategy Based on Orbital Control, Inorg. Chem.,2010,49(18),8552-8557
    [41]Wu J-S, Liu W-M, Zhuang X-Q, et al., Fluorescence Turn On of Coumarin Derivatives by Metal Cations:A New Signaling Mechanism Based on C=N Isomerization, Org. Lett., 2006,9(1),33-36
    [42]Yuan L, Lin W, Zheng K, et al., Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging, Chem. Soc. Rev., 2013,42(2),622-661
    [43]Park E K a S B, Advanced Fluorescence Reporters in Chemistry and Biology I: Fundamentals and Molecular Design, Berlin, Springer,2010
    [44]Huang S-T, Ting K-N,Wang K-L, Development of a long-wave length fluorescent probe based on quinone-methide-type reaction to detect physiologically significant thiols, Anal. Chim. Acta,2008,620(1-2),120-126
    [45]Yuan L, Lin W, Song J, Ratiometric fluorescent detection of intracellular hydroxyl radicals based on a hybrid coumarin-cyanine platform. Chem. Commun. (Camb).2010, 46(42),7930-7932
    [46]Richard J A, Massonneau M, Renard P Y, et al.,7-hydroxycoumarin-hemicyanine hybrids:a new class of far-red emitting fluorogenic dyes, Org. Lett.,2008,10(19),4175-4178
    [47]Nolan E M, Burdette S C, Harvey J H, et al., Synthesis and characterization of zinc sensors based on a monosubstituted fluorescein platform, Inorg. Chem.,2004,43(8), 2624-2635
    [48]Lim M H, Wong B A, Pitcock W H, Jr., et al., Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes, J. Am. Chem. Soc.,2006,128(44), 14364-14373
    [49]Pluth M D, Chan M R, McQuade L E, et al., Seminaphthofluorescein-based fluorescent probes for imaging nitric oxide in live cells, Inorg. Chem.,2011,50(19),9385-9392
    [50]Chen X, Pradhan T, Wang F, et al.. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chem. Rev.,2011,112(3), 1910-1956
    [51]Beija M, Afonso C A M,Martinho J M G, Synthesis and applications of Rhodamine derivatives as fluorescent probes, Chem. Soc. Rev.,2009,38(8),2410-2433
    [52]Nolting D D, Gore J C,Pham W, NEAR-INFRARED DYES:Probe Development and Applications in Optical Molecular Imaging, Current organic synthesis,2011,8(4),521-534
    [53]Haley L N F, A simple synthesis of 8-(trifluoromethyl)-2,3,5,6,11,12,14,15 -octahydro-1H,4H,10H,13H-diquinolizino[9,9a,1-bc:9',9a',1-hi] xanthylium perchlorate, an efficient dye, J. Heterocycl. Chem.,1977,14(4),683-683
    [54]M. Sibrian-Vazquez J O E, M. Lowry and R. M. Strongin, Pure Appl. Chem.,2012, DOI: 10.1351/PAC-CON-11-11-06.,
    [55]Koide Y, Urano Y, Hanaoka K, et al., Development of an Si-Rhodamine-Based Far-Red to Near-Infrared Fluorescence Probe Selective for Hypochlorous Acid and Its Applications for Biological Imaging, J. Am. Chem. Soc.,2011,133(15),5680-5682
    [56]Koide Y, Kawaguchi M, Urano Y, et al., A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine, Chem. Commun.,2012,48(25),3091-3093
    [57]Yuan L, Lin W, Yang Y, et al., A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching:rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals, J. Am. Chem. Soc.,2012,134(2),1200-1211
    [58]Qian X, Xiao Y, Xu Y, et al., Chemlnform Abstract:"Alive" Dyes as Fluorescent Sensors: Fluorophore, Mechanism, Receptor and Images in Living Cells, ChemInform,2011,42(4), 120-126
    [59]Duke R M, Veale E B, Pfeffer F M, et al, Colorimetric and fluorescent anion sensors:an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors, Chem. Soc. Rev.,2010,39(10),3936-3953
    [60]Goswami S, Sen D, Das N K, et al., Highly selective colorimetric fluorescence sensor for Cu2+:cation-induced'switching on'of fluorescence due to excited state internal charge transfer in the red/near-infrared region of emission spectra, Tetrahedron Letters,2010,51(42), 5563-5566
    [61]Rurack K, Resch-Genger U, Bricks J L, et al., Cation-triggered 'switching on' of the red/near infra-red (NIR) fluorescence of rigid fluorophore-spacer-receptor ionophores, Chem. Commun.,2000,21,2103-2104
    [62]Lu X, Zhu W, Xie Y, et al., Near-IR Core-Substituted Naphthalenediimide Fluorescent Chemosensors for Zinc Ions:Ligand Effects on PET and ICT Channels, Chem. Eur. J.,2010, 16(28),8355-8364
    [63]Cao X, Lin W, Zheng K, et al., A near-infrared fluorescent turn-on probe for fluorescence imaging of hydrogen sulfide in living cells based on thiolysis of dinitrophenyl ether, Chem. Commun.,2012,48(85),10529-10531
