铜催化的C-N偶联反应及C=N反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,传统的化学工业对环境的污染越来越严重,人类与环境的矛盾在不断的激化。各种环境问题不仅威胁到人类的生存环境,更是威胁到了人类自身的发展。因而化学工业绿色化是当今世界化学界的研究主要方向。C-N交叉偶联反应是有机化学中一个重要的内容,其在化工和医药中都有着广泛的应用。传统的反应一般需要特定的催化剂和在苛刻的条件下进行反应,对于工业操作和经济上都很有局限性。芳香亚胺类化合物是医药合成极为重要的合成中间体,在工业中最常用的合成方法,是用伯胺和醛/酮/醇类通过脱水缩合反应生成亚胺,而直接通过伯胺自身偶联反应合成的较少。
     使用固体高效催化剂催化C-N偶联反应,及合成亚胺是本文研究的重点。氧化铜及氧化亚铜作为一种廉价、低毒的固体催化剂,更加符合化学工业绿色化的要求。
     本文研究的主要内容:
     一、用不同形貌的氧化亚铜为催化剂催化碘苯与苄胺的C-N交叉偶联反应的研究,以期得到不同形貌氧化亚铜的不同晶面的催化性差异。但是由于反应产率较低,不能作为评价不同晶面催化性能差异的标准。但是为之后做类似的研究奠定了基础。
     二、CuO/酸性Al203为复合催化剂,在甲苯为溶剂、氧气气氛、温度110℃、反应24 h条件下,催化苄胺及其衍生物脱氨偶联合成亚胺及芳香仲胺的脱氢氧化成亚胺。反应有较好的选择性及较高的产率,且对不同伯胺有一定的耐用性。
With development of economical, the traditional chemical industry lead to increasingly serious pollution of the environment, the conflict of human and environment is in the continuous intensification. Environmental problems have threatened the survival of the human environment, and are a threat to the development of human beings, which are reasons that why the green chemical industry is the main direction of chemical industry of the world. C-N cross-coupling reaction is an important content of organic chemistry, and medicine in chemical widely used in both. The traditional reactions have generally required specific catalysts and harsh conditions, there has limitations for both industrial and economic operation. Aromatic polyimide compounds are very important pharmaceutical intermediate synthesis, In industrial synthesis, the most commonly used method is the use of primary amines and aldehydes, alkones or alcohols by dehydration condensation reaction to imines.
     The focus of this thesis are synthesis imines through C-N cross-coupling reaction and C=N reactions catalyzed by efficient solid catalysts. Copper oxide and cuprous oxide are cheap, low toxicity and solid catalysts. So using copper oxide and cuprous oxide as catalyst is in line with the requirements of the chemical industry green.
     The main contents of this thesis:
     1、Using different morphologies of cuprous oxide as catalysts was in the iodine benzene and benzylamines of C-N cross-coupling reaction, and we want to obtain a different catalytic activity of the different crystals faces of cuprous oxide. But low response rate can not be as evaluation standards for the unit catalytic performance. But the studies provided the foundation for the research in the future.
     2、CuO/acidic Al2O3 as catalyst, toluene as solvent, oxygen atmosphere, temperature 110℃, 24h reaction as conditions of reaction, coupling reaction of benzyl amine and its derivatives through transmaination-coupling reactions and dehydrogenation-oxidation of aromatic amine were to synthesize imine. We had a good response and a high rate of productions, and durability for primary amines.
引文
[1]朱清时.绿色化学[J].化学进展,2000,12(4):410-414.
    [2]Office of Pollution Prevention and Toxies.1994 Toxies Release Inventory, Publie Data Release, Exeeutive Summary, June, EPA-745-S-96-001, Washington, DC:U.S.Environmental Protection Agency,1996.
    [3]贡长生,张龙.绿色化学[M].武汉:华中科技大学出版社.2008:1-40
    [4]马雪琴,金志刚,张新位.新世纪呼唤绿色化学[J].首都师范大学学报(自然科学版),2003,24(2):52-56
    [5]徐汉生著.绿色化学导论[M].武汉:武汉大学出版社.2002,12:5-6.
