光合细菌辅酶再生系统的研究及其在生物催化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,用手性技术不对称催化合成手性化合物及其手性中间体已经引起了学术界和企业界的重视,成为研究开发的热点。利用生物不对称催化具有反应条件温和、转化率高及立体选择性好等优点,已经成了诸多手性合成方法的首选。氧化还原酶是在生物催化手性合成中起着重要应用的一类酶。大部分氧化还原酶的催化反应需要辅酶NADPH作为还原剂参与,由于氧化还原酶应用广泛而NADPH价格昂贵,因此NADPH的再生在生物催化中起着重要的作用。另一方面,辅酶NADPH的再生能简化产物的分离,促使反应向正反应方向移动。现已有的NADPH再生方法包括酶法,电化学以及光化学方法等等。本论文是在前期以整体细胞不对称生物催化的基础上研究NADPH的再生,主要是以光合细菌作为实验材料,通过提取菌绿素、载色体,分离纯化氢化酶、氧化还原酶,构建了四种辅酶再生体系,以期实现在生物不对称催化中能够进行NADPH的再生,从而为辅酶依赖性的生物催化体系提供理论基础和方法指导。
     其主要内容如下:
     (1)从类球红杆菌中提取出的菌绿素作为光敏剂光解水从而实现辅酶NADPH的再生,通过对再生体系所必需的条件实验,分析了利用菌绿素进行辅酶再生的机理,并且考察了辅酶再生的各个因素,得出再生NADPH的最佳条件为:pH 7.0,温度为35℃,NADP+的初始浓度为50μmol/L,反应的最佳时间12 h,电子供体和氢供体的浓度分别为10 mmol/L和10 mmol/L
     (2)从类球红杆菌其提取出的载色体通过光电子传递链实现辅酶NADPH的再生。通过对再生体系所必需的条件实验,分析了利用载色体进行辅酶再生的机理。并且考察了辅酶再生的各个因素,得出再生NADPH的最佳条件为:pH7.0,温度为35℃,NADP+的初始浓度为50μmol/L,反应的最佳时间12h,电子供体和氢供体的浓度分别为10 mmol/L和10 mmol/L。
     (3)从类球红杆菌中分离纯化出的氢化酶催化氢气产生电子和氢质子,从而实现辅酶NADPH的再生。通过对再生体系所必需的条件实验,分析了利用氢化酶进行辅酶再生的机理。并且考察了辅酶再生的各个因素,得出再生NADPH的最佳条件为:pH7.0,温度为30℃,NADP+的初始浓度为50μmol/L,反应的最佳时间3h。
     (4)从类球红杆菌中分离纯化的氧化还原酶共底物催化,从而实现辅酶NADPH的再生。通过对再生体系所必需的条件实验,分析了利用氧化还原酶进行辅酶再生的机理。并且考察了辅酶再生的各个因素,得出再生NADPH的最佳条件为:pH 7.5,温度为30℃,NADP+的初始浓度为501μmol/L,反应的最佳时间3h,葡萄糖和ATP的浓度分别为4.5g/L和11.5g/L
     (5)通过对不同的芳香酮类、脂肪酮化合物为底物进行了酶法还原,检测其反应的还原产率和e.e值,结果表明该酶催化的底物适用范围很广;酶对电负性强的基团在苯乙酮α位取代的衍生物以及五碳脂肪酮的专一性较强;酶催化的立体选择性都在9996以上,具有极高的立体选择性。
Recently, chiral technology has highly attracted attentions from industry and academia, and the asymmetrical synthesis of chiral compounds and their chiral intermediates have become an active field in research and development. Because of mild reaction conditions, high conversion ratio and outstanding stereochemical specificity, biocatalysis has become the most promising and first choice method in the asymmetric synthesis. Redox-enzymes have many applications in chemical synthesis, especially in asymmetric synthesis of chiral compounds. As many redox-enzymes depend on the common NADPH-cofactor and the factor is usually expensive. So it plays an important part in building highly efficient NADPH regeneration system that applied oxidoreductase in the catalytic reaction.On the other hand, the NADPH regeneration also can simplify separates the product and facilitates the enzymatic reaction to the direction of positive response. Various approaches to the regeneration of NADPH have been studied, such as enzymatic, electrochemical and photochemical methods etc. This article is based on our previous study of the experiments on whole-cell asymmetric catalytic reaction and enzyme-catalyzed reaction, and the principal objective of this work is to systematic study the NADPH regeneration from the photosynthetic bacteria in our laboratory preservation. Rhodobacter sphaeroides was selected as an experimental material and four NADPH regeneration systems were established by distilling bacteria chlorophyll, preparing chromatophore, purifying hydrogenase and redox enzyme. We aim to provide a theoretical basis and methodological guidance that is designed to build and optimize the system of NADPH-dependent biocatalysis.