    [64]Cheng T, Wang T, Zhu W, et al., Red-emission fluorescent probe sensing cadmium and pyrophosphate selectively in aqueous solution, Org. Lett.,2011,13(14),3656-3659
    [65]Kiyose K, Kojima H, Urano Y, et al., Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore, J. Am. Chem. Soc., 2006,128(20),6548-6549
    [66]Yang Y, Cheng T, Zhu W, et al., Highly selective and sensitive near-infrared fluorescent sensors for cadmium in aqueous solution, Org. Lett.,2011,13(2),264-267
    [67]Kong Y, Yao H, Ren H, et al., Imaging tuberculosis with endogenous beta-lactamase reporter enzyme fluorescence in live mice, Proc. Natl. Acad. Sci. U S A,2010,107(27), 12239-12244
    [68]Karton-Lifshin N, Segal E, Omer L, et al., A unique paradigm for a Turn-ON near-infrared cyanine-based probe:noninvasive intravital optical imaging of hydrogen peroxide, J. Am. Chem. Soc.,2011,133(28),10960-10965
    [69]Yuan L, Lin W, Zhao S, et al., A unique approach to development of near-infrared fluorescent sensors for in vivo imaging, J. Am. Chem. Soc.,2012,134(32),13510-13523
    [70]Jose J, Burgess K, Benzophenoxazine-Based Fluorescent Dyes for Labeling Biomolecules, Tetrahedron,2006,62,11021-11037
    [71]Ho N-h, Weissleder R,Tung C-H, Development of water-soluble far-red fluorogenic dyes for enzyme sensing, Tetrahedron,2006,62(4),578-585
    [72]Lee M H, Lee S W, Kim S H, et al., Nanomolar Hg(II) detection using Nile blue chemodosimeter in biological media, Org. Lett.,2009,11(10),2101-2104
    [73]Ho N H, Weissleder R,Tung C H, A self-immolative reporter for beta-galactosidase sensing, Chembiochem:a European journal of chemical biology,2007,8(5),560-566
    [74]Yoon S, Miller E W, He Q, et al., A bright and specific fluorescent sensor for mercury in water, cells, and tissue, Angew Chem. Int. Ed. Engl.,2007,46(35),6658-6661
    [75]Chang C J, Jaworski J, Nolan E M, et al., A tautomeric zinc sensor for ratio metric fluorescence imaging:application to nitric oxide-induced release of intracellular zinc, Proc. Natl. Acad. Sci. USA,2004,101(5),1129-1134
    [76]Dodani S C, He Q,Chang C J, A turn-on fluorescent sensor for detecting nickel in living cells, J. Am. Chem. Soc.,2009,131(50),18020-18021
    [77]Sun Y, Zhong C, Gong R, et al., A highly selective fluorescent probe for pyrophosphate in aqueous solution, Org. Biomol. Chem.,2008,6(17),3044-3047
    [78]Piatek P, A selective chromogenic chemosensor for carboxylate salt recognition, Chem. Commun.,2011,47(16),4745-4747
    [79]Santos-Figueroa L E, Moragues M E, Climent E, et al., Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010-2011, Chem. Soc. Rev.,2013,42(8),3489-3613
    [80]Eun Jun M, Roy B, Han Ahn K, "Turn-on" fluorescent sensing with "reactive" probes, Chem. Commun.,2011,47(27),7583-7601
    [81]Wiskur S L, Lavigne J J, Metzger A, et al., Thermodynamic Analysis of Receptors Based on Guanidinium/Boronic Acid Groups for the Complexation of Carboxylates, a-Hydroxycarboxylates, and Diols:Driving Force for Binding and Cooperativity. Chem. Eur. J.,2004,10(15),3792-3804
    [82]Ma W M J, Pereira Morais M P, D'Hooge F, et al., Dye displacement assay for saccharide detection with boronate hydrogels, Chem. Commun.,2009,5,532-534
    [83]Wu Q, Anslyn E V, Heavy metal analysis using a Heck-catalyzed cyclization to create coumarin, J. Mater. Chem.,2005,15,2815-2819
    [84]Lo L-C,Chu C-Y, Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun..2003,21,2728-2729
    [85]Chang M C, Pralle A, Isacoff E Y, et al., A selective, cell-permeable optical probe for hydrogen peroxide in living cells, J. Am. Chem. Soc.,2004,126(47),15392-15393
    [86]Miller E W, Albers A E, Pralle A, et al., Boronate-based fluorescent probes for imaging cellular hydrogen peroxide, J. Am. Chem. Soc.,2005,127(47),16652-16659
    [87]Albers A E, Dickinson B C, Miller E W, et al., A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells, Bioorg. Med. Chem. Lett.,2008,18(22),5948-5950
    [88]Albers A E, Okreglak V S,Chang C J, A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide, J. Am. Chem. Soc., 2006,128(30),9640-9641
