氧化锌纳米线在太阳电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳电池与传统的硅太阳电池相比成本更加低廉、效率有望更高。典型的染料敏化太阳电池是由在透明导电基底上的经染料敏化后的纳米结构氧化物作为光阳极,以铂金化的透明导电玻璃作为对电极,中间以含有I-/I3-的溶液作为电解质组成的“三明治”结构。ZnO和TiO2是具有相似的能带结构的宽禁带N型半导体材料,在染料敏化太阳电池中有广泛的应用。
     ZnO比TiO2具有更高的载流子迁移率,有望能够进一步提高电池的电流特性。ZnO可以制备成多种纳米结构,如纳米线、纳米管、纳米粒子薄膜等。其中,ZnO纳米线具有更好的结晶性能和导电性能,能为电子输运提供直接而快速的通道,可提高太阳电池的电流特性。
     光敏染料吸收光能并且将激发态电子注入半导体导带中,从而实现光伏转换,是染料敏化太阳电池中的重要组成部分。金属钌配合物系列染料目前已经获得了较高效率,但是金属钉的稀缺以及染料提纯的困难限制了这类染料的实用化发展。并且,钌系列染料分子含有较多羧基致使染料溶液呈酸性,容易在ZnO表面发生团聚导致器件失效。D102是一种纯有机染料,成本低廉,具有较高的光吸收系数,分子骨架上只含有一个羧基,能够大幅度提高基于ZnO纳米线的染料敏化太阳电池效率
     染料敏化太阳电池的填充因子受半导体/电解液界面的影响。TiO2具有更稳定的表面化学性质,通过制备ZnO/TiO2结构,能够改善半导体电极/电解液界面,同时仍可利用ZnO载流子迁移率高的优点。
     本文对无机/有机混合型太阳电池也进行了初步研究。有机太阳电池具有制作工艺简单、成本低廉、可制备大面积器件以及制成柔性器件等优点,已经有了广泛研究,但是,由于有机材料的稳定性差以及载流子迁移率较低的影响,纯有机太阳电池能量转换效率很难大幅度提高。无机/有机混合型太阳电池同时利用了有机材料光吸收系数高和无机材料载流子迁移率高的优点,有望提高太阳电池的效率。同时,通过光敏染料敏化无机纳米材料,可以增强器件的光谱响应。基于以上的背景分析,本文工作主要分成以下几个部分:
     (1)通过水热法,在长有ZnO纳米粒子作为种子层的FTO衬底上生长了垂直于衬底具有高度择优取向的ZnO纳米线,并通过扫描电子显微镜(SEM)、X射线衍射谱(XRD)、荧光光谱(PL)、傅里叶变化红外光谱(FTIR)、Raman光谱和Uv-vis吸收谱等分析测试手段对材料进行了表征。
     (2)采用经D102敏化的ZnO纳米线作为光阳极,LiI/I2作为电解质,铂金化的FTO玻璃作为对电极组装了染料敏化太阳电池。通过傅里叶变换红外光谱(FTIR)研究了D102与ZnO表面键合的方式。光伏特性测试结果表明,ZnO纳米线的优良导电性以及D102的强吸收共同提高了染料敏化太阳电池的短路电流。同时,比较研究了不同ZnO纳米线长度对太阳电池效率的影响。
     (3)对ZnO表面通过TiCl4的异丙醇溶液进行处理,生长了一层TiO2薄膜,形成ZnO/TiO2复合材料。通过组装的染料敏化太阳电池表面ZnO/TiO2复合材料能够提高染料敏化太阳电池的填充因子。
     (4)制备了ZnO:D102/P3HT结构薄膜,通过PL和Uv-vis研究其光学特性。在ZnO:D102/P3HT结构薄膜的基础上制备了无机/有机混合型太阳电池,并对制备高效率混合型太阳电池提出了自己的见解,如薄膜厚度的匹配控制、制备工艺的改善以及后端封装工艺的创新等。
Dye-sensitized solar cells (DSSCs) are among the most promising low-cost and high-efficiency solar cells with lower production cost compared with traditional sillicon based solar cells. The DSSC is composed of a dye-sensitized and high-surface area TiO2 electrode on a transparent conducting oxide (TCO) and a platinized counter electrode sandwiched together with a I-/I3- redox electrolyte solution. ZnO and TiO2, two wide gap n-type semiconductors with similar energy band, are widely used in dye-sensitized solar cells (DSSCs).
     ZnO has a strong potential to take over TiO2 for its superior carrier mobility. With simple, low-cost methods, ZnO can be easily grown into various structures, such as nanowires, nanotubes, nanoflowers and nanoparticle films. Among them, highly oriented ZnO nanowires can provide a fast and direct channel for the transport of election in DSSCs and can improve the overall performance greatly.
     The sensitizer, which captures the sunlight and transfer electron from its oxidation state to the conduction band of anode, is a crucial segment in DSSCs. Although the Ru-based sensitizers have achieved higher performance in DSSCs, the scarcity of Ru and the difficulty in purification set barriers for the commercialization of DSSCs. In addition, the numerous carboxyl groups in Ru-based sensitizer will induce the aggregations of sensitizer on the surface of ZnO, which will deteriorate the performance of DSSCs gradually. D102, with only one carboxyl group on the molecular skeleton, is one of the widely used indoline dyes with higher absorption coefficient than N3, and it can be used as a cheaper alternative in high efficient DSSCs.
     The fill factor of DSSCs is strongly affected by the semiconductor/electrolyte interface. By coating a thin TiO2 film on the surface of ZnO, the superior conductivity of ZnO and the excellent surface chemistry property of TiO2 can work together to improve the performance of DSSCs.
     The research of inorganic/organic hybrid solar cells is a hot topic globally in the third generation of solar cells at the present time. Despite various merits such as low cost, the potential of making larger area devices and flexible devices, the development of organic solar cells (polymer or plastic solar cells) are seriously restricted by the poor electronic properties and instability of organic materials. Inorganic/organic hybrid solar cells, combining with the higher absorption of organic materials and the superior conductivity of inorganic materials, are promising in further improving the performance of organic solar cells.
     Based on the discussions above, the research aeras in this dissertation mainly contain the sections as followed:
     (1) ZnO with highly c-axis preferred orientation was successfully grown on the ZnO nanoparticles seeded FTO transparent conducting substrate from a hydrothermal method. Characterization methods such as SEM, XRD, PL, FTIR, Raman and Uv-vis are applied to investigate the properties of ZnO nano wires.
