过氧自由基化学放大水效应机制的理论研究及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧自由基化学放大法是一种重要的自由基测量方法,具有操作方便、成本低廉及较高的检测灵敏度等优点,被广泛的应用于对流层大气过氧自由基的测定。实验发现,水的存在会使过氧自由基的链长降低,这种现象称为过氧自由基化学放大水效应(以下简称水效应)。水效应主要是由于水的存在会对一些有自由基(OH, HO2)参与的反应产生影响。目前对于水效应的研究主要集中在HO2与NO的反应上。基于此,本文研究了其它三个相关反应:OH+NO2(+H2O), OH+CO(+H2O), CO+HO2(+H2O)。
     本文使用高斯软件辅助系统(Gauss-Assisted Software, GAS)列举出了这3个反应体系中相关物种的所有可能构型,并通过筛选确定最终的可能构型。在此基础上,使用高斯软件Gaussian03在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d, p)水平上分别对这3个体系进行理论研究,从而确定了水对过氧自由基化学放大过程中的链传递反应的影响。
     对于OH+NO2(+H2O)体系,主要生成产物是HNO3(+H2O)。有水存在时,水分子和HNO3分子会复合成稳定的复合体,相较于无水时势阱下降了135.38 kJ/mol。因此,从动力学角度来讲,水的存在会使得该反应过程更容易发生,反应的速率常数增大。对于OH+CO(+H2O)体系,主要生成产物是H+CO2(+H2O)。经过对比发现,该主通道有水存在时势垒135.76 kJ/mol,比无水时的势垒(102.30 kJ/mol)增加了33.46 kJ/mol,这说明水的存在会使该反应的速率常数降低。对于CO+HO2(+H2O)体系,其主反应通道(生成产物CO2+OH+H2O)的势垒从无水时的96.27kJ/mol升高到101.97kJ/mol,该反应的速率常数降低。并采用Eyring改进的过渡态理论公式计算了OH+CO(+H2O)体系的反应速率常数,有水时的速率常数为1.6×10-16 cm3·molecule-1·s-1,无水时的速率常数为8.0×l0-10 cm3·molecule-1·s-1。对于其它两个体系,无水时的速率常数来自于文献结果,本文未能计算出有水时的速率常数,仅给出了水存在条件下其速率常数的变化趋势。
     本文使用改进的自适应模拟退火算法与蜜蜂遗传算法相结合,使用化学动力学模拟分析软件(Chemical Mechanic Calculate Program, CMCP)对水存在条件下NO2+OH+H2O (R276)、HO2+NO+H2O (R277)、CO+OH+H2O (R278)和CO+HO2+H2O (R279)这4个反应的速率常数进行了优化。优化后得到的结果为:k27676=1.85×10-25,k277=2.87×10-26,k278=1.3×10-33,k279=4.0×10-52,这与高斯计算结果及文献结果完全一致。
     根据优化结果与高斯计算结果,本文使用CMCP对水效应进行模拟。模拟结果与实验测定结果非常一致。为了对比模拟结果与实验结果,本文引入了3个统计量:R2(决定系数,TheCoefficient of Determination), FB(偏差因子,The Fractional Bias)和IA(符合指数,The index of Agreement) o经过计算,模拟数据与实验数据的决定系数R2为0.9947,接近于1,说明模拟结果与实验数据的具有很好的相关性。计算得到的FB为-0.35%,非常接近于零,这充分表明模拟结果与实验结果的均值趋于一致。模拟得到的链长比数据与实验数据的IA值为0.9982,表明模拟数据准确描述了实验数据的变化。本文的研究表明,过氧自由基化学放大水效应可能是由这4个反应所造成的,其中NO2+OH和HO2+NO体系由于水的存在造成自由基损耗增大,从而使链长降低;而对于其它两个体系,水的存在并没有造成自由基的净损耗,但是却延缓了自由基的链反应,从而使链长降低。
Peroxy radical chemical amplification (PERCA) is an important measurement method to measure atmospheric radicals, which is widely used in determination of peroxy radicals in troposphere for its feature of low cost, high detection sensitivity and facilitated operation. Previous research showed that there is a decrease of the chain length (CL) with the presence of water, known as the water effect in PERCA, which was attributed to the impaction of water on the reactions of radicals (OH, HO2). Early study mainly focused on the reaction of HO2 with NO. Therefore, this work will study other three reactions:OH+NO2(+H2O), OH+CO(+H2O) and OH+CO(+H2O).
