一氧化氮、乙烯和赤霉素在打破杜梨种子休眠中的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年的研究表明一氧化氮(NO)作为一种新的信号分子在植物体内广泛存在,并在植物各种生理活动中起着重要的调控作用,研究发现NO在打破种子休眠中也起着重要作用。种子休眠原因多种多样,许多生物因素和非生物因素都可以调控植物种子休眠。许多科学家已经证明在一些植物种子的休眠中乙烯(ET)和赤霉素(GA)起着重要的调控作用。杜梨是蔷薇科植物,广泛用于梨的砧木,其种子存在着较深度的休眠,需要长期的低温层积才能萌发,费时费力而且损失严重。本研究以处于休眠状态的杜梨种子为实验材料,经NO、ET和GA以及它们的抑制剂处理,在培养过程中对它们的发芽率和芽长度进行统计,并用气相色谱对乙烯释放量进行测定,研究NO、ET和GA在杜梨休眠中的相互关系。研究结果如下:
     1.外源NO可以打破杜梨种子休眠,显著提高萌发率。1、5、10、20 mM的一氧化氮供体硝普钠(SNP)处理都能促进杜梨种子萌发,提高萌发率。但是过高浓度的SNP处理会抑制芽的生长,甚至引起芽的死亡,其中10mM的SNP处理在促进萌发中效果较好,而且对芽的生长没有造成伤害。NO清除剂PTIO可以逆转SNP的作用维持种子休眠。在打破杜梨种子休眠中,NO合成有一氧化氮合酶(NOS)途径而没有硝酸还原酶(NR)途径参与。
     2.外源乙烯可以打破杜梨种子休眠,显著提高萌发率。0.5、1、2、5 mM的乙烯利(ETH)处理都可以提高杜梨种子的萌发率,以2 mM和5 mM两个浓度效果比较好,但过高浓度的乙烯利强烈抑制杜梨芽的生长,结果表明:2mM是打破杜梨休眠促进萌发的最佳浓度。乙烯作用抑制剂1-甲基环丙烯(1-MCP)可以逆转外源乙烯的作用,降低萌发率。
     3.GA参与打破杜梨种子休眠过程。外源GA处理对带皮杜梨种子没有显著的影响,但是对去皮种子打破休眠效果显著。GA合成抑制剂多效唑可以强烈延长杜梨种子休眠、抑制萌发。
     4.NO通过促进内源乙烯的积累打破杜梨种子休眠,在打破杜梨种子休眠中乙烯处于NO信号通路的下游。1-MCP处理可以逆转SNP的作用,而PTIO对乙烯的效果作用不大。乙烯可以诱导自身的合成,乙烯的积累可以打破杜梨种子的休眠,经10 mM SNP处理后杜梨种子内源乙烯的释放量有了显著提高,而且PTIO和1-MCP都可逆转这种作用。
     5.在打破杜梨种子休眠中乙烯和GA是协同关系,协同打破杜梨休眠,而且GA是乙烯打破休眠必需的。GA抑制剂可以阻止乙烯的作用,乙烯抑制剂可以部分抑制GA的作用。
     6.根据本实验结果,我们提出在打破杜梨种子休眠中NO、乙烯和GA三者之间的信号关系:NO处于乙烯信号通路的上游,能够促进乙烯的积累;乙烯和GA是协同关系,协同打破杜梨种子休眠,而且GA在乙烯打破休眠中是必需的。
Nearly a decade of research shows that NO as a new signaling molecule in plants is widespread, and plays an important role in regulating a variety of physiological active-ties in plants, many scien-tists found that NO plays an important role in breaking seed dormancy. the reasons of seed dormancy are very variegated, many biological factors and abiotic factors can control seed dormancy. It has been proved that ethylene (ET) and Gibberellin acid (GA) play an important role in regulating seed dormancy of some plants. Pyrus betulifolia Bunge is a species of the Rosaceae, its seed is a dormant seed, Dormancy can be breaked by Long-term cold stratification, consuming time and bring-ing a serious loss. In this study, the Pyrus betulifolia Bunge dormant seeds as expert-menttal material, we treated its seeds with NO, ET, GA and their inhibitors, calculate and measure percentage of germina-tion, shoot length, release of ethylene content in the training process, hope to find effects and rela-tionship of NO, ET and GA on seed dormancy of Bunge. The results as follows:
     1. Exogenous NO can break seed dormancy for germination of Pyrus betulifolia Bunge.1,5,10, 20 mmol/L of Sodium nitroprusside(SNP) treatment all broke its seed dormancy. But the high con-centration of SNP treatment inhibited the growth of buds, even leaded to the death of buds.10 mmol/Lof SNP treatment was better in promoting germination, and didn't harm the growth of the bud. NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazo-line-l-oxyl-3-oxide(PTIO) reversed the role of SNP and main-tained seed dormancy. In Breaking the dormancy of Pyrus betulifolia Bunge seed NO came from Nitric oxide synthase(NOS) but not Nitrate reductase(NR) pathway.