    [89]Srikun D, Miller E W, Domaille D W, et al., An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells, J. Am. Chem. Soc.,2008, 130(14),4596-4597
    [90]Soh N, Sakawaki O, Makihara K, et al., Design and development of a fluorescent probe for monitoring hydrogen peroxide using photoinduced electron transfer, Bioorg. Med. Chem., 2005,13(4),1131-1139
    [91]Miller E W, Bian S X, Chang C J, A fluorescent sensor for imaging reversible redox cycles in living cells, J. Am. Chem. Soc.,2007,129(12),3458-3459
    [92]Qu X, Kirschenbaum L J, Borish E T, Hydroxyterephthalate as a fluorescent probe for hydroxyl radicals:application to hair melanin, Photochem. Photobiol.,2000,71(3),307-313
    [93]Pou S, Huang Y I, Bhan A, et al., A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils, Anal. Biochem.,1993, 212(1),85-90
    [94]Yang X-F,Guo X-Q, Study of nitroxide-linked naphthalene as a fluorescence probe for hydroxyl radicals, Anal. Chim. Acta,2001,434(2),169-177
    [95]Li P, Xie T, Duan X, et al., A new highly selective and sensitive assay for fluorescence imaging of OH in living cells:effectively avoiding the interference of peroxynitrite, Chemistry,2010,16(6),1834-1840
    [96]Makrigiorgos G M, Baranowska-Kortylewicz J, Bump E, et al., A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin, Int. J. Radiat. Biol.,1993,63(4),445-458
    [97]Robinson K M, Janes M S, Pehar M, et al, Selective fluorescent imaging of superoxide in vivo using ethidium-based probes, Proc. Natl. Acad. Sci. USA,2006,103(41), 15038-15043
    [98]Gao J J, Xu K H, Tang B, et al., Selective detection of superoxide anion radicals generated from macrophages by using a novel fluorescent probe, FEBS J.,2007,274(7), 1725-1733
    [99]Maeda H, Yamamoto K, Nomura Y, et al., A design of fluorescent probes for superoxide based on a nonredox mechanism, J. Am. Chem. Soc.,2005,127(1),68-69
    [100]Maeda H, Yamamoto K, Kohno I, et al. Design of a Practical Fluorescent Probe for Superoxide Based on Protection-Deprotection Chemistry of Fluoresceins with Benzenesulfonyl Protecting Groups, Chem. Eur. J.,2007,13(7),1946-1954
    [101]Xu K, Liu X, Tang B, et al, Design of a Phosphinate-Based Fluorescent Probe for Superoxide Detection in Mouse Peritoneal Macrophages, Chem. Eur. J.,2007,13(5), 1411-1416
    [102]Sekiya M, Umezawa K, Sato A, et al., A novel luciferin-based bright chemiluminescent probe for the detection of reactive oxygen species, Chem. Commun.,2009,21),3047-3049
    [103]Kojima H, Nakatsubo N, Kikuchi K, et al., Detection and imaging of nitric oxide with novel fluorescent indicators:diaminofluoresceins, Anal. Chem.,1998,70(13),2446-2453
    [104]Kojima H, Hirotani M, Nakatsubo N, et al., Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore, Anal. Chem.,2001,73(9),1967-1973
    [105]Gabe Y, Ueno T, Urano Y, et al. Tunable design strategy for fluorescence probes based on 4-substituted BODIPY chromophore:improvement of highly sensitive fluorescence probe for nitric oxide, Anal. Bioanal. Chem.,2006,386(3),621-626
    [106]Gabe Y, Urano Y, Kikuchi K, et al., Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe, J. Am. Chem. Soc.,2004,126(10),3357-3367
    [107]Sasaki E, Kojima H, Nishimatsu H, et al., Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs, J. Am. Chem. Soc.,2005, 127(11),3684-3685
    [108]Yang Y, Seidlits S K, Adams M M, et al., A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide, J. Am. Chem. Soc.,2010,132(38),13114-13116
    [109]Yang D, Wang H L, Sun Z N, et al, A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells, J. Am. Chem. Soc.,2006,128(18), 6004-6005
    [110]Zhang Q, Zhu Z, Zheng Y, et al., A Three-Channel Fluorescent Probe That Distinguishes Peroxynitrite from Hypochlorite, J. Am. Chem. Soc., 2012, 134(45),18479-18482
    [111]Youdim M B, Riederer P F, A review of the mechanisms and role of monoamine oxidase inhibitors in Parkinson's disease, Neurology,2004,63(7 Suppl 2),32-35
    [112]Chen G, Yee D J, Gubernator N G, et al., Design of optical switches as metabolic indicators:new fluorogenic probes for monoamine oxidases (MAO A and B), J. Am. Chem. Soc.,2005,127(13),4544-4545