    [6]闵恩泽等编.绿色化学的进展[J].化学通报.1999,1:10-15.
    [7]彭晖冰,罗耀华. 绿色化学与绿色化学教育[J].长春师范学院学报.2004,23(3):83-85.
    [8]P. Martyn, F. Michael, R. F. Trevor. Science,2002,297(5582):807-810.
    [9]闫立峰著.绿色化学[M].合肥:中国科技大学出版社,2007:2-3.
    [10]李朝军,王东译.绿色化学:理论和应用[M].2002,4:13-58.
    [11]P. T. Anastas, J. C. Warner. Green Chemistry. Frontiers in Beijing Chemical Synthesis and Proeesses, Oxford:OxfordUniv. Press,1998.
    [12]B. Trost, Science,1991,254:1471-1477.
    [13]单永奎著,绿色化学的评估准则[M].北京:中国石化出版社.2006.7.1:20-21.
    [14]汪志勇,王官武,王中夏等译,郭庆祥审核.绿色化学导论[M].北京:中国石化出版社.2006:17-45.
    [15]王晔峰,曾京辉,崔晓瑞.铜催化的C-N交叉偶联反应的研究进展[J].Chin.J. Org. Chem.,2010,30(02):181-199.
    [16]F. Ullmann. A new Path for Preparing Diphenylamine Derivatives[J]. Chem. Ber., 1903,36:2382-2384.
    [17]F. Jourdan. Neue Synthesen von Derivaten des Hydroacridins and Acridins[J]. Chem. Ber.,1885,18:1444-1456.
    [18]I. Goldberg. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator[J]. Chem. Ber.,1906,39:1691-1692.
    [19]F. Paul, J. Patt, J. F. Hartwig. Palladium-catalyzed Formation of Carbon-nitrogen bonds. Reaction Intermediates and Catalyst Improvements in the Hetero Cross-coupling of Aryl Halides and tin Amides[J]. J. Am. Chem. Soc.,1994,116: 5969-5970.
    [20]J. P. Stambuli, P. Kuwano, J. F. Hartwig. Unparalleled Rates for the Activation of Aryl Chlorides and Bromides:Coupling with Amines and Boronic Acids in Minutes at Room Temperature[J]. Angew. Chem. Int. Ed.,2002,41:4746-4748.
    [21]Q.Shen, J. F. Hartwig. Palladium-Catalyzed Coupling of Ammonia and Lithium Amide with Aryl Halides[J]. J. Am. Chem. Soc.,2006,128:10028-10029.
    [22]R. E. Tundel, K. W. Anderson, S. L. Buchwald. Expedited Palladium-Catalyzed Amination of Aryl Nonaflates through the Use of Microwave-Irradiation and Soluble Organic Amine Bases[J]. J. Org. Chem.,2006,71:430-433.
    [23]J. P. Wolf, S. L. Buchwald. A highly active Catalyst for the Room-temperature Amination and Suzuki Coupling of Aryl Chlorides[J] Angew. Chem. Int. Ed., 1999,38:2413-2416.
    [24]A. S. Guram, S. L. Buchwald. Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes[J]. J. Am. Chem. Soc.,1994,116,7901-7902.
    [25]D. W. Ma, Y. D. Zhang, J. Ch. Yao, S. H. Wu, F. G. Tao. Accelerating Effect Induced by the Structure of a-Amino Acid in the Copper-Catalyzed Coupling Reaction of Aryl Halides with a-Amino Acids. Synthesis of Benzolactam-V8[J] J. Am. Chem. Soc.,1998,120:12459-12467.
    [26]J. B. Clement, J. F. Hayes, H. M. Sheldrake, P. W. Sheldrake, A. S. Wells. Synthesis of SB-214857 using Copper Catalysed Amination of Arylbromides with L-aspartic acid[J]. Synlett,2001:1423-1427.
    [27]R. A. Altman, K. W. Anderson, S. L. Buchwald. Pyrrole-2-carboxylic acid as a Ligand for the Cu-catalyzed Reactions of Primary Anilines with Aryl Halides[J]. J. Org. Chem.,2008,73:5167-5169.