     2. Exogenous ethylene broke Pyrus betulifolia Bunge seed dormancy, increased germination rate significantly.0.5,1,2,5 mmol/L of ethephon treatment all improved the germination rate of its seed,2 and 5 mmol/L were better, but the high concentra-tion of ethephon was strongly inhibited the growth of Pyrus betulifolia Bunge buds. The results showed that 2mmol/L was optimal concen-tration to break dormancy and promote germination of Pyrus betulifolia Bunge seed. Inhibitor of ethylene action 1-Methylcyclopropene(1-MCP) can reverse the role of exogenous ethephon and reduced germina-tion rate.
     3. GA involved in the process of breaking Pyrus betulifolia Bunge seed dormancy.2 mmol/L exogenous GA treatment had little effect on the seeds with testa of Pyrus betulifolia Bunge, but broke seed dormancy of peeled seed. GA synthesis inhibitor paclobutrazol strongly inhibited the germination of seeds of Pyrus betulifolia Bunge.
     4. Breaking Pyrus betulifolia Bunge seed dormancy by NO involved the stimulation of ethylene production. Ethylene was at the downstream of NO signaling pathway in breaking Pyrus betulifolia Bunge seed dormancy.1-MCP treatment reversed the SNP effect, while PTIO had little effect on ethylene. Ethylene induced its own synthesis, ethylene accumulation broke the dormancy of Pyrus betulifolia Bunge seed. By the treatment of 10 mmol/L SNP, endogenous ethylene production of Pyrus betulifolia Bunge seed had significantly increased, both PTIO and 1-MCP reversed the effect.
     5. Ethylene and GA were synergy in Pyrus betulifolia Bunge seeds, collaborative breaking its dormancy, and GA was necessary for ethylene to break dormancy. The inhibitors of GA could reverse the role of ethylene, ethylene inhibitors could partially inhibit the role of GA.
     6. According to the experimental results, it was proposed the signals relations of NO, ET and GA in breaking the dormancy of Pyrus betulifolia Bunge seeds:NO was in the upstream signaling pathway of ethylene, promoting the accumulation of ethylene; ethylene and GA was the systematic relationship, synergy breaking the dormancy of its seed, and GA was necessary for ethylene to break dormancy.
引文
[1]刘开力,凌腾芳,刘志兵等.外源NO供体SNP浸种对盐胁迫下水稻幼苗生长的影响[J].植物生理学通讯,2004,40(4):419-421.
    [2]张艳艳,刘俊,刘友良.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报,2004,30(4):455-459.
    [3]肖强,郑海.植物中的一氧化氮信号分子[J].生物学通报,2005,40(11):17-18.
    [4]Dean JV, Harper JE. Nitric Oxide and Nitrous Oxide Produciton by Soybean and Winged Bean durig the in Vivo Nitrate Reductases Assay[J]. Plant Physiol,1986, 82:718-723.
    [5]Anderson L, Mansfield TA. The effects of nitric oxide pollution on the growth of tomato[J]. Environmental Pollution,1979,20:113-121.
    [6]Delledonne M, Xia YJ, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance[J]. Nature,1998,394(6693):585-588.