     (2) In the DSSCs herein, platinized FTO and ZnO nanowires sensitized by D102 served as the counter electrode and photoanode respectively, and the LiI/I2 worked as the electrolyte. The FTIR results uncovered the chemical bond between the surface of ZnO and D102. The J-V property of the DSSCs confirmed that the application of ZnO nanowires and D102 improved the photocurrent with joint efforts. The dependence of efficiency on the length of ZnO nanowires was also fundamentally investigated.
     (3) By the modification of TiCl4, a thin layer TiO2 was formed on the surface of ZnO nanowires to improve the fill factor in DSSCs by the melioration of the semiconductor/electrolyte interface.
     (4) ZnO:D102/P3HT compound film was prepared and the optical properties were characterized by PL and Uv-vis spectra. The solar cell base on ZnO:D102/P3HT was also fabricated, and in order to improve the overall performance, the efforts needed to make were also concluded, such as the thickness management of different materials, the improvement of circumstance in fabrication and the innovation of the package technology.
引文
[1]M. A. Green, Third generation photovoltaics:Ultra-high conversion efficiency at low cost [J]. Progress in Photovoltaics Research and Applications,2001,9(2):p. 123-135.
    [2]A. Shah, P. Torres, R. Tscharner, et al., Photovoltaic technology:the case for thin-film solar cells [J]. Science,1999,285(5428):p.692-698.
    [3]Wada, Y. Hashimoto, S. Nishiwaki, et al., High-efficiency CIGS solar cells with modified CIGS surface [J]. Solar Energy Materials and Solar Cells,2001,67(1): p.305-310.
    [4]F. Kessler and D. Rudmann, Technological aspects of flexible CIGS solar cells and modules [J]. Solar Energy,2004,77(6):p.685-695.
    [5]D. Schmid, M. Ruckh, and H. W. Schock, A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures [J]. Solar Energy Materials and Solar Cells,1996,41:p.281-294.
    [6]D. Wohrle and D. Meissner, Organic solar cells [J]. Advanced Materials,1991, 3(3):p.129-138.
    [7]H. Hoppea and N. S. Sariciftci, Organic solar cells:An overview [J]. Journal of Materials Research,2004,19(7):p.1924-1945.
    [8]W. Ma, C. Yang, X. Gong, et al., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Advanced Functional Materials,2005,15(10):p.1617-1622.
    [9]R. Plass, S. Pelet, J. Krueger, et al., Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells [J]. Journal of Physical Chemistry B,2002,106(31): p.7578-7580.
    [10]H. N. Cong, M. Dieng, C. Sene, et al., Hybrid organic-inorganic solar cells: Case of the all thin film PMeT (Y)/CdS (X) junctions [J]. Solar Energy Materials and Solar Cells,2000,63(1):p.23-35
    [11]Y. Kang, N. G. Park, and D. Kim, Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer [J]. Applied Physics Letters,2005,86: p.113101.
    [12]M. K. Nazeeruddin, P. Pechy, T. Renouard, et al., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. Journal of the American Chemical Society,2001,123(8):p.1613-1624.
    [13]Y. Liang, D. Feng, Y. Wu, et al., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties [J]. Journal of the American Chemical Society,2009,131(22):p.7792-7799.
    [14]S. H. Park, A. Roy, S. Beaupre, et al., Bulk heterojunction solar cells with internal quantum efficiency approaching 100 percent [J]. Nature Photonics,2009, 3(5):p.297-302.
    [15]B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:p.737-740.
    [16]D. Cahen, G. Hodes, M. Gratzel, et al., Nature of photovoltaic action in dye-sensitized solar cells [J]. Journal of Physical Chemistry B,2000,104(9):p. 2053-2059.
    [17]A. Hagfeldt and M. Graetzel, Light-induced redox reactions in nanocrystalline systems [J]. Chemical Reviews,1995,95(1):p.49-68.
    [18]C. J. Brabec, A. Cravino, D. Meissner, et al., Origin of the open circuit voltage of plastic solar cells [J]. Advanced Functional Materials,2001,11(5):p.374-380.
    [19]G. W. Crabtree and N. S. Lewis, Solar energy conversion [J]. Physics Today, 2007,60(3):p.37-42.
    [20]V. Thavasi, V. Renugopalakrishnan, R. Jose, et al., Controlled electron injection and transport at materials interfaces in dye sensitized solar cells [J]. Materials Science & Engineering R,2009,63(3):p.81-99.
    [21]Y. Diamant, S. G. Chen, O. Melamed, et al., Core-shell nanoporous electrode for dye sensitized solar cells:the effect of the SrTiO3 shell on the electronic properties of the TiO2 core [J]. Journal of Physical Chemistry B-Condensed Phase, 2003,107(9):p.1977-1981.
    [22]J. Zhang, J. H. Bang, C. Tang, et al., Tailored TiO2 SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance [J]. ACS NANO,2010,4(1):p.387-395.
    [23]D. F. Watson and G. J. Meyer, Cation effects in nanocrystalline solar cells [J]. Coordination Chemistry Reviews,2004,248(13-14):p.1391-1406.
    [24]J. E. Kroeze, N. Hirata, S. Koops, et al., Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells [J]. Journal of the American Chemical Society,2006,128(50):p.16376-16383.
    [25]A. Mishra, M. K. R. Fischer, and P. B uerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells:From Structure:Property Relationships to Design Rules [J]. Angewandte Chemie (International ed. in English),2009,48(14):p. 2474.
    [26]E. Bae, W. Choi, J. Park, et al., Effects of surface anchoring groups (Carboxylate vs phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions [J]. Journal of Physical Chemistry B,2004,108(37):p. 14093-14101.
    [27]C. She, J. Guo, S. Irle, et al., Comparison of Interfacial Electron Transfer through Carboxylate and Phosphonate Anchoring Groups [J]. Journal of Physical Chemistry A,2007,111(29):p.6832-6842.
    [28]K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey, Vibrational Spectroscopic Study of the Coordination of (2,2-Bipyridyl-4,4-dicarboxylic acid) ruthenium (Ⅱ) Complexes to the Surface of Nanocrystalline Titania [J]. Langmuir,1998,14(10): p.2744-2749.