    [28]C. Ran, Q. Bai, Q. Ruan, T. M. Penning, I. A. Blair, R. G. Harvey. Strategies for Synthesis of Adducts of Omicron-quinone Metabolites of Carcinogenic Polycyclic Aromatic Hydrocarbons with 2'-Deoxyribonucleosides[J]. J. Org. Chem.,2008, 73:992.
    [29]A. Shafir, S. L. Buchwald. Highly Selective Room-temperature Copper-catalyzed C-N Coupling Reactions[J]. J. Am. Chem. Soc.,2006,128:8742-8743.
    [30]D. Jiang, H. Fu, Y. Jiang, Y. Zhao. CuBr/rac-BINOL-Catalyzed N-Arylations of Aliphatic Amines at Room Temperature[J]. J. Org. Chem.,2007,72:672-674.
    [31]L. Rout, S. Jammi, T. Punniyamurthy. Novel CuO Nanoparticle Catalyzed C-N Cross Coupling of Amines with Iodobenzene[J]. Org. Lett.,2007,9:3397-3399.
    [32]J. C. Antilla, S. L. Buchwald. Copper-Catalyzed Coupling of Arylboronic Acids and Amines[J]. Org. Lett.,2001,3:2077-2079.
    [33]M. L. Kantam, G. T. Venkanna, C. Sridhar, B. Sreedhar, B. M. Choudarv. An Efficient Base-Free N-Arylation of Imidazoles and Amines with Arylboronic Acids Using Copper-Exchanged Fluorapatite[J] J. Org. Chem.,2006,71: 9522-9524.
    [34]Z. Lu, R. J. Twieg, S. D. Huang. Copper-catalyzed Amination of Aromatic Halides with 2-N,N-Dimethylaminoethanol as Solvent[J]. Tetrahedron Lett.,2003, 44:6289-6292.
    [35]D. Zhu, R. Wang, J. Mao, L. Xu, F. Wu, B. Wan. Efficient Copper-catalyzed Amination of Aryl halides with Amines and N-H Heterocycles Using rac-BINOL as Ligand[J]. J. Mol. Catal. A: Chem.,2006,256:256-260.
    [36]Y. Liu, C. Chen, L. M. Yang. Diazabutadiene: A Simple and Efficient Ligand for Copper-catalyzed N-arylation of Aromatic Amines[J]. Tetrahedron Lett.,2006,47: 9275-9278.
    [37]G. E. Job, S. L. Buchwald. Copper-Catalyzed Arylation of β-Amino Alcohols[J]. Org. Lett.,2002,4:3703-3706.
    [38]H. Rao, H. Fu, Y. Jiang, Y. Zaho. Copper-Catalyzed Arylation of Amines Using Diphenyl Pyrrolidine-2-phosphonate as the New Ligand[J]. J. Org. Chem.,2005, 70:8107-8109.
    [39]R. Shen, J. A. Porco. Synthesis of Enamides Related to the Salicylate Antitumor Macrolides Using Copper-Mediated Vinylic Substitution[J]. Org. Lett.,2000,2: 1333-1336.
    [40]A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald. A General and Efficient Copper Catalyst for the Amidation of Aryl Halides and the N-Arylation of Nitrogen Heterocycles[J]. J. Am. Chem. Soc.,2001,123:7727-7729.
    [41]R. A. Altman, A. M. Hyde, X. Huang, S. L. Buchwald. Orthogonal Pd- and Cu-Based Catalyst Systems for C- and N-Arylation of Oxindoles[J]. J. Am. Chem. Soc.,2008,130:9613-9620.
    [42]A. Klapars, X. Huang, S. L. Buchwald. A general and Efficient Copper Catalyst for the Amidation of Aryl Halides[J]. J. Am. Chem. Soc.,2002,124:7421-7428.
    [43]M.O. Frederick, J. A. Mulder, M. R. Tracey, R. P. Hsung, J. Huang, K. C. M. Kurtz, L. Shen, C. J. Douglas. A Copper-Catalyzed C-N Bond Formation Involving sp-Hybridized Carbons:A Direct Entry to Chiral Ynamides via N-Alkynylation of Amides[J]. J. Am. Chem. Soc.,2003,125:2368-2369.