    [7]Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose[J]. Proc NatlAcad Sci USA,1998,95: 10328-10333.
    [8]Klepper L. Evolution of nitrogen oxide gases from herbicide treated plant tissues[J]. WSS A Abstracts,1975,184:70.
    [9]Ninnemann H, Maier J. Indication for the occurrence of nitric oxide synthase in fungi and plants and the involvement in photoconidiation of Neurospora crassa[J]. Photo-chemistry and Photobiology,1996,64:93-398.
    [10]Ribeiro EA, Cunha FQ, Tamashiro WMSC. Martins IS Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells[J]. FEBS Letters, 1999,445:283-286.
    [11]Lamattina L, Garcia-Mata C, Graziano M, et al. Nitric oxide:The versatility of an extensive signal molecule[J]. Annu Rev Plant Biol,2003,54:109-136.
    [12]Dean J, Harper J. Nitric-oxide and nitrous oxide production by soybean and winged bean during t he in vivo nitrate reductase assay[J]. Plant Physiol,1986,82(3): 718-723.
    [13]Klepper L. Nitric-oxide emissions from soybean leaves during in vivo nitrate reduc-tase assays[J]. Plant Physiol,1987,85:96-99.
    [14]Yamasaki H, SakihamaY, Takahashi S. An alternative path-way for nitric oxide production in plant s:New features of an old enzyme[J]. Trends Plant Sci,1999, 4(4):12-129.
    [15]Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and invitro[J]. Exp Bot,2002,53 (366):103-110.
    [16]Kaiser WM, Huber SC. Post-translational regulation of nitrate reduetase:meehanis, Physiological relevance and environnrental triggers[J]. EXP Bot,2001,52(363): 1981-1989.
    [17]Stohr C, Ull rich WR. Generation and possible roles of NO in plant root sand their apoplastic space[J]. Exp Bot,2002,53 (379):2293-2303.
    [18]Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell,2004,16(2):332-341.
    [19]Wendehenne D, Durner J, Klessig DF. Nitric oxide:A new player in plant signalling and defence responses. Curr Opin Plant Biol,2004,7 (4):449-455
    [20]Crawford NM, Guo FQ. New in sights into nitric oxide metabolism and regulatory functions[J]. Trends Plant Sci,2005,10 (4):195-200.
    [21]Lamotte O, Courtois C, Barnavon L, et al. Nitric oxide in plants:The biosynthesis and cell signalling properties of a fascinating molecule[J]. Planta,2005,221(1): 1-4.
    [22]Leshem YY, Haramaty E. Plant aging:the emission of NO and ethylene and the effect of NO releasing compounds on growth of pea(Pisum sativum) foliage[J]. Plant Physiol,1996,148:258-263.
    [23]Graziano M, Beligni MV, Lamattina L. Nitric oxide improve sinternaliron availability in plants[J]. Plant Physiol,2002,130 (4):1852-1859.
    [24]Zhang L, Wang Y, Zhao L, et al. Involvement of nitric oxide in light mediated greening of barley seedlings [J]. Plant Physiol,2006,163(8):818-826.
    [25]Beligni MV, Lamattina L. Nitricoxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants[J]. Planta,2000,210(2):215-221.
    [26]Gouvea CMCP, Souza JF, Magalhae CA, Martins IS. NO-releasing substanees That induee growth elongation in maize root segments[J]. Plant Growth Regul,1997,21: 183-187.
    [27]Pagnussat GC, Simontaeehi M, Puntarulo S, Lamattina L. Nitrie oxide is Required for root organogenesis[J]. Plant Physiol,2002,129(3):954-956.
    [28]Pagnussat GC, Lanteri ML, Lamattina L. Nitrie oxide and cyelie GMP are messen-gers in the indole aeetie-indueed adventitious rooting Proeess[J]. Planz Physiol, 2003,132:1241-1248.
    [29]He Y, Tang RH, Hao Y, et al. Nitric oxide represses the Arabidopsis floral transition[J]. Science,2004,305(5692):1968-1971.
    [30]Leshem YY. Nitric oxide in biological systems[J]. Plant Growth Regulation,1996, 18(3):155-159.