     In this work, we use Gauss-Assisted Software (GAS) to list all possible configurations of the three reaction system and screened out the final configurations. And then, theoretical research of water effect under the chemical amplification process is carried out at the CCSD(T)/6-311G(d, p)//B3LYP/6-311G(d, p) level using the software Gaussian03.
     The results show that the main channel of the reaction OH+NO2(+H2O) is the formation of HNO3(+H2O). With the presence of water, the trap energy decreases about 135.38 kJ/mol. Thus the presence of water will increase the rate constant of this reaction. The main products of the OH+CO(+H2O) system are H, CO2 and H2O. By comparing the potential energy surface in the condition of with water and no water, we find out that the main channel barrier with water is 135.76 kJ/mol, which is 33.46 kJ/mol higher than it in the condition of no water, indicating a decrease of the rate constant. For the reaction CO+HO2(+H2O), it is discovered that the potential barrier will decrease at the presence of water. The main reaction channel barrier has increased from 96.27 kJ/mol to 101.97 kJ/mol, which imply an decrease of the rate constant. Using the improved Eyring transition state theory, we calculate the rate constant of OH+CO(+H2O) reaction, which is 1.6×10-16 cm3·molecule-1·s-1 with water and 8.0×10-10 cm3·molecule-1·s-1 with no water.
     Meanwhile, using improved self-adaptive simulated annealing algorithm and the bee genetic algorithm, we use the CMCP procedures to optimize the rate constant of the 4 reactions. The optimized results are: k276=1.85×10-25, k277=2.87×10-26, k278=1.3×10-33, k279=4.0×10-52. The optimal results and Gaussian calculations are exactly consistent with each other.
     Based on the optimization results with the Gaussian results, we use CMCP to simulate the water effect. The simulation results are consistent with experimental results. To compare simulation results with the experimental results, we introduce three statistics:R2 (The Coefficient of Determination), FB (The Fractional Bias) and IA (The index of Agreement). The results show that the determination coefficient R2 of simulation data with experimental is 0.9947, close to 1, indicating simulation results and experiment data with good correlation. Calculated FB is about-0.35% which is very close to zero. Those results show that the simulation results and the mean of experimental results are consistent. IA value of simulated chain length and experimental data is 0.9982, indicating that simulated data accurately describe the experimental data changes.
     This work shows that the water effect owns to these four reactions. However, the increase of the rate constant of the two reactions, NO2+OH and HO2+NO, will lead to an increase of radicals loss and decrease the chain length with the present of water. For the other two reaction, there is no net consumption for radicals, thus it need further studies.
引文
[1]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006:3.
    [2]H. II. Levy. Normal atmosphere:large radical and formaldehyde concentrations predicted[J]. Science,1971,173:141-143.
    [3]H. II. Levy. Photochemistry of the lower troposphere[J]. Planetary and Space Science,1972,20:919-935.
    [4]M. Berson, J. C. Baird. An introduction of electron paramagnetic resonance[M]. New York:W. A. Benjiamin,1966:165.
    [5]秦瑜,赵春生.大气化学基础[M].北京:气象出版社,2003:71.
    [6]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006:30.
    [7]D. R. Crosley. The measurement of OH and HO2 in the atmosphere[J]. J. Atmos Sci,1995,52(19):3299-3314.