    [29]V. Shklover, Y. E. Ovchinnikov, L. S. Braginsky, et al., Structure of Organic/Inorganic Interface in Assembled Materials Comprising Molecular Components. Crystal Structure of the Sensitizer Bis [(4,4-carboxy-2, 2-bipyridine)(thiocyanato)] ruthenium (Ⅱ) [J]. Chemistry of Materials,1998, 10(9):p.2533-2541.
    [30]M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, et al., Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell [J]. Journal of Physical Chemistry B,2003,107(34):p.8981-8987.
    [31]M. Nilsing, P. Persson, S. Lunell, et al., Dye-Sensitization of the TiO2 Rutile (110) Surface by Perylene Dyes:Quantum-Chemical Periodic B3LYP Computations [J]. Journal of Physical Chemistry C,2007,111(32):p. 12116-12123.
    [32]A. Furube, M. Murai, S. Watanabe, et al., Near-IR transient absorption study on ultrafast electron-injection dynamics from a Ru-complex dye into nanocrystalline In2O3 thin films:Comparison with SnO2, ZnO, and TiO2 films [J]. Journal of Photochemistry & Photobiology, A:Chemistry,2006,182(3):p.273-279.
    [33]T. Horiuchi, H. Miura, K. Sumioka, et al., High efficiency of dye-sensitized solar cells based on metal-free indoline dyes [J]. Journal of the American Chemical Society,2004,126(39):p.12218-12219.
    [34]M. Matsui, A. Ito, M. Kotani, et al., The use of indoline dyes in a zinc oxide dye-sensitized solar cell [J]. Dyes and Pigments,2009,80(2):p.233-238.
    [35]K. Hara, K. Sayama, H. Arakawa, et al., A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chemical Communications,2001,2001(6):p.569-570.
    [36]K. Hara, T. Sato, R. Katoh, et al., Molecular design of coumarin dyes for efficient dye-sensitized solar cells [J]. Journal of Physical Chemistry B,2003, 107(2):p.597-606.
    [37]H. Tokuhisa and P. T. Hammond, Solid-state photovoltaic thin films using TiO2, organic dyes, and layer-by-layer polyelectrolyte nanocomposites [J]. Advanced Functional Materials,2003,13(11):p.831-839.
    [38]K. Sayama, S. Tsukagoshi, T. Mori, et al., Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes [J]. Solar Energy Materials and Solar Cells,2004,80(1):p.47-72.
    [39]L. Schmidt-Mende, U. Bach, R. Humphry-Baker, et al., Organic dye for highly efficient solid-state dye-sensitized solar cells [J]. Advanced Materials,2005, 17(7):p.813-815.
    [40]M. K. Nazeeruddin, P. Pechy, and M. Gratzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex [J]. Chemical Communications,1997, 1997(18):p.1705-1706.
    [41]J. A. Pollard, D. Zhang, J. A. Downing, et al., Solvent Effects on Interfacial Electron Transfer from Ru (4,4-dicarboxylic acid-2,2-bipyridine) 2 (NCS) 2 to Nanoparticulate TiO2:Spectroscopy and Solar Photoconversion [J]. Journal of Physical Chemistry A,2005,109(50):p.11443-11452.
    [42]J. Nissfolk, K. Fredin, A. Hagfeldt, et al., Recombination and transport processes in dye-sensitized solar cells investigated under working conditions [J]. Journal of Physical Chemistry B,2006,110(36):p.17715-17718.
    [43]Q. Zhang, C. S. Dandeneau, X. Zhou, et al., ZnO Nanostructures for Dye-Sensitized Solar Cells [J]. Advanced Materials,2009,21(41):p.4087-4108.
    [44]L. Schmidt-Mende and J. L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices [J]. Materials Today,2007,10(5):p.40-48.
    [45]K. Keis, L. Vayssieres, H. Rensmo, et al., Photoelectrochemical properties of nano-to microstructured ZnO electrodes [J]. Journal of the Electrochemical Society,2001,148:p. A149.
    [46]S. Rani, P. Suri, P. K. Shishodia, et al., Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2008,92(12):p.1639-1645.
    [47]Z. Longyue, Dye-Sensitized Solar Cells Based on ZnO Films [J]. Plasma Science and Technology,2006,8:p.172-175.
    [48]G. Redmond, D. Fitzmaurice, and M. Gratzel, Visible light sensitization by cis-bis (thiocyanato) bis (2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium (Ⅱ) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques [J]. Chemistry of materials,1994,6(5):p.686-691.
    [49]K. Keis, E. Magnusson, H. Lindstr M, et al., A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes [J]. Solar Energy Materials and Solar Cells,2002,73(1):p.51-58.
    [50]T. P. Niesen and M. R. De Guire, Review:deposition of ceramic thin films at low temperatures from aqueous solutions [J]. Journal of electroceramics,2001, 6(3):p.169-207.
    [51]K. Kakiuchi, E. Hosono, T. Kimura, et al., Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions [J]. Journal of Sol-Gel Science and Technology,2006,39(1):p.63-72.
    [52]E. Hosono, S. Fujihara, T. Kimura, et al., Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films [J]. Journal of colloid and interface science,2004,272(2):p.391-398.
    [53]E. Hosono, Y. Mitsui, and H. Zhou, Metal-free organic dye sensitized solar cell based on perpendicular zinc oxide nanosheet thick films with high conversion efficiency [J]. Dalton transactions (Cambridge, England:2003),2008(40):p. 5439-5441.
    [54]S. Leeuwenburgh, J. Wolke, J. Schoonman, et al., Electrostatic spray deposition (ESD) of calcium phosphate coatings [J]. Journal of Biomedical Materials Research,2003,66(2):p.330-334.
    [55]M. C. Siebers, X. F. Walboomers, S. C. G. Leeuwenburgh, et al., Electrostatic spray deposition (ESD) of calcium phosphate coatings, an in vitro study with osteoblast-like cells [J]. Biomaterials,2004,25(11):p.2019-2027.
    [56]H. Rensmo, K. Keis, H. Lindstrom, et al., High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes [J]. Journal of Physical Chemistry B,1997,101(14):p.2598-2601.
    [57]K. Keis, J. Lindgren, S. E. Lindquist, et al., Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes [J]. Langmuir,2000,16(10):p. 4688-4694.