    [113]Fujikawa Y, Urano Y, Komatsu T, et al., Design and Synthesis of Highly Sensitive Fluorogenic Substrates for Glutathione S-Transferase and Application for Activity Imaging in Living Cells, J. Am. Chem. Soc,2008,130(44),14533-14543
    [114]Cui L, Zhong Y, Zhu W, et al, Selective and sensitive detection and quantification of arylamine N-acetyltransferase 2 by a ratiometric fluorescence probe, Chem. Commun.,2010, 46(38),7121-7123
    [115]Zhang S, Yang C, Lu W, et al., A highly selective space-folded photo-induced electron transfer fluorescent probe for carbonic anhydrase isozymes IX and its applications for biological imaging, Chem. Commun.,2011,47(29),8301-8303
    [116]Sparano B A, Koide K, Fluorescent sensors for specific RNA:a general paradigm using chemistry and combinatorial biology, J. Am. Chem. Soc.,2007,129(15),4785-4794
    [117]Terai T, Tomiyasu R, Ota T, et al, TokyoGreen derivatives as specific and practical fluorescent probes for UDP-glucuronosyltransferase (UGT) 1A1, Chem. Commun.,2013, 49(30),3101-3103
    [118]O'Brien P J, Peroxidases, Chem. Biol. Interact.,2000,129(1-2),113-139
    [119]Winterbourn C C, Hampton M B, Livesey J H, et al, Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome:implications for microbial killing, J. Biol. Chem.,2006,281(52),39860-39869
    [120]Dickinson B C,Chang C J, Chemistry and biology of reactive oxygen species in signaling or stress responses, Nat. Chem. Biol.,2011,7(8),504-511
    [121]Hidalgo E, Bartolome R,Dominguez C, Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness, Chem. Biol. Interact.,2002,139(3),265-282
    [122]Pattison D I, Davies M J, Evidence for rapid inter- and intramolecular chlorine transfer reactions of histamine and carnosine chloramines:implications for the prevention of hypochlorous-acid-mediated damage, Biochemistry,2006,45(26),8152-8162
    [123]Podrez E A, Abu-Soud H M,Hazen S L, Myeloperoxidase-generated oxidants and atherosclerosis, Free Radic Biol. Med.,2000,28(12),1717-1725
    [124]Nicholls S J, Hazen S L, Myeloperoxidase and cardiovascular disease, Arterioscler., Thromb., Vasc. Biol.,2005,25(6),1102-1111
    [125]Yap Y W, Whiteman M,Cheung N S, Chlorinative stress:an under appreciated mediator of neurodegeneration?, Cell Signal,2007,19(2),219-228
    [126]Choi D K, Pennathur S, Perier C, et al., Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice, J. Neurosci.,2005,25(28), 6594-6600
    [127]Green P S, Mendez A J, Jacob J S, et al., Neuronal expression of myeloperoxidase is increased in Alzheimer's disease, J. Neurochem.,2004,90(3),724-733
    [128]Steinbeck M J, Nesti L J, Sharkey P F, et al., Myeloperoxidase and chlorinated peptides in osteoarthritis:potential biomarkers of the disease, J. Orthop. Res.,2007,25(9),1128-1135
    [129]Setsukinai K, Urano Y, Kakinuma K, et al., Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species, J. Biol. Chem.,2003,278(5),3170-3175
    [130]Koide Y, Urano Y, Kenmoku S, et al., Design and Synthesis of Fluorescent Probes for Selective Detection of Highly Reactive Oxygen Species in Mitochondria of Living Cells, J. Am. Chem. Soc.,2007,129(34),10324-10325
    [131]Shepherd J, Hilderbrand S A, Waterman P, et al., A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages, Chem Biol,2007, 14(11),1221-1231
    [132]Kenmoku S, Urano Y, Kojima H, et al., Development of a Highly Specific Rhodamine-Based Fluorescence Probe for Hypochlorous Acid and Its Application to Real-Time Imaging of Phagocytosis, J. Am. Chem. Soc.,2007,129(23),7313-7318
    [133]Chen X, Lee K-A, Ha E-M, et al., A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production, Chem. Commun., 2011,47(15),4373-4375
    [134]Lin W, Long L, Chen B, et al, A Ratio metric Fluorescent Probe for Hypochlorite Based on a Deoximation Reaction, Chem. Eur. J.,2009,15(10),2305-2309
    [135]Yuan L, Lin W, Song J, et al., Development of an ICT-based ratio metric fluorescent hypochlorite probe suitable for living cell imaging, Chem. Commun.,2011,47,12691-12693
    [136]Khanna R K, Moore M H, Carbamic acid:molecular structure and IR spectra, Spectrochim Acta. A Mol. Biomol. Spectrosc.,1999,55A(5),961-967
    [137]Carl P L, Chakravarty P K,Katzenellenbogen J A, A novel connector linkage applicable in prodrug design, J. Med. Chem.,1981,24(5),479-480