    [44]O. S. R. Barro, C. W. Nogueira, E. C. Stangherlin, P. H. Menezes, G. Zeni. Copper-Promoted Carbon-Nitrogen Bond Formation with 2-Iodo-selenophene and Amides[J]. J. Org. Chem.,2006,71:1552-1557.
    [45]F. M. Istrate, A. K. Buzas, I. D. Jurberg, Y. Odabachian, F. Gagosz. Synthesis of Functionalized Oxazolones by a Sequence of Cu(II)- and Au(I)-catalyzed Transformations[J]. Org. Lett.,2008,10:925-928.
    [46]B. Jiang, H. Tian, Z. G. Huang, Xu, M. Successive Copper(I)-catalyzed Cross-couplings in One Pot: a Novel and Efficient Starting Point for Synthesis of Carbapenems[J].Org. Lett.,2008,10:2737-2740.
    [47]X. Pan, Q. Cai, D. Ma. CuI/N,N-dimethylglycine-catalyzed Coupling of Vinyl halides with Amides or Carbamates[J]. Org. Lett.,2004,6:1809-1812.
    [48]W. Deng, Y. F. Wang, Y. Zou, L. Liu, Q. X. Guo. Amino Acid-mediated Goldberg Reactions Between Amides and Aryl Iodides[J]. Tetrahedron Lett.,2004,45: 2311-2315.
    [49]W. Deng, L. Liu, C. Zhang, M. Liu, Q. X. Guo. Copper-catalyzed Cross-coupling of Ssulfonamides with Aryl Iodides and Bromides Facilitated by Amino Acid Ligands[J]. Tetrahedron Lett.,2005,46:7295-7298.
    [50]S. L. Zhang, L. Liu, Y Fu, Q. X. Guo. Theoretical Study on Copper(I)-Catalyzed Cross-Coupling between Aryl Halides and Amides[J]. Organometallics,2007,26: 4546-4547.
    [51]E. R. Strieter, B. Bhayana, S. L. Buchwald. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides[J]. J. Am. Chem. Soc.,2009,131: 78-89.
    [52]E. Sperotto, J. G. Vries, G. P. M. Klink, G. Koten. Ligand-free Copper(I) Catalyzed N- and O-arylation of Aaryl Halides[J]. Tetrahedron Lett.,2007,48: 7366-7370.
    [53]L. Zhu, P. Guo, G. Li, J. Lan, R. Xie, J. You. Simple Copper Salt-Catalyzed N-Arylation of Nitrogen-Containing Heterocycles with Aryl and Heteroaryl Halides[J]. J. Org. Chem.,2007,72:8535-8538.
    [54]A. Kiyomori, J. F. Marcoux, S. L. Buchwald. An Efficient Copper-Catalyzed Coupling of Aryl Halides with lmidazoles[J]. Tetrahedron Lett.,1999,40: 2657-2660.
    [55]Kantam, M. L.; Rao, B. P. C.; Choudary, B. M.; Reddy, R. S. A Mild and Efficient Method for N-arylation of Nitrogen Heterocycles with Aryl Halides Catalyzed by Cu(II)-NaY Zeolite[J]. Synlett,2006,14:2195-2198.
    [56]J. P. Collman, M. Zhong, L. Zeng, S. Costanzo. The [Cu(OH)aTMEDA]2Cl2-Catalyzed Coupling of Arylboronic Acids with Imidazoles in Water[J]. J. Org. Chem.,2001,66:1528-1529.
    [57]J. P. Collman, M. Zhong. An Efficient Diaminea Copper Complex-Catalyzed Coupling of Arylboronic Acids with Imidazoles[J]. Org. Lett.,2000,2: 1233-1236.
    [58]J. J. Strouse M., Jeselnik, F. Tapaha, C. B. Jonsson, W. B. Parker, J. B. Arterburn. Copper Catalyzed Arylation with Boronic Acids for the Synthesis of N-aryl Purine Nnucleosides[J]. Tetrahedron Lett.,2005,46:5699-5702.