    [58]A. Solbrand, A. Henningsson, S. Sodergren, et al., Charge transport properties in dye-sensitized nanostructured TiO2 thin film electrodes studied by photoinduced current transients [J]. Journal of Physical Chemistry B,1999,103(7):p. 1078-1083.
    [59]J. B. Baxter and E. S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires [J]. Solar Energy Materials and Solar Cells, 2006,90(5):p.607-622.
    [60]D. I. Suh, S. Y. Lee, T. H. Kim, et al., The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nano wires [J]. Chemical Physics Letters,2007,442(4-6):p.348-353.
    [61]G. Hua, Y. Zhang, J. Zhang, et al., Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells [J]. Materials Letters,2008,62(25):p.4109-4111.
    [62]P. Yang, H. Yan, S. Mao, et al., Controlled growth of ZnO nanowires and their optical properties [J]. Advanced Functional Materials,2002,12(5):p.323-331.
    [63]M. H. Huang, Y. Wu, H. Feick, et al., Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport [J]. Science,1997,277:p.1978.
    [64]Y. C. Kong, D. P. Yu, B. Zhang, et al., Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach [J]. Applied Physics Letters, 2001,78:p.407.
    [65]L. E. Greene, M. Law, J. Goldberger, et al., Low-temperature wafer-scale production of ZnO nanowire arrays [J]. Angewandte Chemite-international Edition,2003,42(26):p.3031-3034.
    [66]C. Y. Jiang, X. W. Sun, G. Q. Lo, et al., Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode [J]. Applied Physics Letters,2007,90:p.263501.
    [67]T. Ma, M. Guo, M. Zhang, et al., Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays [J]. Nanotechnology,2007,18:p.035605.
    [68]M. Law, L. E. Greene, J. C. Johnson, et al., Nanowire dye-sensitized solar cells [J]. Nature materials,2005,4(6):p.455-459.
    [69]Y. Wang, Y Sun, and K. Li, Dye-sensitized solar cells based on oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes [J]. Materials Letters,2009,63(12):p.1102-1104.
    [70]M. S. Akhtar, J. H. Hyung, T. H. Kim, et al., ZnO Nanorod-TiO2-Nanoparticulate Electrode for Dye-Sensitized Solar Cells [J]. Japanese Journal of Applied Physics,2009,48(12):p.5003.
    [71]H. Horiuchi, R. Katoh, K. Hara, et al., Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films:Effect of (N3-Zn2+) Aggregate Formation [J]. Journal of Physical Chemistry B,2003,107(11):p.2570-2574.
    [72]Z. L. S. Seow, A. S. W. Wong, V. Thavasi, et al., Controlled synthesis and application of ZnO nanoparticles, nanorods and nanospheres in dye-sensitized solar cells [J]. Nanotechnology,2009,20:p.045604.
    [73]P. K. Baviskar, W. Tan, J. Zhang, et al., Wet chemical synthesis of ZnO thin films and sensitization to light with N3 dye for solar cell application [J]. Journal of Physics D:Applied Physics,2009,42:p.125108.
    [74]P. Wang, S. M. Zakeeruddin, J. E. Moser, et al., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nature materials,2003,2(6):p.402-407.
    [75]Q. B. Meng, K. Takahashi, X. T. Zhang, et al., Fabrication of an efficient solid-state dye-sensitized solar cell [J]. Langmuir,2003,19(9):p.3572-3574.
    [76]B. O Regan, F. Lenzmann, R. Muis, et al., A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN:Analysis of Pore Filling and IV Characteristics [J]. Chemistry of materials,2002,14(12):p. 5023-5029.
    [77]W. Kubo, K. Murakoshi, T. Kitamura, et al., Quasi-solid-state dye-sensitized TiO2 solar cells:effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine [J]. Journal of Physical Chemistry B, 2001,105(51):p.12809-12815.
    [78]H. Spanggaard and F. C. Krebs, A brief history of the development of organic and polymeric photovoltaics [J]. Solar Energy Materials and Solar Cells,2004, 83(2-3):p.125-146.
    [79]C. Yin, M. Schubert, S. Bange, et al., Tuning of the excited-state properties and photovoltaic performance in PPV-based polymer blends [J]. The Journal of Physical Chemistry C,2008,112(37):p.14607-14617.
    [80]B. R. Saunders and M. L. Turner, Nanoparticle-polymer photovoltaic cells [J]. Advances in Colloid and Interface Science,2008,138(1):p.1-23.
    [81]G. Yu and A. J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions [J]. Journal of Applied Physics,1995,78:p.4510-4516.
    [82]G. Yu, J. Gao, J. C. Hummelen, et al., Polymer photovoltaic cells:enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995,270(5243):p.1789-1791.
    [83]A. J. Heeger and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency* [J]. Advanced Materials,2006,18:p.789-794.
    [84]C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Plastic solar cells [J]. Advanced Functional Materials,2001,11(1):p.15-26.
    [85]L. E. Greene, B. D. Yuhas, M. Law, et al., Solution-grown zinc oxide nanowires [J]. Inorganic Chemistry,2006,45(19):p.7535-7543.
    [86]J. Piris, N. Kopidakis, D. C. Olson, et al., The locus of free charge-carrier generation in solution-cast Zn1-xMgxO/Poly (3-hexylthiophene) Bilayers for photovoltaic applications [J]. Advanced Functional Materials,2007,17(18):p. 3849.
    [87]K. M. Coakley, B. S. Srinivasan, J. M. Ziebarth, et al., Enhanced hole mobility in regioregular polythiophene infiltrated in straight nanopores [J]. Advanced Functional Materials,2005,15(12):p.1927-1932.
    [88]D. C. Olson, Y. J. Lee, M. S. White, et al., Effect of ZnO Processing on the Photovoltage of ZnO/Poly (3-hexylthiophene) Solar Cells [J]. The Journal of Physical Chemistry C,2008,112(26):p.9544-9547.
    [89]P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, et al., Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer [J]. The Journal of Physical Chemistry B,2006,110(15): p.7635-7639.
    [90]M. S. White, D. C. Olson, S. E. Shaheen, et al., Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer [J]. Applied Physics Letters,2006,89:p.143517.
    [91]D. C. Olson, S. E. Shaheen, M. S. White, et al., Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells [J]. Advanced Functional Materials,2007,17(2):p.264-269.