    [138]Khosravi A, Moradian S, Gharanjig K, et al., Synthesis and spectroscopic studies of some naphthalimide based disperse azo dyestuffs for the dyeing of polyester fibres, Dyes Pigm.,2006,69(1-2),79-92
    [139]Yuan D, Brown R G, Hepworth J D, et al., The synthesis and fluorescence of novel N-substituted-1,8-naphthylimides, J. Heterocycl. Chem.,2008,45(2),397-404
    [140]Daniels D G H, Saunders B C, Studies in peroxidase action. Part VI. (a) The oxidation of p-anisidine:a further example of ready demethoxylation. (b) Some theoretical considerations, J. Chem. Soc. (Resumed),1951,2112-2118
    [141]Bacon J, Adams R N, Anodic oxidations of aromatic amines. Ⅲ. Substituted anilines in aqueous media, J. Am. Chem. Soc.,1968,90(24),6596-6599
    [142]Simon P, Farsang G,Amatore C, Mechanistic investigation of the oxidation of p-anisidine in unbuffered DMF using fast scan rates at ultramicroelectrodes, J. Electroanal. Chem.,1997,435,165-171
    [143]Pires M M, Chmielewski J, Fluorescence Imaging of Cellular Glutathione Using a Latent Rhodamine, Org. Lett.,2008,10(5),837-840
    [144]Thomlinson R H, Gray L H, The histological structure of some human lung cancers and the possible implications for radiotherapy, Br. J. Cancer,1955,9(4),539-549
    [145]Brown J M, Exploiting the hypoxic cancer cell:mechanisms and therapeutic strategies, Mol. Med. Today,2000,6(4),157-162
    [146]Bernier J, Stratford M R, Denekamp J, et al., Pharmacokinetics of nicotinamide in cancer patients treated with accelerated radiotherapy:the experience of the Co-operative Group of Radiotherapy of the European Organization for Research and Treatment of Cancer, Radiother. Oncol.,1998,48(2),123-133
    [147]Harris A L, Hypoxia--a key regulatory factor in tumour growth, Nat. Rev. Cancer,2002, 2(1),38-47
    [148]Horsman M R, Measurement of tumor oxygenation, Int. J. Radiat. Oncol. Biol. Phys., 1998,42(4),701-704
    [149]Wilson W R, Hay M P, Targeting hypoxia in cancer therapy, Nat. Rev. Cancer,2011, 11(6),393-410
    [150]Kizaka-Kondoh S, Inoue M, Harada H, et al., Tumor hypoxia:a target for selective cancer therapy, Cancer Sci.,2003,94(12),1021-1028
    [151]Harris A L, Hypoxia--a key regulatory factor in tumour growth, Nat. Rev. Cancer,2002, 2(1),38-47
    [152]Brown J M, William W R, Exploiting tumour hypoxia in cancer treatment, Nat. Rev. Cancer,2004,4(6),437-447
    [153]Bryant D W, McCalla D R, Leeksma M, et al., Type Ⅰ nitroreductases of Escherichia coli, Can. J. Microbiol.,1981,27(1),81-86
    [154]Bryant C, DeLuca M, Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae, J. Bio. Chem.,1991,266(7),4119-4125
    [155]Bryant C, Hubbard L,McElroy W D, Cloning, nucleotide sequence, and expression of the nitroreductase gene from Enterobacter cloacae, J. Bio. Chem.,1991,266(7),4126-4130
    [156]Koder R L, Miller A-F, Steady-state kinetic mechanism, stereospecificity, substrate and inhibitor specificity of Enterobacter cloacae nitroreductase, Biochim. Biophys. Acta,1998, 1387(1-2),395-405
    [157]Chen X, Tian X, Shin I, et al., Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species, Chem. Soc. Rev.,2011,
    [158]Roldan M D, Perez-Reinado E, Castillo F, et al., Reduction of polynitroaromatic compounds:the bacterial nitroreductases, FEMS Microbiol. Rev.,2008,32(3),474-500
    [159]Xu G,McLeod H L, Strategies for Enzyme/Prodrug Cancer Therapy, Clin. Cancer Res., 2001,7(11),3314-3324
    [160]Grove J I, Lovering A L, Guise C, et al, Generation of Escherichia Coli Nitroreductase Mutants Conferring Improved Cell Sensitization to the Prodrug CB1954, Cancer Res.,2003, 63(17),5532-5537
    [161]Searle P F, Chen M-J, Hu L, et al., Nitroreductase:a prodrug-activating enzyme for cancer gene therapy., Clin. Exp. Pharmacol. P.,2004,31(11),811-816
    [162]Denny W A, Nitroreductase-based GDEPT, Curr. Pharm. Design.,2002,8(15), 1349-1361
    [163]Berne C, Betancor L, Luckarift H R, et al., Application of a microfluidic reactor for screening cancer prodrug activation using silica-immobilized nitrobenzene nitroreductase, Biomacromolecules,2006,7(9),2631-2636
    [164]Hockel M, Knoop C, Schlenger K, et al., Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix, Radiother. Oncol.,1993,26(1),45-50