    [59]A. Deagostino, C. Prandi, C. Zavattaro, P. Venturello. Eur. N-Functionalization of Azoles through Coupling Reactions with Alkoxydienyl and Alkoxystyryl BoronicEsters[J]. Eur. J. Org. Chem.,2007,72:1318-1323.
    [60]R. J. Song, C. L. Deng, Y. X. Xie, J. H. Li. Solvent-free Copper/iron Co-catalyzed N-arylation Reactions of Nitrogen-containing Heterocycles with Trimethoxysilanes in Air[J]. Tetrahedron Lett.,2007,48:7845-7848.
    [61]H. J. Cristau, P. P. Cellier, J. F. Spindler, M. Taillefer. Mild Conditions for Copper-Catalysed N-Arylation of Pyrazoles[J]. Eur. J. Org. Chem.,2004,69: 695-709.
    [62]Y. Z. Huang, J. Gao, H. Ma, H. Miao, J. Xu. Ninhydrin: an Efficient Ligand for the Cu-catalyzed N-arylation of Nitrogen-containing Heterocycles with Aryl Halides[J] Tetrahedron Lett.,2008,49:948-951.
    [63]Y. Z. Huang, H. Miao, Q. Zhang, H.; C. Xu, Chen. Cu2O:a Simple and Efficient Reusable Catalyst for N-arylation of Nitrogen-containing Heterocycles with Aryl Halides[J]. J. Catal. Lett.,2008,122:344-348.
    [64]G. Shen, X. Lv, W. Qian, W. Bao. Cu2O-catalyzed Ullmann-type Reaction of Vinyl Bromides with Imidazole and Benzimidazole[J]. Tetrahedron Lett.,2008,49: 4556-4559.
    [65]R. A. Altman, E. D. Koval, S. L. Buchwald. Copper-Catalyzed N-Arylation of Imidazoles and Benzimidazoles[J]. J. Org. Chem.,2007,72:6190-6199.
    [66]R. A. Altman, S. L. Buchwald.4,7-Dimethoxy-1,10-phenanthroline:An Excellent Ligand for the Cu-Catalyzed N-Arylation of Imidazoles[J]. Org. Lett.,2006,8: 2779-2782.
    [67]F. Xue, C. Cai, H. Sun, Q. Shen, J. Rui. B-Ketoimine as an Efficient Ligand for Copper-catalyzed N-arylation of Nitrogen-containing Heterocycles with Aryl Halides[J]. Tetrahedron Lett.,2008,49:4386-4389.
    [68]M. Wolter, A. Klapars, S. L. Buchwald. Synthesis of N-Aryl Hydrazides by Copper-Catalyzed Coupling of Hydrazides with Aryl Iodides[J]. Org. Lett.,2001, 3:3803-3805.
    [69]K. Y. Kim, J. T. Shin K. S., Lee C. G., Cho. Cu(I) Mediated One-pot Synthesis of Azobenzenes from bis-Boc Aryl Hydrazines and Aryl Halides[J]. Tetrahedron Lett., 2004,45:117-120.
    [70]S. Saito, Y. Koizumi. Copper-catalyzed Coupling of Aryl Halides and Nitrite Salts: a Mild Ullmann-type Synthesis of Aromatic Nitro Compounds[J]. Tetrahedron Lett.,2005,46:4715-4717.
    [71]D. Ma, Q. Cai, H. Zhang. Mild Method for Ullmann Coupling Reaction of Amines and Aryl Halides[J]. Org. Lett.,2003,5:2453-2455.
    [72]X. Guo, H. Rao, H. Fu, Y. Jiang, Y. Zhao. An Inexpensive and Efficient Copper Catalyst for N-arylation of Amines, Amides and Nitrogen-containing Heterocycles[J]. Adv. Synth. Catal.,2006,348:2197-2202.
    [73]R. G. D. Venkataraman, J. T. Kintigh. Formation of Aryl-nitrogen Bonds Using a soluble Copper(I) Catalyst[J]. Tetrahedron Lett.,2001,42:4791-4793.