    [92]M. Wang and X. Wang, Electrodeposition zinc-oxide inverse opal and its application in hybrid photovoltaics [J]. Solar Energy Materials and Solar Cells, 2007,92(3):p.357-362.
    [93]P. Suresh, P. Balaraju, S. K. Sharma, et al., Photovoltaic devices based on PPHT: ZnO and dye-sensitized PPHT:ZnO thin films [J]. Solar Energy Materials and Solar Cells,2008,92(8):p.900-908.
    [94]L. Shen, G. Zhu, W. Guo, et al., Performance improvement of TiO2/P3HT solar cells using CuPc as a sensitizer [J]. Applied Physics Letters,2008,92:p.073307.
    [95]J. Liu, S. Wang, Z. Bian, et al., Organic/inorganic hybrid solar cells with vertically oriented ZnO nanowires [J]. Applied Physics Letters,2009,94:p. 173107.
    [96]M. Wang and X. Wang, P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative [J]. Solar Energy Materials and Solar Cells,2007,91(19):p. 1782-1787.
    [97]D. C. Olson, S. E. Shaheen, R. T. Collins, et al., The effect of atmosphere and ZnO morphology on the performance of hybrid poly (3-hexylthiophene)/ZnO nanofiber photovoltaic devices [J]. Journal of Physical Chemistry C,2007, 111(44):p.16670-16678.
    [98]L. E. Greene, M. Law, B. D. Yuhas, et al., ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells [J].2007,111(50):p.16670-16678.
    [99]G. D. Sharma, P. Suresh, S. S. Sharma, et al., Effect of Solvent and Subsequent Thermal Annealing on the Performance of Phenylenevinylene Copolymer:PCBM Solar Cells [J]. ACS Applied Materials&Interface,2010,2(2):p.504-510.
    [100]Y. Shi, J. Liu, and Y. Yang, Device performance and polymer morphology in polymer light emitting diodes:The control of thin film morphology and device quantum efficiency [J]. Journal of Applied Physics,2000,87:p.4254.
    [101]K. E. Strawhecker, S. K. Kumar, J. F. Douglas, et al., The critical role of solvent evaporation on the roughness of spin-cast polymer films [J]. Macromolecules,2001,34(14):p.4669-4672.
    [102]M. Reyes-Reyes, K. Kim, and D. L. Carroll, High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C blends [J]. Applied Physics Letters,2005,87:p.083506.
    [103]M. Reyes-Reyes, K. Kim, J. Dewald, et al., Meso-structure formation for enhanced organic photovoltaic cells [J]. Organic Letters,2005,7(26):p. 5749-5752.
    [104]A. Zen, J. Pflaum, S. Hirschmann, et al., Effect of molecular weight and annealing of poly (3-hexylthiophene) s on the performance of organic field-effect transistors [J]. Advanced Functional Materials,2004,14(8):p.757-764.
    [105]M. Al-Ibrahim, O. Ambacher, S. Sensfuss, et al., Effects of solvent and annealing on the improved performance of solar cells based on poly (3-hexylthiophene):Fullerene [J]. Applied Physics Letters,2005,86:p.201120.
    [106]W. Cai, X. Gong, and Y. Cao, Polymer solar cells:Recent development and possible routes for improvement in the performance [J]. Solar Energy Materials and Solar Cells,2009,94(2):p.114-127.
    [107]M. M. Wienk, J. M. Kroon, W. J. H. Verhees, et al., Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells [J]. Angewandte Chemie International Edition,2003,42(29):p.3371-3375.
    [108]F. B. Kooistra, V. D. Mihailetchi, L. M. Popescu, et al., New C84 derivative and its application in a bulk heterojunction solar cell [J]. Chemistry of Materials, 2006,18(13):p.3068-3073.
    [109]F. C. Krebs, M. J rgensen, K. Norrman, et al., A complete process for production of flexible large area polymer solar cells entirely using screen printing—first public demonstration [J]. Solar Energy Materials and Solar Cells, 2009,93(4):p.422-441.
    [110]R. Jose, A. Kumar, V. Thavasi, et al., Conversion efficiency versus sensitizer for electrospun TiO2 nanorod electrodes in dye-sensitized solar cells [J]. Nanotechnology,2008,19:p.424004.
    [111]111.X. D. Li, D. W. Zhang, Z. Sun, et al., Metal-free indoline-dye-sensitized TiO2 nanotube solar cells [J]. Microelectronics Journal,2009,40(1):p.108-114.
    [112]T. Dentani, Y. Kubota, K. Funabiki, et al., Novel thiophene-conjugated indoline dyes for zinc oxide solar cells [J]. New Journal of Chemistry,2009, 33(1):p.93-101.
    [113]J. B. Chu, S. M. Huang, D. W. Zhang, et al., Nanostructured ZnO thin films by chemical bath deposition in basic aqueous ammonia solutions for photovoltaic applications [J]. Applied Physics A:Materials Science & Processing,2009,95(3): p.849-855.
    [114]S. G. Chen, S. Chappel, Y Diamant, et al., Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells [J]. Chemistry of Materials,2001,13(12):p.4629-4634.
    [115]H. Zhang, S. Hu, and J. Li, Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO-TiO2 Nanocomposites [J]. Journal of Physical Chemistry C,2007,112(1):p.117-122.
    [116]Z. S. Wang, C. H. Huang, Y. Y. Huang, et al., A highly efficient solar cell made from a dye-modified ZnO-covered TiO2 nanoporous electrode [J]. Chemistry Materials,2001,13(2):p.678-682.
    [117]G. Marci, V. Augugliaro, M. J. Lopez-Munoz, et al., Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems.2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid-Solid Regime [J]. Journal of Physical Chemistry,2001,105(5):p. 1033-1040.
    [118]C. C. Tang, S. S. Fan, M. L. Chapelle, et al., Silica-assisted catalytic growth of oxide and nitride nanowires [J]. Chemical Physics Letters,2001,333(1-2):p. 12-15.
    [119]Y. Li, G. W. Meng, L. D. Zhang, et al., Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties [J]. Applied Physics Letters,2000,76:p.2011.
    [120]S. C. Lyu, Y. Zhang, C. J. Lee, et al., Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method [J]. Appl. Phys. Lett,2002,81:p.3648.