     The main points are as follows:
     (1)The coenzyme regeneration with bacteria chlorophyll as photosensitizer to photolysis the water from the Rhodobacter sphaeroides. Study on the mechanism that the coenzyme regeneration with bacteria chlorophyll through the conditions necessary for experiments on coenzyme regeneration systems.The optimal conditions for NADPH regeneration were obtained from the one factor experiments. The result showed that the optimal regeneration conditions were pH 7.0, temperature 35℃,NADP+ concentration 50μmol/L,time 12h,electron donor concentration 10mmol/L, hydrogen concentration lOmmol/L.
     (2) The coenzyme regeneration with chromatophore by photoelectron transfer chain from the Rhodobacter sphaeroides. Study on the mechanism that the coenzyme regeneration with chromatophore through the conditions necessary for experiments on coenzyme regeneration systems.The optimal conditions for NADPH regeneration were obtained from the one factor experiments. The result showed that the optimal regeneration conditions were pH 7.0, temperature 35℃,NADP+ concentration 50μmol/L,time 12h,electron donor concentration 10mmol/L, hydrogen concentration 10mmol/L.
     (3)The coenzyme regeneration with hydrogenase by catalyzed the hydrogen to generate the electron and proton from the Rhodobacter sphaeroides. Study on the mechanism that the coenzyme regeneration with hydrogenase through the conditions necessary for experiments on coenzyme regeneration systems.The optimal conditions for NADPH regeneration were obtained from the one factor experiments. The result showed that the optimal regeneration conditions were pH 7.0, temperature 30℃,NADP+ concentration 50μmol/L,time 3h.
     (4) The coenzyme regeneration with redox enzyme by catalyzed the different substrates from the Rhodobacter sphaeroides. Study on the mechanism that the coenzyme regeneration with redox enzyme through the conditions necessary for experiments on coenzyme regeneration systems.The optimal conditions for NADPH regeneration were obtained from the one factor experiments. The result showed that the optimal regeneration conditions were pH 7.5,temperature 30℃,NADP+ concentration 50μmol/L,time 3h, glucose concentration 4.5g/L, ATP concentration 11.5g/L.
     (5) The yield and ee value were detected by catalyzed the different aromatic ketones and the different aliphatic ketones. The result showed that the scope of the substrate enzyme-catalyzed is broad. The enzyme had a strong specific that the group had strong electrical negative, and had a high stereoselectivity, more than 99%.
引文
[1]刘如林,刁虎欣,梁凤来,赵大健.光合细菌及其应用[M].北京,中国农业科技出版社,1991.
    [2]朱章玉.光合细菌的研究及其应用[M].上海,上海交通大学出版社,1991.
    [3]韩梅,陈锡时等.光合细菌研究概括及其应用进展[J].沈阳农业大学学报,2002,33(5):387-389.
    [4]曾宁,秦松.光合细菌法在水处理中的应用[J].城市环境与城市生态,2000,13(6):29-31.
    [5]小林正泰.光合细菌处理高浓度有机废水[J].发酵与工业,1978,36(9):753-760.
    [6]C.P.Leslie Grady,Jr.Glen T.Daigger,Henry C.Lim.废水生物处理[M].北京,化学工业出版社,2003,1.
    [7]Kodavasi M.Utilization and disposal of water by photosynthetic bacteria[J]. Peramanpress,1997,39-45.
    [8]Nakajima F, Kamiko N,Yamamoto K. Organic wastewater treatment without greenhouse gas emission by photosynthetic bacteria[J]. Wat.Sci.Tech.,1997,35(8):285-291.
    [9]Jhon G. Holt, Noel R. Kieg, et al.Bergey's manual of determination bacteriology[M].9th Edition, Willimas & wilkings, Baltimore London,1992.
    [10]Pereg-Gerk Lily, Sar Nehemia, Lipkin Yaakov. In situ nitrogen fixation associated with seagrasses in the Gulf of Elat (Red Sea) [J].2002,36,3,387-394.
    [11]Ludden Paul W. Roberts Gary P. Nitrogen fixation by photosynthetic bacteria[J]. 2002,73,115-118.
    [12]Zbigniew S.Kolber, F. Gerald PlumLey, Andres S.Lang, et al.Contribution of Aerobic Photoheterotrophic Bacteria to the Carbon Cycle in the Ocean[J]. Science,2001,292,2492-2495.