    [74]H. Rao, H. Fu, Y. Jiang. Y. Zaho. Copper-Catalyzed Arylation of Amines Using Diphenyl Pyrrolidine-2-phosphonate as the New Ligand[J]. J. Org. Chem.,2005, 70:8107-8109.
    [75]A. Shafir, S. L. Buchwald. Highly Selective Room-Temperature Copper-Catalyzed C-N Coupling Reactions[J]. J. Am. Chem. Soc.,2006,128: 8742-8743.
    [76]H. Zhang, Q. Cai, D. Ma. Amino Acid Promoted CuI-Catalyzed C-N Bond Formation between Aryl Halides and Amines or N-Containing Heterocycles[J]. J. Org. Chem.,2005,70:5164-5173.
    [77]A. Shafir, P. A. Lichtor, S. L. Buchwald. N- versus O-Arylation of Aminoalcohols: Orthogonal Selectivity in Copper-Based Catalysts[J]. J. Am. Chem. Soc.,2007, 129:3490-3491.
    [78]H. S. Taylor. Proc. R. Soc. A.,1925,108:105.
    [79]R. Narayanan, M. A. El-Sayed. Effect of Catalysis on the Stability of Metallic Nanoparticles:Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles[J]. J. Am. Soc. Chem.,2003,125:8340-8347.
    [80]S. W. Kim, K. M. Kim, W. Y. Lee, T. Hyeon. Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions[J]. J. Am. Chem. Soc.,2002,124: 7642-7643.
    [81]B. J. Gallon, R. W. Kojima, R. B. Kaner, P. L. Diaconescu. Palladium Nanoparticles Supported on Polyaniline Nanofibers as a Semi-heterogeneous Catalyst in Water[J]. Angew. Chem. Int. Ed.,2007,46:7251-7254.
    [82]A. J. Gellman, N. Shukla. Nanocatalysis:More than speed[J]. Nature Mater., 2009,8:87-88.
    [83]G. Ertl. Surface Science and Catalysis-Studies on the Mechanism of Ammonia Synthesis:The P. H. Emmett Award Address[J]. Catal. Rev. Sci. Eng.,1980,21: 201-223.
    [84]G. A. Somorjai, N. Materer. Surface Structures in Ammonia Synthesis[J]. Top. Catal.,1994,1:215-231.
    [85]B. X. Tang, F. Wang, J. H. Li, Y. X. Xie, M. B. Zhang. Reusable Cu2O/PPh3/TBAB System for the Cross-Couplings of Aryl Halides and Heteroaryl Halides with Terminal Alkynes[J]. J. Org. Chem.,2007,72: 6294-6297.
    [86]B. M. Choudary, R. S. Mulukutla, K. J. Klabunde. Benzylation of Aromatic Compounds with Different Crystallites of MgO[J]. J. Am. Chem. Soc.,2003,125: 2020-2021.
    [87]R. Narayanan, M. A. El-Sayed. Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability[J]. J. Phys. Chem. B,2005,109:12663.
    [88]N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, Z. L. Wang. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-index Facets and High Electro-oxidation Activity[J]. Science,2007,316:732-735.
    [89]K. B. Zhou, X. Wang, X. M. Sun, Q. Peng, Y. D. Li. Enhanced Catalytic Activity of Ceria Nanorods from Well-defined Reactive Crystal Planes[J]. J. Catal.,2005, 229:206-212.
    [90]J. R. Wang, Y. Fu, B. B. Zhang, X. Cui, L. Liu, Q. X. Guo. Palladium-catalyzed Aerobic Oxidation of Amines[J]. Tetrahedron Lett.,2006,47:8293-8297.
    [91]S. I. Murahashi, Y. Okano, H. Sato, T. Nakae, N. Komiya. Aerobic Ruthenium-Catalyzed Oxidative Transformation of Secondary Amines to Imines[J]. Synlett,2007,1675-1678.
    [92]H. Choi, M. P. Doyle. Oxidation of Secondary Amines Catalyzed by Dirhodium Caprolactamate[J]. Chem. Comm.,2007:745-747.