    [121]郑凯波,李静雷,沈浩颋,等,单根ZnO纳米线的室温气敏特性[J].物理化学学报,2008,24(6):p.1080-1084.
    [122]J. J. Wu and S. C. Liu, Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Advanced Materials,2002,14(3):p. 215-218.
    [123]C. H. Liang, G. W. Meng, G. Z. Wang, et al., Catalytic synthesis and photoluminescence of β-GaO nanowires [J]. Applied Physics Letters,2001,78:p. 3202.
    [124]S. T. Lee, N. Wang, and C. S. Lee, Semiconductor nanowires:synthesis, structure and properties [J]. Materials Science & Engineering A,2000,286(1):p. 16-23.
    [125]L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions [J]. Advanced Materials,2003,15(5):p.464-466; C. B. Tay, S. J. Chua, and K. P. Loh, Investigation of morphology and photo luminescence of hydrothermally grown ZnO nanorods on substrates pre-coated with ZnO nanoparticles [J]. Journal of Crystal Growth,2009,311(5):p.1278-1284.
    [126]X. Zhao, B. Zheng, C. Li, et al., Acetate-derived ZnO ultrafine particles synthesized by spray pyrolysis [J]. Powder technology,1998,100(1):p.20-23.
    [127]M. Guo, P. Diao, and S. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays:Dependence of morphology and alignment ordering upon preparing conditions [J]. Journal of Solid State Chemistry,2005,178(6):p. 1864-1873.
    [128]Q. Li, V. Kumar, Y. Li, et al., Fabrication of ZnO nanorods and nanotubes in aqueous solutions [J]. Chemistry of materials,2005,17(5):p.1001-1006.
    [129]赵文刚,马忠权,裴广庆,等,ZnO纳米线的水热法生长[J].人工晶体学报,2007,36(003):p.634-637.
    [130]A. Sugunan, H. C. Warad, M. Boman, et al., Zinc oxide nanowires in chemical bath on seeded substrates:Role of hexamine [J]. Journal of Sol-Gel Science and Technology,2006,39(1):p.49-56.
    [131]L. Weizhuo and Y. Zhiwen, Anion Coordination Polyhedron Growth Unit Theory Mode and Crystal Morphology [J]. Journal of Synthetic Crystals,1999, 28(2):p.117-125.
    [132]Z. Chen and L. Gao, A facile route to ZnO nanorod arrays using wet chemical method [J]. Journal of Crystal Growth,2006,293(2):p.522-527.
    [133]H. S. Lee, J. Y. Lee, T. W. Kim, et al., Formation mechanism of preferential c-axis oriented ZnO thin films grown on p-Si substrates [J]. Journal of Materials Science,2004,39(10):p.3525-3528.
    [134]R. Ghosh, D. Basak, and S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films [J]. Journal of Applied Physics,2004,96(5):p.2689-2696; M. Rajalakshmi, A. K. Arora, B. S. Bendre, et al., Optical phonon confinement in zinc oxide nanoparticles [J]. Journal of Applied Physics,2000,87(5):p.2445-2448.
    [135]J. Yang, X. Liu, L. Yang, et al., Effect of annealing temperature on the structure and optical properties of ZnO nanoparticles [J]. Journal of Alloys and Compounds,2009,477(1-2):p.632-635.
    [136]F. Decremps, F. Datchi, A. M. Saitta, et al., Local structure of condensed zinc oxide [J]. Physical Review B,2003,68(10):p.104101.
    [137]J. M. Calleja and M. Cardona, Resonant Raman scattering in ZnO [J]. Physical Review B,1977,16(8):p.3753-3761.
    [138]张克良,范新会,于灵敏,等,ZnO纳米线的制备及其光学性能[J].材料科学与工程学报,2007,25(003):p.411-414;贺英,王均安,桑文斌,等,高分子软模板法自组装生长ZnO纳米线及其光学性能[J].发光学报,2006,27(005):p.766-772.
    [139]A. K. Pradhan, K. Zhang, G. B. Loutts, et al., Structural and spectroscopic characteristics of ZnO and ZnO:Er3+ nanostructures [J]. Journal of Physics: Condensed Matter,2004,16:p.7123-7129; Kroger, F. A., The Chemistry of Imperfect Crystals.2nd Edition [M]. North Holland, Amsterdam,1974:73.
    [140]H. Kleinwechter, C. Janzen, J. Knipping, et al., Formation and properties of ZnO nano-particles from gas phase synthesis processes [J]. Journal of Materials Science,2002,37(20):p.4349-4360; J. Han, P. Q. Mantas, and A. M. R. Senos, Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO [J]. Journal of the European Ceramic Society,2002,22(1):p.49-59.
    [141]景晓燕,匡巍巍,刘婧媛,等,醇热法制备ZnO纳米棒及其发光性能[J].应用化学,2009,26(001):p.90-93.
    [142]K. Vanheusden, W. L. Warren, C. H. Seager, et al., Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. Journal of Applied Physics, 1996,79:p.7983.
    [143]于灵敏,张克良,马雪红,等,ZnO纳米线的光致发光性及拉曼散射性能[J].机械工程材料,2007,31(009):p.64-66.
    [144]Z. Fang, Y. Wang, D. Xu, et al., Blue luminescent center in ZnO films deposited on silicon substrates [J]. Optical materials,2004,26(3):p.239-242.
    [145]S. Monticone, R. Tufeu, and A. V. Kanaev, Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles [J]. Journal of Physical Chemistry B,1998,102(16):p.2854-2862.
    [146]H. K. Yadav, K. Sreenivas, V. Gupta, et al., Effect of surface defects on the visible emission from ZnO nanoparticles [J]. Journal of Materials Research,2007, 22(9):p.2404-2409.
    [147]L. E. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J]. The Journal of Chemical Physics,1984,80:p.4403-4410;李娟,莫晓亮,孙大林,陈国荣,单步电沉积法制备CuInS2薄膜[J].物理化学学报, 2009,25(12):p.2445-2449.
    [148]E. M. Wong and P. C. Searson, ZnO quantum particle thin films fabricated by electrophoretic deposition [J]. Applied Physics Letters,1999,74:p.2939.
    [149]M. Quintana, T. Edvinsson, A. Hagfeldt, et al., Comparison of dye-sensitized ZnO and TiO2 solar cells:Studies of charge transport and carrier lifetime [J]. Journal of Physical Chemistry C,2007,111(2):p.1035-1041.