    [8]L. I. Kleinman. Seasonal dependence of boundary layer peroxide concentration: the low and high NOx regimes[J]. J. Geophys. Res.,1991,96:20721-20733.
    [9]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社,2006:24.
    [10]C. A. Cantrell, R. E. Shetter, J. G. Calvert, et al. Peroxy radicals from photostationary state deciations and steady state calculations during the tropospheric OH photochemistry experiment at Idaho Hill, Colorado,1993[J]. J. Geophys. Res.,2003,102:6369-6378.
    [11]P. Zanis, P. S. Monks, T. J. Green, et al. Seasonal variation of peroxy radicals in the lower free troposphere based on observations from the FREE tropospheric experiments in the Swiss Alps[J]. J. Geophys. Res.,2003,30:1450-1497.
    [12]J. Burkert, M. D. Andress-Hemandez, L. Reichert, et al. Trace gas and radical diurnal behavior in the marine boundary layer during INDOEX 1999[J]. J. Geophys. Res.,2003,108(D8):3501-3518.
    [13]G. H. Mount, E. J. Williams. An overview of the tropospheric OH photochemistry experiment:Fritz peak/Idaho Hill, Colorado, fall 1993[J]. J. Goephys. Res.,1997, 102(D5):6171-6186.
    [14]J. A. Logan, M. J. Prather, S. C. Wofsy, et al. Tropospheric chemistry:A global perspective[J]. J. Geophys. Res.,1981,86:7210-7254.
    [15]C. A. Cantrell, R. E. Shetter, J. G. Calvert, et al. Peroxy radicals from photostationary state deviations and steady state calculations during the tropospheric OH photochemistry experiment at Idaho Hill, Colorado,1993[J]. J. GeoPhys. Res.,2003,102:6369-6378.
    [16]R. J. Cvetanovic. Evaluated chemical kinetic data for the reactions of atomic oxygen O(3P) with unsaturated hydrocarbons [J]. J. Phys. Chem. Ref. Data.,1987, 16:261-326.
    [17]E. C. Tuazon, R. Atkinson. A product study of the gas phase reaction of methacrolein with the OH radical in the presence of NOX[J]. Int. J. Chem. Kinet., 1990,22:591-602.
    [18]Z. Meng, D. Dabdub, J. H. Seinfeld. Chemical coupling between atmospheric ozone and particulate matter[J]. Science,1997,277:116-119.
    [19]L. I. Kleinman. Seasonal dependence of boundary layer peroxide concentration: The low and high NOx regimes[J]. J. Geophys. Res.,1991,96:20721-20733.
    [20]D. Mihelcic. Measurements of free radicals in the atmosphere by matrix isolation and electron paramag-netic resonance[J]. Pageoph,1978,116:530-536.
    [21]D. Mihelcic. An improved method of measuring tropospheric NO2 and RO2 by matrix isolation and electron spin resonance[J]. J. Atmos. Chem.,1985,3: 341-361.
    [22]R. L. D. Zafra. A measurement of stratospheric HO2 by ground-based millimeter-wave spectroscopy[J]. J. Geophys. Res.,1984,89(D1):1321-1326.
    [23]C. A. Cantrell, D. H. Stedman. A possible technique for the measurement of atmospheric peroxy radicals[J]. Geophys. Res. Lett.,1982,9(8):846-849.
    [24]T. M. Hard. Tropospheric free radical determination by FAGE[J]. Environ. Sci. Technol.,1984,18:768-777.
    [25]C. A. Cantrell, D. H. Stedman. A possible technique for the measurement of atmospheric peroxy radicals[J]. Geophys. Res. Lett.,1982,9(8):846-849.
    [26]D. R. Hastie, M. Weissenmayer, J. P. Burrows, et al. Calibrated chemical amplifier for atmospheric ROx measurements[J]. Anal. Chem.,1991,63:2048-2057.