    [93]B. Zhu, R. J. Angelici. Non-nanogold Catalyzed Aerobic Oxidation of Secondary Amines to Imines[J]. Chem. Comm.,2007:2157-2159.
    [94]X. Q. Gu, W. Chen, D. Morales-Morales, C. M. Jensen. Dehydrogenation of Secondary Amines to Imines Catalyzed by an Iridium PCP Pincer Complex: Initial Aliphatic or Direct Amino Dehydrogenation?[J]. J. Mole. Cata. A:Chem., 2002,189(1):119-124.
    [95]T. Hirao, M. Higuchi, Y. Ohshiro, I. Ikeda. The Catalytic Activity of Polyaniline Derivatives in the Dehydrogenative Oxidation of Benzylamine to N-benzyldenezylamine is Effected by Protonic Acid Doping[J]. Chem. Lett.,1993: 1889-1890.
    [96]M. Higuchi, I. Ikeda, T. Hirao. A Novel Synthetic Metal Catalytic System[J]. J. Org. Chem.,1997,62:1072-1078.
    [97]A. Sobkowiak, A. Qui, X. Liu, A. Llobet, D. T. Sawyer. Copper(Ⅰ)/(t-BuOOH)-Induced Activation of Dioxygen for the Ketonization of Methylenic Carbons[J] J. Am. Chem. Soc.,1993,115:609-614.
    [98]C. A. Mirkin, L. Zhu. Direct Oxidation of Alkylamines by YBa2Cu3O7:A Key Step in the Formation of Self-Assembled Monolayers on Cuprate Superconductors [J] J. Am. Chem. Soc.,1998,120:5126-5127.
    [99]K. Orito, T. Hatakeyama, M. Takeo, S. Uchiito, M. Tokuda, H. Suginome. Dimerization of Anilines and Benzylamines with Mercury(Ⅱ) Oxide-Iodine Reagent[J]. Tetrahedron,1998,54:8403-8410.
    [100]Y. Maeda, T. Nishimura, S. Uemura. Copper-Catalyzed Oxidation of Amines with Molecular Oxygen[J]. Bull. Chem. Soc. Jpn.,2003,76:2339-2403.
    [101]S. S. Kim, S. S. Thakur, J. Y. Song, K. H. Lee. Oxidative Coupling of Benzylamines into N-Benzylbenzaldimines with Mn(II)/tert-BuOOH[J]. Bull. Korean Chem. Soc.,2005,26:499-501.
    [102]S. M. Landge, V. Atanassova, M. Thimmaiah, B. Torok. Microwave-assisted Oxidative Coupling of Amines to Imines on Solid Acid Catalysts[J] Tetrahedron Lett.,2007,48,5161-5164.
    [103]J. M. Kim, M. A. Bogdan, P. S. Mariano. Mechanistic Analysis of the 3-Methyllumiflavin-Promoted Oxidative Deamination of Benzylamine. A Potential Model for Monoamine Oxidase Catalysis[J]. J. Am. Chem. Soc.,1993, 115:10591-10595.
    [104]J. M. Kim, S. E. Hoegy, P. S. Mariano. Flavin Chemical Models for Monoamine Oxidase Inactivation by Cyclopropylamines, a-Silylamines, and Hydrazines[J]. J. Am. Chem. Soc.,1995,117:100-105.
    [105]M. Largeron, M. B. Fleury. Oxidative Deamination of Benzylamine by Electrogenerated Quinonoid Systems as Mimics of Amine Oxidoreductases Cofactors[J]. J. Org. Chem.,2000,65:8874-8881.
    [106]M. Largeron, A. Neudorffer, M. B. Fleury. Oxidation of Unactivated Primary Aliphatic Amines Catalyzed by an Electrogenerated 3,4-Azaquinone Species:A Small-Molecule Mimic of Amine Oxidases[J]. Angew. Chem. Int. Ed.,2003,42: 1026-1029.
    [107]M. Largeron, A. Chiaroni, M. B. Fleury. Environmentally Friendly Chemoselective Oxidation ofPrimary AliphaticAmines by Using a Biomimetic Electrocatalytic System[J]. Chem. Eur. J.,2008,14:996-1003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700