    [165]Secomb T W, Hsu R, Dewhirst M W, et al., Analysis of oxygen transport to tumor tissue by microvascular networks, Int. J. Radiat. Oncol. Biol. Phys.,1993,25(3),481-489
    [166]Dearling J L, Lewis J S, Mullen G E, et al., Copper bis(thiosemicarbazone) complexes as hypoxia imaging agents:structure-activity relationships, J. Biol. Inorg. Chem.,2002,7(3), 249-259
    [167]Zhang S, Hosaka M, Yoshihara T, et al., Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals, Cancer Res., 2010,70(11),4490-4498
    [168]Pacheco-Torres J, Lopez-Larrubia P, Ballesteros P, et al., Imaging tumor hypoxia by magnetic resonance methods, NMR Biomed.,2011,24(1),1-16
    [169]Race P R, Lovering A L, White S A, et al, Kinetic and Structural Characterisation of Escherichia coli Nitroreductase Mutants Showing Improved Efficacy for the Prodrug Substrate CB1954, J. Mol. Biol.,2007,368(2),481-492
    [170]Race P R, Lovering A L, Green R M, et al., Structural and Mechanistic Studies of Escherichia coli Nitroreductase with the Antibiotic Nitrofurazone:Reversed binding orientations in different redox states of the enzyme, J. Bio. Chem.,2005,280(14), 13256-13264
    [171]James A L, Perry J D, Jay C, et al., Fluorogenic substrates for the detection of microbial nitroreductases, Lett. Appl. Microbiol.,2001,33(6),403-408
    [172]James A L, Perry J D,Stanforth S P, The synthesis and evaluation of some coumarin derivatives as fluorescent indicators of nitroreductase activity, J. Heterocycl. Chem.,2006, 43(2),515-517
    [173]Huang H-C, Wang K-L, Huang S-T, et al. Development of a sensitive long-wavelength fluorogenic probe for nitroreductase:A new fluorimetric indictor for analyte determination by dehydrogenase-coupled biosensors, Biosens. Bioelectron.,2011,26(8),3511-3516
    [174]Nakata E, Yukimachi Y, Kariyazono H, et al., Design of a bioreductively-activated fluorescent pH probe for tumor hypoxia imaging, Bioorg. Med. Chem.,2009,17(19), 6952-6958
    [175]Komatsu H, Harada H, Tanabe K, et al., Indolequinone-rhodol conjugate as a fluorescent probe for hypoxic cells:enzymatic activation and fluorescence properties, MedChemComm,2010,1(1),50-53
    [176]Kiyose K, Hanaoka K, Oushiki D, et al., Hypoxia-Sensitive Fluorescent Probes for in Vivo Real-Time Fluorescence Imaging of Acute Ischemia, J. Am. Chem. Soc.,2010, 132,15846-15848
    [177]Cui L, Zhong Y, Zhu W, et al., A New Prodrug-Derived Ratiometric Fluorescent Probe for Hypoxia:High Selectivity of Nitroreductase and Imaging in Tumor Cell, Org. Lett.,2011, 13(5),928-931
    [178]Takahashi S, Piao W, Matsumura Y, et al., Reversible Off-On Fluorescence Probe for Hypoxia and Imaging of Hypoxia-Normoxia Cycles in Live Cells, J. Am. Chem. Soc.,2012, 134,19588-19591
    [179]Xu K, Wang F, Pan X, et al., High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor, Chem. Commun.,2013,49(25), 2554-2556
    [180]Bandichhor R, Petrescu A D, Vespa A, el al. Synthesis of a new water-soluble rhodamine derivative and application to protein labeling and intracellular imaging, Bioconjugate Chem.,2006,17(5),1219-1225
    [181]Frangioni J V, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol., 2003,7(5),626-634
    [182]Yuan L, Lin W, Zheng K, et al., Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging, Chem. Soc. Rev., 2013,42,622-661
    [183]Roos A, Boron W F, Intracellular pH, Physiol. Rev.,1981,61(2),296-434
    [184]Kotyk A S, J, Intracellular pH and Its Measurement;, CRC Press:Boca Raton, FL,1989
    [185]Russell D A, Pottier R H,Valenzeno D P, Continuous noninvasive measurement of in vivo pH in conscious mice, Photochem. Photobiol.,1994,59(3),309-313
    [186]Davies T A, Fine R E, Johnson R J, et al., Non-age related differences in thrombin responses by platelets from male patients with advanced Alzheimer's disease, Biochem. Biophys. Res. Commun.,1993,194(1),537-543
    [187]Mogensen H S, Beatty D M, Morris S J, et al., Amyloid beta-peptide(25-35) changes [Ca2+] in hippocampal neurons, Neuroreport,1998,9(7),1553-1558
    [188]Cogan M G, Fluid and Electrolytes, Appleton and Lange-Prentice Hall Publishers: Norwalk, CT,1991
    [189]Miksa M, Komura H, Wu R, et al., A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester, J. Immunol. Methods,2009, 342(1-2),71-77