    [27]C. M. Mihele, M. Mozurkewich, D. R. Hastie. Radical loss in a chain reaction of CO and NO in the presence of water:Implications for the radical amplifier and atmospheric chemistry[J]. Internat. J. Chem. Kinetics.,1999,31:145-152.
    [28]I. Coll, S. Pinceloup, E. P. Perros, et al.3D analysis of high ozone production rates observed during the ESCOMPTE campaign[J]. Atmos. Res.,2005,74, 477-505.
    [29]C. M. Mihele, D. R. Hastie. The sensitivity of the radical amplifier to ambient water vapour[J]. Geophys. Res. Lett.,1998,25:1911-1913.
    [30]L. Reichert, M. D. A. Hemandez, D. Stobener, et al. Investigation of the effect of water complexes in the determination of peroxy radical ambient concentrations: implications for the atmosphere[J]. J. Geophys. Res.,2003,108:4017-4020.
    [31]P. Hohenberg, W. Kohn. Inhomogeneous electron gas[J]. Phys. Rev.,1964,136: 864-872.
    [32]W. Kohn, L. Sham. Self-Consistent equations including exchange and correlation effects[J]. J. Phys. Rev.,1965,140:A1133-A1138.
    [33]J. C. Slater. Quantum theory of molecular and solids:The self-consistent field for molecular and solids[M]. New York:McGraw-Hill Companies,1974:4.
    [34]D. R. Salahub, M. C. Zerner. The challenge of d and f electrons[J]. J. Am. Chem. Soc.,1989,394:165-173.
    [35]R. G. Parr, W. Yang. Density-functional theory of atoms and molecules[M]. New York:Oxford Univ. Press.,1989,3-12.
    [36]J. A. Pople, P. M. Gill, B. G. Johnson. Kohn-sham density-functional theory within a finite basis set[J]. Chem. Phys. Lett.,1992,199:557-559.
    [37]B. G. Johnson, M. J. Frisch. Analytic second derivatives of the gradient-corrected density functional energy:Effect of quadrature weight derivatives [J]. Chem. Phys. Lett.,1993,216:133-140.
    [38]J. K. Labanowski, J. W. Andzelm. Density functional methods in chemistry[M]. New York:Springer-Verlag New York Inc,1991:443.
    [39]林梦海.量子化学简明教程[M].北京:化学工业出版社,2005:259.
    [40]唐敖庆,杨忠志,李前树.量子化学[M].北京:科学出版社,1982:32-35.
    [41]徐光宪,黎乐民,王德民.量子化学:基本原理和从头算法(中册)[M].北京:科学出版社,1985:47-50.
    [42]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M].北京:清华大学出版社,1984:63-69.
    [43]A. J. Duke. A Hartree-Fock study of the methyl anion and its inversion potential surface:Use of an augmented basis set for this species[J]. Chem. Phys. Lett.,1973, 21:275-282.
    [44]J. Handrasekhar, J. G. Andrade, P. R. Schleyer. Efficient and accurate calculation of an ion proton affinities [J]. J. Am. Chem. Soc.,1981,103:5609-5612.
    [45]B. C. Garrett, D. G. Truhlar. Generalized transition state theory canonical variational calculations using the bond energy-bond order method for bimolecular reactions of combustion products[J]. J. Am. Chem. Soc.,1979,101 (18): 5207-5217.
    [46]B. C. Garrett, D. G. Truhlar. Semiclassical tunneling calculations [J]. J. Phys. Chem.,1979,83(11):2921-2925.
    [47]B. C. Garrett, D. G. Truhlar. Generalized transition state theory bond energy-bond order method for canonical variational calculations with application to hydrogen atom transfer reactions[J]. J. Am. Chem. Soc.,1979,101(16):4534-4548.
    [48]I. W. M. Smith, A. M. Sage. The temperature-dependence of rapid low temperature reactions:Experiment, understanding and prediction [J]. Faraday Discuss.,2006,133:137-156.