    [13]朱章玉,俞吉安,林志新等.光合细菌的研究及其应用[M].上海,上海交通大学出版社,1991.
    [14]Michiharu Kobayashi.Microbial Energy Conversion(Edited by Schlegel H.G.,Barnea J.)[M].New York, Pergam on Press,1977,443-453.
    [15]M.Kobayashi.Advancesin Agricultural Microbiology (Edited by RaoNss). London[J],Butter worth Scientific,1982,643-661.
    [16]王宇新,刘春朝,钱新民.光合细菌处理淀粉废水的中试研究[J].环境科学,1995,16(3),39-40.
    [17]冯亦成.光合细菌养虾效果好[J].中国水产,1995,1,34-36.
    [18]小林正泰.养鱼和光合细菌[J].养殖,1981,8,56-59.
    [19]揭晶,赵越.光合细菌应用的研究进展[J].广东药学院学报,2006,22,1,113-115.
    [20]Chalam A V. et al.Bull.Environ[J].Contam. Toxicol.1997,58,3,463-468.
    [21]Stonell M H B, Mcphillips T M, Rees D C, et al.Light induced structural changes and the mechanism of electron/proton transfer in the photosynthetic reaction center[J].Science,1997,276,812-816.
    [22]Abrensch E C, Paddock M L, Stonell M H B.Identifiction of proton transfer pathways in the X-ray crystal structure of the bacterial reaction center from R.sphareoides[J].Phtosyn Res,1998,55,119.
    [23]张纯喜,樊红军,李良壁,匡廷云等.光合细菌原初反应的理论研究[J].中国科学(C辑),1999,29,3,276-282.
    [24]光合作用高效光能转化的机理及其在农业中的应用[J].中国科学院院刊-国家重点基础研究发展规划项目,2002,1,43-44.
    [25]Ludden PW et al.Science,1976,194-424.
    [26]吴永强,宋鸿遇等.光合细菌固氮分子生物学研究进展[J].植物生理学通讯,1991,27,3,161-166.
    [27]Yasuhiro Oda, Simen-Jan Slagman, Wim G Meijer, et al.Influence of growth rate and starvation on luoreseent in situ hubridization of Rhodopseudomonas palustris[J].FEMS Microbiology Ecology,2000,32,3,205-213.
    [28]Chemical & Engineering News,2001,8,6,32.
    [29]杨惠芳,黄志勇,张德民,刘志恒等.紫色非硫光合细菌的空间生物学效应[J].航天医学与医学工程,1999,12,1,46-50.
    [30]C.-H.Wong, G.M.Whitesides. Enzymes in Synthetic Organic Chemistry[J]. Elsevier, Oxford,1994,370.
    [31]A.Liese,K. Seelbach,C.Wandrey. Industrial Biotrans-formations[J].Wiley, Weinheim,2000,423.
    [32]Schmid A, Dordick JS,Hauer B,Kiener A, Wubbolts M, Witholt B.Industrial biocatalysis today and tomorrow[J].Nature,2001,409,258-268.
    [33]Sutherland JD.Evolutionary optimisation of enzymes[J].Curr Opin Chem Biol,2000,4,263-269.
    [34]Fong S,Machajewski TD, Mak CC, Wong C.Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D-and L-sugars[J].Chem Biol,2000,7,873-883.
    [35]Jensen RA. Enzyme recruitment in evolution of new function[J].Annu Rev Microbiol,1976,30,409-425.
    [36]Schmid A, Dordick JS,Hauer B,Kiener A, Wubbolts M, Witholt B.Industrial biocatalysis today and tomorrow[J].Nature,2001,409,258-268.
    [37]Zhao H,Chockalingam K, Chen Z. Directed evolution of enzymes and pathways for industrial biocatalysis[J].Curr Opin Biotechnol,2002,13,104-110.
    [38]Adlercreutz P. Cofactor regeneration in biocatalysis in organic media[J].Biocat Biotransform,1996,14,1-30.
    [39]Buchholz S,Groger H.Enantioselective biocatalytic reduction of ketones for the synthesis of optically active alcohols[J].In:Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries. New York, Taylor & Francis, 2006,757-790.
    [40]Honda K, Ishige T, Kataoka M, Shimizu S.Microbial and enzymatic processes for the production of chiral compounds[J].In:Patel RN (ed) Biocatalysis in the pharmaceutical and biotechnology industries.New York, Taylor & Francis,2006, 529-546.