    [190]Lakadamyali M, Rust M J, Babcock H P, et al., Visualizing infection of individual influenza viruses, Proc. Natl. Acad. Sci. U S A,2003,100(16),9280-9285
    [191]Adie E J, Kalinka S, Smith L, et al., A pH-sensitive fluor, CypHer 5, used to monitor agonist-induced G protein-coupled receptor internalization in live cells, Bio Techniques,2002, 33(5),1152-1157
    [192]Ohkuma S,Poole B, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. USA,1978,75(7), 3327-3331
    [193]Schindler M, Grabski S, Hoff E, et al., Defective pH regulation of acidic compartments in human breast cancer cells (MCF-7) is normalized in adriamycin-resistant cells (MCF-7adr), Biochemistry,1996,35(9),2811-2817
    [194]Zhang X, Lin Y,Gillies R J, Tumor pH and its measurement, J. Nucl. Med.,2010,51(8), 1167-1170
    [195]Tannock I F, Rotin D, Acid pH in tumors and its potential for therapeutic exploitation, Cancer Res.,1989,49(16),4373-4384
    [196]Wike-Hooley J L, van den Berg A P, van der Zee J, et al., Human tumour pH and its variation, Eur. J. Cancer Clin. Oncol.,1985,21(7),785-791
    [197]Cardone R A, Casavola V,Reshkin S J, The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis, Nat. Rev. Cancer,2005,5(10),786-795
    [198]Han J, Burgess K, Fluorescent Indicators for Intracellular pH, Chem. Rev.,2009,110(5), 2709-2728
    [199]Wang R, Yu C, Yu F, et al, Molecular fluorescent probes for monitoring pH changes in living cells, TrAC Trends in Analytical Chemistry,2010,29(9),1004-1013
    [200]Rink T J, Tsien R Y,Pozzan T, Cytoplasmic pH and free Mg2+ in lymphocytes, J. Cell. Biol.,1982,95(1),189-196
    [201]Nedergaard M, Desai S,Pulsinelli W, Dicarboxy-dichlorofluorescein:a new fluorescent probe for measuring acidic intracellular pH, Anal. Biochem.,1990,187(1),109-114
    [202]Balut C, vandeVen M, Despa S, et al., Measurement of cytosolic and mitochondrial pH in living cells during reversible metabolic inhibition, Kidney Int.,2008,73(2),226-232
    [203]Yao S, Schafer-Hales K J, Belfield K D, A New Water-Soluble Near-Neutral Ratiometric Fluorescent pH Indicator, Org. Lett.,2007,9(26),5645-5648
    [204]Urano Y, Asanuma D, Hama Y, et al., Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes, Nat. Med.,2009,15(1),104-109
    [205]Tang B, Yu F, Li P, et al., A Near-Infrared Neutral pH Fluorescent Probe for Monitoring Minor pH Changes:Imaging in Living HepG2 and HL-7702 Cells, J. Am. Chem. Soc.,2009, 131(8),3016-3023
    [206]Lee H, Akers W, Bhushan K, et al., Near-Infrared pH-Activatable Fluorescent Probes for Imaging Primary and Metastatic Breast Tumors, Bioconjugate Chem.,2011,22(4), 777-784
    [207]Chen S, Liu J, Liu Y, et al. An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission:extending the pH sensing range by "switch+ knob" effect, Chem. Sci.,2012,3(6),1804-1809
    [208]杨泱泱,基于生物应用的新型荧光探针的设计、合成与应用研究,[学位论文]硕士
    [209]尤启东,林国强,手性药物:研究与应用,北京,北京工业出版社,2003
    [210]蒋兆健,吴笑春,手性药物的对映体选择性与临床应用,药物与临床,2001,12(3), 162-164
    [211]Ahmed S, Imai T, Otagiri M, Stereoselectivity in cutaneous hydrolysis and transdermal transport of propranolol prodrug, Enantiomer,1997,2(3-4),181-191
    [212]Paliwal J K, Smith D E, Cox S R, et al., Stereoselective, competitive, and nonlinear plasma protein binding of ibuprofen enantiomers as determined in vivo in healthy subjects, J. Pharmacokinet. Biopharm.,1993,21(2),145-161
    [213]Kroemer H K, Fromm M F, Buhl K, et al., An enantiomer-enantiomer interaction of (S)-and (R)-propafenone modifies the effect of racemic drug therapy, Circulation,1994,89(5), 2396-2400
    [214]Middlefell V C, Price T L,5-HT3 receptor agonism may be responsible for the emetic effects of zacopride in the ferret, Br J. Pharmacol.,1991,103(1),1011-1012
    [215]Cockcroft D W, Swystun V A, Effect of single doses of S-salbutamol, R-salbutamol, racemic salbutamol, and placebo on the airway response to methacholine, Thorax,1997, 52(10),845-848
    [216]Kato D-i, Mitsuda S, Ohta H, Microbial Deracemization of a-Substituted Carboxylic Acids:Substrate Specificity and Mechanistic Investigation, J. Org. Chem.,2003,68(19), 7234-7242
    [217]Groger H, Catalytic Enantioselective Strecker Reactions and Analogous Syntheses, Chem. Rev.,2003,103(8),2795-2828