    [49]W. L. Hase. The criterion of minimum state density in unimolecular rate theory: An application to ethane dissociation[J]. J. Chem. Phys.,1976,64:2442-2449.
    [50]D. P. Starkey, K. A. Holbrook, G. A. Oldershaw, et al. Kinetics of the reactions of hydroxyl radicals (OH) and of chlorine atoms with methylethylether over the temperature Range 274-345 K[J]. Int. J. Chem. Kinet.,1996,29:231-236.
    [51]A. C. Brown, C. E. Canosa-Mas, A. D. Parr, et al. Laboratory studies of some halogenated ethanes and ethers:Measurements of rates of reaction with OH and of infrared absorption cross-sections[J]. Atmospheric Environment. Part A. General Topics,1990,24:2499-2511.
    [52]N. Oyaro, S. R. Sellevag, C. J. Nielsen. Atmospheric chemistry of hydrofluoroethers:Reaction of a series of hydrofluoroethers with OH radicals and Cl atoms, atmospheric lifetimes, and global warming potentials [J]. J. Phys. Chem. A.,2005,109:337-346.
    [53]S. Urata, A. Takada, T. Uchimaru, et al. Rate constants estimation for the reaction of hydrofluorocarbons and hydrofluoroethers with OH radicals[J]. Chem. Phys. Lett.,2003,368:215-223.
    [54]D. A. Good, J. S. Francisco. Bond dissociation energies and heats of formation for fluorinated ethers:E143A(CH3OCF3), E134(CHF2OCHF2), and E125 (CF3OCHF2)[J]. J. Phys. Chem. A.,1998,102:7143-7148.
    [55]T. J. Dransfield, N. M. Donahue, J. G. Anderson. High-pressure flow reactor product study of the reactions of HOx+NO2:The role of vibrationally excited intermediates[J]. J. Phys. Chem. A.,2001,105:1507-1514.
    [56]W. C. Chen, R. A. Marcus. On the theory of the reaction rate of vibrationally excited CO molecules with OH radicals[J]. J. Chem. Phys.2006,124:024306.
    [57]X. Q. You, W. E. Hai, G. C. Jen, et al. Klippenstein reaction kinetics of CO+HO2 products:Ab initio transition state theory study with master equation modeling [J]. J. Phys. Chem. A,2007,111 (19):4031-4042.
    [58]W. Meng, X. D. Han, B. R Hong. Bee evolutionary genetic algorithm[J]. Acta. Electronica. Sinica.,2006,34:1294-1300.
    [59]D. G. Peng, Y. G. Wu, H. F. Jiao, et al. Application of a new genetic and simplex algorithm in optical film design and optimization [J]. Chinese Journal of Quantum Electronics,2008,25(1):49-55.
    [60]C. F. Williams, S. K. Pogrebnya, D. C. Clary. Quantum study on the branching ratio of the reaction NO2+OH[J]. J. Chem. Phys.,2007,126:054321.
    [61]R. S. Zhu, M. C. Lin. Ab initio study of the HO2+NO reaction:Prediction of the total rate constant and product branching ratios for the forward and reverse processes[J]. J. Chem. Phys.,2003,119:10667-10677.
    [62]J. P. Burrows, D. I. Cliff, G. W. Harris, et al. Atmospheric reactions of the HO2 radical studied by laser magnetic resonance spectroscopy[J]. Proc. R. Soc.London, 1979, A368:463-481.
    [63]晁余涛.Criegee自由基大气化学反应及自由基化学放大过程中水效应的密度泛函研究[D].西安:陕西师范大学,2007.
    [64]J. Kukkonena, L. Partanena, A. Karppinena, et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki[J]. Atmos. Environ.,2003,37:4539-4550.
    [65]A. Luhar, R. S. Patil. A general finite line source model for vehicular pollution dispersion[J]. Atmos. Environ.,1989,23:555-562.
    [66]C. Willmott. On the Validation of models [J]. Physical Geography,1981,2: 183-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700