    [31]Hu X, Neill SJ, Tang Z, et al. Nitric oxide mediates gravit ropic bending in soybean roots[J]. Plant Physiol,2005,137(2):663-670.
    [32]Leshem YY, Wills RBH. Hmaessing senescence delaying gases nitric oxide and nitrous oxide:anovel approach to postharvest control of fresh horticultural produee[J]. Biol Planalrum,1998,41:1-10.
    [33]Mishina TE, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis [J]. Plant Cell Environ,2007,30(1): 39-52.
    [34]Lindermayr C, Saalbach G, Bahnweg G, et al. Differential inhibition of Arabidopsis methionine adenosylt ransferases by protein Snit rosylation[J]. Biol Chem,2006, 281(7):4285-4291.
    [35]Agnieszka Gniazdowska, Urszula Dobrzyjska. Breaking the apple embryo dormancy by nitric oxide involves the stimulation of ethylene production[J]. Planta, 2007,225:1051-1057.
    [36]Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers[J]. Paint Physiol,2002,129:1642-1650.
    [37]Zhnag H, Shen W B, Zhnag W, Xu L L. A rapid respone of beta-amylase to nitric oxide but not GA in Wheat seeds during the early stage of germination[J]. Planta, 2005,220:708-716.
    [38]Bethke PC, Libourel IG, Aoyama N, et al. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol,2007,143(3):1173-1188.
    [39]Garcia-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiol,2001,126(3): 1196-1204.
    [40]Gareia Mata C, Lmaattina L. Nitric oxide and abscisic acid across talk in guard cells[J]. Plant Physiol,2002,128:790-792.
    [41]Neill SJ, Desikan R, Clarke A, et al. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells[J]. Plant Physiol,2002,128 (1):13-16.
    [42]Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science,2003,302(5642):100-103.
    [43]Neill SJ, Desikan R, Clarke A, et al. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol,2002,128(1):13-16.
    [44]Bright J, Desikan R, Hancock J T, et al. ABA induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis[J]. Plant,2006,45(1): 113-122.
    [45]Garcia-Mata C, Gay R, Sokolovski S, et al. Nitric oxide regulates K+ and Cl-channels in guard cells through a subset of abscisic acide-voked signaling pathways[J]. Proc Natl Acad Sci USA,2003,100(19):11116-11121.
    [46]Sokolovski S, Hills A, Gay R, et al. Protein phosphorylation is a prerequisite for intracellular Ca2+ release and ionchannelcontrol by nitricoxide and abscisic acid in guard cells[J]. Plant,2005,43(4):520-529.
    [47]Scherer GFE, Holk A. NO donors mimic and NO inhibitors inhibit cytokinin action in betalaine accumulation in Amarant huscaudatus[J]. Plant Growth Regulation, 2000,32:345-350.
    [48]Scherer GFE. Nitric oxide in cytokinin and polyamine signaling:Similarities and potential cross-talk. In:Lamat tina L, Polacco J, eds. Nitric Oxide in Plant Growth, Develo-pment and Stress Physiology [J]. Verlag Berlin Heidelberg:Springer,2007, 131-152.
    [49]Tun NN, Holk A, Scherer GFE. Rapid increase of NO release n plant cell cultures induced by cytokinin[J]. FEBS Lett,2001,509(2):174-176.
    [50]Carimi F, Zot tini M, Costa A, et al. NO signalling in cytokinin-induced programmed cell death[J]. Plant, Cell & Environment,2005,28(9):1171-1178.
    [51]She XP, Song XG. Cytokinin-and auxin-induced stomatal opening is related to the change of nitric oxide levels in guard cells in broad bean[J]. Physiologia Plantarum, 2006,128(3):569-579.
    [52]Wilhelmova N, Fuksova H, Srbova M, et al. The effect of plant cytokinin hormones on the production of ethylene, nitric oxide, and protein nitroty-rosine in ageing tobacco leaves[J]. Biofactors,2006,27(1-4):203-211.