    [218]Pirkle W H, Pochapsky T C, Considerations of chiral recognition relevant to the liquid chromatography separation of enantiomers, Chem. Rev.,1989,89 (2):347-362
    [219]Molnar-Perl I, Role of chromatography in the analysis of sugars, carboxylic acids and amino acids in food, J. Chromatogr. A,2000,891(1),1-32
    [220]Gasparrini F, Misiti D,Villani C, High-performance liquid chromatography chiral stationary phases based on low-molecular-mass selectors, J. Chromatogr. A,2001,906(1-2), 35-50
    [221]Gubitz G, Schmid M G, Chiral separation by chromatographic and electromigration techniques. A review, Biopharm. Drug Dispos.,2001,22(7-8),291-336
    [222]Schurig V, Separation of enantiomers by gas chromatography, J. Chromatogr. A,2001, 906(1-2),275-299
    [223]Gubitz G, Schmid M G, Chiral separation principles in capillary electrophoresis, J. Chromatogr. A,1997,792(1-2),179-225
    [224]Verleysen K, Sandra P, Separation of chiral compounds by capillary electrophoresis. Electrophoresis,1998,19(16-17),2798-2833
    [225]Sugiura M, Kimura A, Fujiwara H, Discrimination of enantiomers by means of NMR spectroscopy using chiral liquid crystalline solution:application to triazole fungicides, uniconazole and diniconazole, Magn. Reson. Chem.,2006,44(2),121-126
    [226]Uccello-Barretta G, Balzano F,Salvadori P, Enantiodiscrimination by NMR spectroscopy, Curr. Pharm. Des.,2006,12(31),4023-4045
    [227]Tran C D, Oliveira D, Fluorescence determination of enantiomeric composition of pharmaceuticals via use of ionic liquid that serves as both solvent and chiral selector, Anal. Biochem.,2006,356(1),51-58
    [228]Tran C D, Grishko V I,Oliveira D, Determination of enantiomeric compositions of amino acids by near-infrared spectrometry through complexation with carbohydrate, Anal. Chem.,2003,75(23),6455-6462
    [229]Tran C D, Oliveira D,Grishko V I, Determination of enantiomeric compositions of pharmaceutical products by near-infrared spectrometry, Anal. Biochem.,2004,325(2), 206-214
    [230]Setsukinai K-i, Urano Y, Kakinuma K, et al., Development of Novel Fluorescence Probes That Can Reliably Detect Reactive Oxygen Species and Distinguish Specific Species, J. Biol. Chem.,2003,278(5),3170-3175
    [231]Lin J, Hu Q S, Xu M H, et al., A practical enantioselective fluorescent sensor for mandelic acid, J. Am. Chem. Soc.,2002,124(10),2088-2089
    [232]Xu M-H, Lin J, Hu Q-S, et al., Fluorescent Sensors for the Enantioselective Recognition of Mandelic Acid:Signal Amplification by Dendritic Branching, J. Am. Chem. Soc.,2002,124(47),14239-14246
    [233]Liu H-L, Hou X-L, Pu L, Enantioselective Precipitation and Solid-State Fluorescence Enhancement in the Recognition of a-Hydroxycarboxylic Acids, Angew. Chem. Int. Ed.,2009, 48(2),382-385
    [234]Chen X, Huang Z, Chen S Y, et al., Enantioselective gel collapsing:a new means of visual chiral sensing, J. Am. Chem. Soc.,2010,132(21),7297-7299
    [235]Brunner H,Schiessling H, Dialdehyde+Diamine-Polymer or Macrocycle?, Angew. Chem. Int. Ed.,1994,33(1),125-126
    [236]Lin J, Zhang H C,Pu L, Bisbinaphthyl macrocycle-based highly enantioselective fluorescent sensors for alpha-hydroxycarboxylic acids, Org. Lett.,2002,4(19),3297-3300
    [237]Lin J, Li Z-B, Zhang H-C, et al., Highly enantioselective fluorescent recognition of a-amino acid derivatives, Tetrahedron Letters,2004,45(1),103-106
    [238]James T D S, K. R. A. S.; Shinkai, S., Chiral discrimination of monosaccharides using a fluorescent molecular sensor, Nature,1995,374(6520),345-347
    [239]Mei X,Wolf C, Enantioselective Sensing of Chiral Carboxylic Acids, J. Am. Chem. Soc., 2004,126(45),14736-14737
    [240]Tumambac G E,Wolf C, Enantioselective Analysis of an Asymmetric Reaction Using a Chiral Fluorosensor, Org. Lett.,2005,7(18),4045-4048
    [241]Mei X, Martin R M, Wolf C, Synthesis of a Sterically Crowded Atropisomeric 1,8-Diacridylnaphthalene for Dual-Mode Enantioselective Fluorosensing, J. Org. Chem., 2006,71(7),2854-2861
    [242]Liu S, Pestano J P C, Wolf C, Enantioselective Fluorescence Sensing of Chiral a-Amino Alcohols, J. Org. Chem.,2008,73(11),4267-4270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700