    [150]T. P. Chou, Q. Zhang, and G. Cao, Effects of dye loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-sensitized solar cells [J]. Journal of Physical Chemistry C,2007,111(50):p.18804-18811.
    [151]M. Adachi, Y. Murata, J. Takao, et al., Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J]. Journal of the American Chemical Society,2004,126(45):p.14943-14949.
    [152]H. S. Jung, J. K. Lee, M. Nastasi, et al., Preparation of nanoporous MgO-coated TiO2 nanoparticles and their application to the electrode of dye-sensitized solar cells [J]. Langmuir,2005,21(23):p.10332-10335.
    [153]R. Jose, A. Kumar, V. Thavasi, et al., Relationship between the molecular orbital structure of the dyes and photocurrent density in the dye-sensitized solar cells [J]. Applied Physics Letters,2008,93:p.023125.
    [154]R. Ghanem, Photosensitization of SnO2/ZnO semiconductors with zinc-phthalocyanine [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(3):p.455-459.
    [155]彭小静,徐林,刘锋,等,光谱及太阳电池各参数与填充因子之关系[J].太阳能学报,2009,30(007):p.878-882.
    [156]A. Thompson, M. C. C. Smailes, J. C. Jeffery, et al., Ruthenium tris-(bipyridyl) complexes with pendant protonatable and deprotonatable moieties: pH sensitivity of electronic spectral and luminescence properties [J]. Journal of the Chemical Society, Dalton Transactions,1997,1997(5):p.737-744.
    [157]G. B. Deacon and R. J. Phillips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination [J]. Coordination Chemistry Reviews,1980,33(3):p.227-250.
    [158]A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, et al., Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells [J]. Physical Chemistry Chemical Physics,2006,8(40):p.4655-4659.
    [159]G. Redmond, D. Fitzmaurice, and M. Gratzel, Effect of surface chelation on the energy of an intraband surface state of a nanocrystalline TiO2 film [J]. Journal of Physical Chemistry,1993,97(27):p.6951-6954.
    [160]K. Zhu, N. R. Neale, A. Miedaner, et al., Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano Letters,2007,7(1):p.69-74.
    [161]P. Wang, S. M. Zakeeruddin, J. E. Moser, et al., A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells [J]. Journal of Physical Chemistry B,2003,107(48):p.13280-13285.
    [162]倪萌,L. M. Kh Leung Dyc,染料敏化太阳电池光电极厚度的研究[J].电源技术,2006,30(011):p.917-920.
    [163]远存达,蔡宁,赵颖,等,染料敏化太阳电池工艺参数的优化[J].人工晶体学报,2009,38(001):p.53-59.
    [164]张昌能,王淼,周晓文,等,染料敏化太阳能电池中聚合物电解质的优化[J].科学通报,2004,49(013):p.1241-1243.
    [165]R. Jose, V. Thavasi, and S. Ramakrishna, Metal Oxides for Dye-Sensitized Solar Cells [J]. Journal of the American Ceramic Society,2009,92(2):p. 289-301.
    [166]彭英才,S. Miyazaki,徐骏,TiO2纳米结构在染料敏化太阳电池中的应用[J].真空科学与技术学报,2009,29(004):p.411-418.
    [167]T. Dittrich, E. A. Lebedev, and J. Weidmann, Electron Drift Mobility in Porous TiO2 (Anatase) [J]. Physica Status Solidi C,1999,165(2):p. R5-R6.
    [168]N. Wang, C. Sun, Y. Zhao, et al., Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process [J]. Journal of Materials Chemistry, 2008,18(33):p.3909-3911.
    [169]M. Law, A. K. T. Radenovic, and J. Y. P. Liphardt, ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells [J]. Journal of Physical Chemistry B-Condensed Phase,2006,110(45):p.22652-22663.
    [170]C. W. Zou, X. D. Yan, J. Han, et al., Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures [J]. Chemical Physics Letters,2009,476(1-3):p.84-88.
    [171]H. R. Fallah, M. Ghasemi, A. Hassanzadeh, et al., The effect of deposition rate on electrical, optical and structural properties of tin-doped indium oxide (ITO) films on glass at low substrate temperature [J]. Physica B:Physics of Condensed Matter,2006,373(2):p.274-279.
    [172]叶建东,顾书林,高质量ZnO薄膜的退火性质研究[J].高技术通讯,2002,12(012):p.45-48.
    [173]王云飞,陈学康,郑阔海,等,原子氧处理对氧化锌薄膜的结构及光学特性的影响[J].真空科学与技术学报,2009,29(z1):p.51-54.
    [174]尹真,纳米二氧化钛材料的相变和声子限制效应[J].光散射学报,2001(02),13(02):p.95-101.
    [175]方泽波,龚恒翔,刘雪芹,等,退火对多晶ZnO薄膜结构与发光特性的影响[J].物理学报,2003,52(7):p.1748-1748.
    [176]王东,张景文,韩峰,等,900℃空气退火对L-MBE生长的ZnO薄膜发光特性的影响[J].半导体学报,2007,28(z1):p.293-295.
    [177]Z. K. Tang, G. K. L. Wong, P. Yu, et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films [J]. Applied Physics Letters,1998,72:p.3270.
    [178]林碧霞,傅竹西,贾云波,等,非掺杂ZnO薄膜中紫外与绿色发光中心[J].物理学报,2001,50(011):p.2208-2211.
    [179]温战华,王立,方文卿,等,退火温度对ZnO薄膜结构和发光性能的影响[J].半导体学报,2005,26(3):p.498-498; L. Vina, S. Logothetidis, and M. Cardona, Temperature dependence of the dielectric function of germanium [J]. Physical Review B,1984,30(4):p.1979-1991.
    [180]C. H. Ahn, W. S. Han, B. H. Kong, et al., Ga-doped ZnO nanorod arrays grown by thermal evaporation and their electrical behavior [J]. Nanotechnology, 2009,20:p.015601; J. Liu, P. Gao, W. Mai, et al., Quantifying oxygen diffusion in ZnO nanobelt [J]. Applied Physics Letters,2006,89:p.063125.
    [181]彭峰,陈水辉,张雷,等,ZnO薄膜的制备及其可见光催化降解甲基橙(英文)[J].物理化学学报,2005,21(9):p.944-948.