    [41]Andreas S.Bommarius, Bettina R. Riebel.Biocatalysis:Fundamentals and Applications[J].WILEY-VCH Verlag GambH,2004.
    [42]Eckstein M, Daubmann T, Kragl U,et al.Recent developments in NAD(P)H regeneration for enzymatic reductions in one-and two-phase systems[J]. Biocatal Biotransform,2004,22,89-96.
    [43]Pociecha D, Glogarova M, Gorecka E, et al.Behavior of frustrated phase in ferroelectric and antiferroelectric liquid crystalline mixtures[J].Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics,2000,61,6,6674-6677.
    [44]Xue L Z D J, Tang L, et al.The asymmetric hydration of 1-octene to (S)-(+)-2-octanol with a biopolymer-metal complex, silica-supported chitosancobalt complex[J].React Funct Polym,2004,58,117-121.
    [45]Iwasaki F M T, Nakashima W, et al.Nonenzymatic kinetic resolution of 1,2-diolscatalyzed by organotin compound[J].Org Lett,1999,1,969-972.
    [46]Nishise H, Nagao A, Tani Y, et al.Further Characterization of Glycerol Dehydrogenase from Cellulomonas sp. NT3060[J].Biol, Chem.,1984,6, 1603-1609.
    [47]Dahl A C,Madsen J.Tatrahedron:asymmetry[J],1998,9,4395-4417.
    [48]Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S.Novel bioreduction system for the production of chiral alcohols[J].Appl Microbiol Biotechnol.2003,62,437-445.
    [49]Hummel. W. Large-scale applications of NAD(P)-dependent oxidroeductases:recent development[J].Trends Biotechnol.1999,17,487-491.
    [50]Hummel W. and Kula M-R. Dehydrogenases for the synthesis of chiral compounds[J].Eur. J.Biochem.1989,184,1-13.
    [51]Kula MR, Kragl U. Dehydrogenases in Synthesis of Chiral Compounds[J].In: Ramesh NP, editor. Stereoselective Biocatalysis. New York:Marcel Dekker; 2000,839-66.
    [52]Sheldon WM, Stephen RP.Oxidoreductase enzymes in biotechnology:current status and future potential[J].Bio/Technology 1983,1:677-86.
    [53]Hummel W. Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments[J].Trends Biotechnol 1999,17:487-92.
    [54]Chenault HK, Simon ES,Whitesides GM.Cofactor regeneratioin for enzyme-catalysed synthesis[J].Biotechnol Genet Eng Rev 1988,6:221-70.
    [55]Wichmann R, Vasic-Racki D.Cofactor regeneration at the lab scale[J].Adv Biochem Eng Biotechnol 2005,92:225-60.
    [56]Chenault HK, Whitesides GM.Regeneration of nicotinamide cofactors for use in enzymatic synthesis[J].Appl Biochem Biotechnol 1987,14:147-197.
    [57]张玉彬.生物催化的手性合成[M].北京,化学工业出版社,2001.
    [58]Huimin Zhao,Wilfred A van der Donk. Recent developments in pyridine nucleotide regeneration[J].Current Opinion in Biotechnology,2003,14, 421-426.
    [59]DelecoulServat K, Basseguy R, Bergel A. Membrane electrochemical reactor(MER):application to NADH regeneration for ADH-catalysed synthesis[J].Chemical Engineering Science,2002,57,4633-4642.
    [60]Wilfred A van der Donk, Zhao Huimin. Regeneration of cofactors for use in biocatalysis[J].Current Opinion in Biotechnology,2003,14,583-589.
    [61]Seelbach K, Riebel B, Hummel W. A Novel Efficient Regenerating Method of NADPH using a New Formate Dehydroenase[J].Tetrahedron Lett,1996,37, 1377-1380.
    [62]Oagwa J,Shimizu S.Industrial Microbial Enzymes:Their Discovery by Screening and Use in Large-Scale Production of Useful Chemicals in Japan[J]. Curr. Opin.Biotechnol,2002,13,367-375.
    [63]Sheldon W May. Application of oxidoreductases[J].Current Opinion in Biotechnology,1999,10,370-375.
    [64]Cantet J, Bergel A, Comtat M.Coupling of the Electroenzymatic Reduction of NAD+ with a Synthesis Reaction[J].Enzyme Microb,Technol.,1996,18,72-79.
    [65]Fernanda M Bastos, Tania K Franca, Georgia DC Machado et al.Kinetic modeling of coupled redox enzymatic systems for in situ regeneration of NADPH[J].Journal of Molecular Catalysis B:Enzymatic,2002,20,459-465.