    [53]Baskin JM, Baskin CC. A classification system for seed dormancy[J]. Seed Sci Res, 2004,14:1-16.
    [54]Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germina-tion[J]. New Phytol,2006,171:501-523.
    [55]Khan AA. The Physiology and biochemistry of seed domraney and germination [M]. North-Hollnad Publishing Company,1977,15-250.
    [56]Finkelstein R, Reeves W, Ariizumi T, Sreber C. Molecular aspects of seed dormancy [J]. Annu Rev Plant Biol,2008,59,387-415.
    [57]Holdsworth R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed dormancy [J]. Annu Rev Plant Biol,2008,59,387-415.
    [58]Leubner-Metzger G. Functions and regulation of β-1,3-glucanase during seed germination, dormancy release and after-ripening[J]. Seed Sci Res,2003,13,17-34.
    [59]Nambara E, Marion-Poll A. ABA action and interactions in seeds[J]. Trends Plant Sci,2003,8:213-217.
    [60]Leubner-Metzger G Plant hormone interactions during seed dormancy release and germination[J]. Seed Sci Res,2005a,15:281-307.
    [61]王伟,程红焱.拟南芥突变体种子休眠与萌发的研究进展[J].植物学通报,2006,23(6):625-633.
    [62]Xiong L, Gong Z, Rock CD, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK. Modulation of abscisic acid signal transduction and biosynthesis by an Smlike protein in Arabidopsis[J]. Dev Cell,2001,1:771-781.
    [63]Brady SM, Sarkar SF, Bonetta D, McCourt P. The ABSCISIC ACID INSEN-SITIVE3(ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis[J]. Plant,2003,34, 67-75.
    [64]Gautam Sarath, Guichuan Hou, Lisa M. Baird. Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses[J]. Planta,2007,226:697-708.
    [65]刘永庆,Bino RJ, Karssen CM.赤霉素与脱落酸对番茄种子萌发中细胞周期的调控[J].植物学报1995,37(4):274-282.
    [66]郭建军,叶庆生,李玲.GA调节禾谷类α-淀粉酶基因表达的信号转导及 分子机制.植物学通报,2002,19(1):63-69.
    [67]Bassel GW, Zielinska E, Mullen RT, Bewley JD. Downregulation of DELLA genes is not essential for germination of tomato, soybean, and Arabidopsis seeds [J]. Plant Physiol,2004,136:2782-2789.
    [68]Angel Pablo Calvo, Carlos Nicolas, Oscar Lorenzo, Gregorio Nicolas, and Dolores Rodriguez. Evidence for Positive Regulation by Gibberellins and Ethylene of ACC Oxidase Expression and Activity During Transition From Dormancy to Germination in Fagus sylvatica L. Seeds[J]. Plant Growth Regul,2004,23:44-53.
    [69]Leubner-Metzger G. b-1,3-glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening [J]. Plant, 2005b,41:133-145.
    [70]White CN, Rivin CJ. Gibberellins and seed development in maize. II. Gibberellin synthesis inhibition enhances abscisic acid signaling in cultured embryos[J]. Plant Physiol,2000,122:1089-1097.
    [71]Gonai T, Kawahara S, Tougou M, Satoh S, Hashiba T, Hirai N, Kawaide H, Kamiya Y, Yoshioka T. Abscisic acid in the thermoinhibition of lettuce seed germination and enhancement of its catabolism by gibberellin[J]. Exp Bot, 2004,55:111-118.
    [72]Kucera B, Cohn MA Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Sci Res,2005,15:281-307.
    [73]Bogatek R, Sykaia A. Signaling action of cyanide on ethylene biosynthesis in dormant apple embryos[J]. Eighth international workshop on seeds"germinating new ideas", Brisbane, Australia,2005, pp:72.
    [74]Ribeiro DM, Barros RS. Germination of dormant seed of Stylosanthes humilis as promoted by ethylene accumulation in closed environ-ments[J]. Plant Physiol,2004,16:83-88.
    [75]邓志军,宋松泉.ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用[J].云南植物研究,2008,30:440-446.