    [66]Klibanov A, Alberti B, Zale S.Enzymatic Synthesis of Formic Acid from H2 and CO2 and Production of Hydrogen from Formic Acid[J].Biotechnol.Bioen.,1982, 24,25-36.
    [67]Basseguy R D, Bergel A, Comtat M. Potential Applications of NAD(P)-Dependent Oxidoreductases in Synthesis:A Survey, Enzyme Microb. Technol[J].,1997,20,248-258.
    [68]DelecoulServat K, Basseguy R, Bergel A.Membrane electrochemical reactor(MER):application to NADH regeneration for ADH-catalysed synthesis[J].Chemical Engineering Science,2002,57,4633-4642.
    [69]Yi-Tao Long, Hong-Yuan Chen. Electrochemical regeneration of coenzyme NADH on a histidine modified silver electrode[J].Journal of Electroanalytical Chemistry,1997,440,239-242.
    [70]Brourdillon C, Laval J M, Thomas D.Enzymatic Electrocatalysis:Controlled Potential Electrolysis and Cosbustrate Regeneration with Immobilelized Enzyme Modified Electrode[J].J. Electrochem. Soc.,1986,133,706-711.
    [71]Miyawaki O, Yano T. Electrochemical bioreactor with immobilized glucose-6-phosphate detydrogenase on the rotating graphite disc electrode modified with phenazine methosulfate[J].Enzyme Microb Technol,1993,15, 525.
    [72]Fry A J, Sobolov S B, Leonida M D et al.Electroenzymatic synthesis (Regeneration of NADH Coenzyme):Use of Nafion Ion Exchange Films for Immobilization of Enzyme and Redox Mediator[J].Tetrahedron Lett,1994,35, 5607-5610.
    [73]Hollmann F, Witholt B, Schmid A et al.[Cp*Rh(bpy)(H2O)]2+:a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzyme[J].Journal of Molecular Catalysis B:Enzymatic,2003,20,167-176.
    [74]Pueyo J J, Gomez-Moreno C.Photochemical regeneration of NADPH using the enzyme ferredoxin-NADP+ reductase[J].Enzyme Microb Technol,1992,14,8.
    [75]Itoh T, Asada H, Tobioka K et al.Hydrogen Gas Evolution and Carbon Dioxide Fixation with Visible Light by Chlorophyllin Coupled with Polyethylene Glycol[J].Bioconj.Chem.,2000,11,8-13.
    [76]Asada H, Itoh T, Kodera Y et al.Glutamate synthesis via Photoreduction of NADP+ by Photostable Chlorophyllide Coupled with Polyethylene-Glycol[J]. Biotechnol.Bioeng.,2001,76,86-90.
    [77]Shumilin I A, Nikandrov V V, Popov V O et al.Photogeneration of NADH under Coupled Action of CdS Semiconductor and Hydrogenase from Alcaligenes Eutrophus Without Exogenous Mediators[J].FEBS Lett,1992,306,125-128.
    [78]王梦亮,胡锐,郭学林等.光动不对称加氢生物催化机理的研究.催化学报[J],2008,29(3),233-237.
    [79]王梦亮,郭学林.固定化光合细菌催化苯乙酮不对称加氢的研究[J].山西大 学,2008,31,94-96.
    [80]刘守新,刘鸿编著.光催化及光电催化基础与应用[M].化学工业出版,2006.
    [81]王梦亮,杜刚,刘滇生.光控生物不对称还原苯乙酮的研究[J].高等学校化学学报,2006,27(9),1686-1688.
    [82]Clayton R K. Photochem Photobiol[J],1966,5(8):669-674.
    [83].Adams.M.W, Mortenson L E, Chen J S.Hydrogenase.Biochim.Biophys[J].Acta, 1981,594,105-176.
    [84]Adams M W. The structure and mechanism of iron-hydrogenase[J].Biochim. Biophys.Acta,1990,1020,115-145.
    [85]Stephenson M,Stickland L H.A bacterial enzyme activating molecular hydrogen: The properties of hydrogenase[J].Biochem.J.,1931,25,205-214.
    [86]Vignais P,Billoud B,Meyer J.Classification and phylogeny of hydrogenase[J]. FEMS Microbiol Rev.2001,25,455-501.
    [87]Gogotov IN.Hydrogenase of phototrophic microorganisms[J].Biochimie.1986, 68,181-7.
    [88]Frey M. Hydrogen-Activating Enzymes[J].Method Enzymol,2002 (3),153-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700