    [76]Klee HJ. Ethylene signal transduction. Moving beyond Arabidopsis [J]. Plant Physiol,2004,135:660-667.
    [77]Stepanova AN, Alonso JM. Ethylene signaling and response pathway:a unique signaling cascade with a multitude of inputs and outputs[J]. Physiol Plant,2005,123,195-206.
    [78]Petruzzelli L, Sturaro M, Mainieri D, Leubner-Metzger G. Calcium requirement for ethylene-dependent responses involving 1-aminocyclopropane-l-carboxylic acid oxidase in radicle tissues of germinated pea seeds[J]. Plant Cell Environ,2003,26:661-671.
    [79]Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination[J]. Plant Cell,2003,15:1591-1604.
    [80]Koornneef M, Karssen CM. Seed dormancy and germination. In:Meyerowitz EM, SomervilleCR, eds. Arabidopsis[J]. Cold Spring Harbor, New York: Laboratory Press,1994, pp:313-334.
    [81]Bleecker AB, Estelle MA, Somerville C, Kende H. Insensi-tivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J]. Science,1988, 241:1086-1089.
    [82]Groot SPC, Karssen CM. Gibberellins regulate seed germination in tomato by endosperm weakening:a study with gibberellin-deficient mutants[J]. Planta, 1987,171:525-531.
    [83]Matilla AJ. Ethylene in seed formation and germination[J]. Seed Sci Res, 2000,10:111-126.
    [84]Miller CO. Similarity of some kinetin and red light effects[J]. Plnat Physiol, 1956,31:318-319.
    [85]Babiker AGT, Ma YQ, Sugimoto Y, Inanaga S. Conditioning period, CO2 and GR24 influence ethylene biosynthesis and germination of Striga hermonthica [J]. Physiol Plant,2000,109:75-80.
    [86]郑光华主编.种子生理研究[M].北京,科学出版社,2004,201-213.
    [87]C. Nicolas, G. Nicolas, D. Rodriguez, Antagonistics effects of ABA and gibberellic acid on the breaking of dormancy of Fagus sylvatica, Physiol[J]. Plant,1996,96:244-250.
    [88]A. P. Calvo, J. A. Jimenez, C. Nicolds, G. Nicolas, D. Rodriguez, Isolation and characterization of genes related with the breaking of beechnuts dormancy and putatively involved in ethylene signal perception and transduction, in:G. Nicolas, K. J. Bradford, D. Come, H. Pritchard (Eds.), The Biology of Seeds:Recent Research Advances, CAB International, Wallingford,2003, pp:141-149.
    [89]A. P. Calvo, C. Nicolas, G. Nicolas, D. Rodriguez, Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins andethylene during the breaking of dormancy in Fagus sylvatica seeds[J]. Physiol Plant, 2004,120:623-630.
    [90]A. P. Calvo, C. Nicolas, O. Lorenzo, G. Nicolas, D. Rodriguez, Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds[J]. Plant Growth Reg,2004,23:44-53.
    [91]Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and deetiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants[J]. Planta,2000,210(2):215-221.
    [92]Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell,2004,16(2):332-341.
    [93]Cheng HY, He HY, Soug SQ. The studies on germination characteristics of Pellacalyx yumanensis seeds[J]. Seed Science and Technology,2006,31(13): 1045-1047.
    [94]Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes: Possible effect on mitochondrial function[J]. Free Radic Res,1999,31: 205-212.
    [95]Simontacchi M, Jasid S, Puntarulo S. Nitric oxide generation during early germination of sorghum seeds[J]. Plant Sci,2004,167:839-847.
    [96]张少颖,任小林,程顺昌,等.外源一氧化氮供体浸种对玉米种子萌发和幼苗生长的影响[J].植物生理学通,2004,40(3):309-310.
    [97]张华.外源一氧化氮促进小麦种子萌发及其信号作用机制研究[J],2006.
    [98]Bethke PC, Libourel IGL, Jones RL. Nitric oxide reduces seed dormancy in Arabidopsis[J]. Exp Bot,2006,57:517-526.
    [99]Parani M, et al. Microarray analysis of nitric oxide responsive transcripts in Arabidopsis[J]. Plant Biotechnol,2004,2:359-366.
    [100]孙果忠,肖世和.脱落酸与种子休眠[J].植物生理学通讯,2004,40(1):115-120.
    [101]陈佳,阿依买木,王新建.低温与激素处理对解除杜梨种子休眠的研究[J].北方园艺,2009(4):47-49.
    [102]赵淑清,郭剑波,常留印.植物生长调节剂对离体培养早熟杏胚休眠的破除[J].果树学报,2001,18(2):84-86.
    [103]高俊凤.植物生理学实验指导[M].高等教育出版社,2006:196-198.
    [104]胡晋.种子生物学[M].高等教育出版社,2006(1):126-140.
    [105]Grubisic D, Giba Z, Konjevic R. The effect of organic nitrates in phytochrome controlled germination of Paulownia tomentosa seeds [J]. Photochem Photobiol, 1992,56:629-632.
    [106]Krystyna Oraczl, et al. Release of sunflower seed dormancy by cyanide:cross-talk with ethylene signalling pathway[J]. Journal of Experimental Botany,2008,59(8): 2241-2251.
    [107]潘瑞炽.植物生理学(第五版)[M].高等教育出版社,2005,186-191.
    [108]A. J. Matilla. Ethylene in seed formation and germination [J]. Seed Science, 2000,10:111-126.
    [109]H. J. Klee, D. J. Clark, Ethylene signal transduction in fruits and flowers, in: P. J. Davies(M). Plant Hormones:Biosynthesis, SignalTransduction, Action, Kluer Academic, London,2004,369-390.
    [110]P. Nath, P. K. Trivedi, V. A. Sane, A. P. Sane, Role of ethylene in fruit ripening, in:N. A. Khan(M), Ethylene Action in Plants, Springer Ver-lag, Berlin,2006:151-184.
    [111]A. J. Matilla, How is the silique fruit dismantled over its maturation? Funct[J]. Plant Sci. Biotech,2007:185-93.
    [112]J. KV pczynski, E. KV pczynska and M. Bihun. The involvement of ethylene in the release of primary dormancy in Amaranthus retroflexus seeds [J]. Plant Growth Regula-tion,2003,39:57-62.
    [113]Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductasein vivoandin vitro [J]. Journal of Experi-mental Botany,2002,53(366):103-110.
    [114]程奇,翠云,阿依买木.不同处理对梨种子休眠与萌发的影响[J].塔里木大学学报,2005,01(17):28-30.
    [115]Ninnemann H, Maier J. Indication for the occurrence of nitric oxide synthase in fungi and plants and the involvement in photo conidiation of Neurospora crassa [J]. Photochemistry Photobiology,1996,64(2):393-398.
    [116]Ribeiro EA, Cunha FQ, Tamashiro W, Martins IS. Growth phase-dependent subcellu-lar localization of nitric oxide synthase in maize cells[J]. FEBS Letters, 1999,445(2-3):283-286.
    [117]Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vogeli-Lange R, Meins F. Ethylene responsive element binding protein (EREBP) expression and the transcriptional regulation of class Ⅰ b-1,3-glucanase during tobacco seed germination[J]. Plant Mol Biol,1998,38:785-795.
    [118]Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Sence,2003,302(5642):100-103.
    [119]Tun NN, et al. Polyamines induce rapibiosynthesis of nitric oxide (NO) in Athaliana seedlings[J]. Plant and Cell Physiology,2006,47(3):346-354.
    [120]Chandok MR, et al. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex[J]. Cell,2003, 113(4):469-482.
    [121]Chiwocha SD, Cutler AJ, Abrams SR, et al. The etrl-2 Mutation in Arabidopsis Thaliana A ffects the Abscisic Acid, Auxin, Cytokinin and Gibberellin Metabolic Pathways During Main-tenance of Seed Dormancy, Moist-Chilling and Germination[J]. The Plant Journal,2005,42:3548.
    [122]S. I. Gibson. Sugar and phytohormone response pathway:navigating a signalling network[J]. Exp. Bot,2004,55:253-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700