    [182]C. Lungenschmied, G. Dennler, H. Neugebauer, et al., Flexible, long-lived, large-area, organic solar cells [J]. Solar Energy Materials and Solar Cells,2007, 91(5):p.379-384.
    [183]G. Dennler, C. Lungenschmied, H. Neugebauer, et al., Flexible, conjugated polymer-fullerene-based bulk-heterojunction solar cells:Basics, encapsulation, and integration [J]. Journal of Materials Research,2005,20(12):p.3224-3233.
    [184]J. R. Sheats, Manufacturing and commercialization issues in organic electronics [J]. Journal of Materials Research,2004,19(7):p.1974-1989.
    [185]E. Bundgaard and F. C. Krebs, Low band gap polymers for organic photovoltaics [J]. Solar Energy Materials and Solar Cells,2007,91(11):p. 954-985.
    [186]S. Gunes, H. Neugebauer, and N. S. Sariciftci, Conjugated polymer-based organic solar cells [J]. Chemical Reviews,2007,107(4):p.1324-1338.
    [187]K. Takanezawa, K. Hirota, Q. S. Wei, et al., Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices [J] Journal of Materials Chemistry C,2007,111(19):p.7218-7223.
    [188]W. J. Beek, M. M. Wienk, and R. A. Janssen, Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles [J]. Advanced Functional Materials,2006,16(8):p.1112-1116.
    [189]W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Hybrid polymer solar cells based on zinc oxide [J]. Journal of Materials Chemistry,2005,15(29):p. 2985-2988.
    [190]D. C. Olson, J. Piris, R. T. Collins, et al., Hybrid photovoltaic devices of polymer and ZnO nanofiber composites [J]. Thin Solid Films,2006,496(1):p. 26-29.
    [191]A. C. Arango, L. R. Johnson, V. N. Bliznyuk, et al., Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion [J]. Advanced Materials,2000,12(22):p.1689-1692.
    [192]C. Y. Kwong, W. C. H. Choy, A. B. Djurisic, et al., Poly (3-hexylthiophene)-TiO2 nanocomposites for solar cell applications [J]. Nanotechnology,2004,15(9): p.1156-1161.
    [193]W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Hybrid nanorod-polymer solar cells [J]. Science,2002,295(5564):p.2425-2427.
    [194]B. Sun, E. Marx, and N. C. Greenham, Photovoltaic devices using blends of branched CdSe nanoparticles and conjugated polymers [J]. Nano Letters,2003, 3(7):p.961-963.
    [195]M. Wang and X. Wang, P3HT/ZnO bulk-heterojunction solar cell sensitized by a perylene derivative [J]. Solar Energy Materials and Solar Cells,2008,92(7): p.766-771.
    [196]F. C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes [J]. Solar Energy Materials and Solar Cells,2008, 92(7):p.715-726.
    [197]F. C. Krebs, Y. Thomann, R. Thomann, et al., A simple nanostructured polymer/ZnO hybrid solar cell—preparation and operation in air [J]. Nanotechnology,2008,19:p.424013.
    [198]P. Schilinsky, C. Waldauf, J. Hauch, et al., Simulation of light intensity dependent current characteristics of polymer solar cells [J]. Journal of Applied Physics,2004,95:p.2816.
    [199]I. Riedel and V. Dyakonov, Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices [J]. Physica Status Solidi A,2004,201(6):p.1332-1341.
    [200]F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Effects of postproduction treatment on plastic solar cells [J]. Advanced Functional Materials,2003,13(1):p. 85-88.
    [201]D. Chirvase, J. Parisi, J. C. Hummelen, et al., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites [J]. Nanotechnology, 2004,15:p.1317-1323.
    [202]J. J. Dittmer, E. A. Marseglia, and R. H. Friend, Electron trapping in dye/polymer blend photovoltaic cells [J]. Advanced Materials,2000,12(17):p. 1270-1274.
    [203]X. Yang, J. Loos, S. C. Veenstra, et al., Nanoscale morphology of high-performance polymer solar cells [J]. Nano Letters,2005,5(4):p.579-584.
    [204]李永舫,导电聚合物[J].化学进展,2002,14(003):p.207-211.
    [205]K. Lee, R. Menon, C. O. Yoon, et al., Reflectance of conducting polypyrrole: Observation of the metal-insulator transition driven by disorder [J]. Physical Review B,1995,52(7):p.4779-4787.
    [206]K. Zheng, X. Li, X. Mo, et al., Enhanced field emission and patterned emitter device fabrication of metal-tetracyanoquinodimethane nanowires array [J]. Applied Surface Science,2009 (ACCEPTED).
    [207]李静雷,郑凯波,沈浩颋,刑晓燕,孙大林,陈国荣,基于单根氧化锌纳米线的场效应管的光电特性研究[J].真空科学与技术学报,2008,28(001):p.83-86.
    [208]K. Zheng, H. Shen, J. Li, et al., The fabrication and properties of field emission display based on ZnO tetrapod-liked nanostructure [J]. Vacuum,2008, 83(2):p.261-264.
    [209]X. Xing, K. Zheng, H. Xu, et al., Synthesis and electrical properties of ZnO nanowires [J]. Micron,2006,37(4):p.370-373.
    [210]Z. Y. Hua and G. R. Chen, A new material for optical, electrical and electronic thin film memories [J]. Vacuum,1992,43(11):p.1019-1023.
    [211]曹冠英,叶春暖,徐华华,孙大林,陈国荣,Ag(TCNQ)准一维微米结构的制备及表征[J].物理化学学报,2005,21(001):p.47-51.
    [212]莫晓亮,杨剑,姚彦,徐华华, 楼成飞, 王大伟, 卢嘉, 陈国荣,Ag(TCNQ)纳米线的制备和电学特性研究[J].功能材料,2003,34(006):p.671-672.
    [213]叶春暖,范智勇,杨剑,et al., Ag (TCNQ)纳米晶须的生长机理[J].真空科学与技术学报,2004,24(002):p.129-132.
    [214]H. Shen, K. Zheng, J. Li, et al., Fabrication and electrical properties of a Cu-tetracyanoquinodimethane nanowire array in a porous anodic alumina template [J]. Nanotechnology,2008,19:p.015305.
    [215]蔡亲佳,陈国荣,莫晓亮,范智勇,顾海华,姚彦,杨剑,华中一,徐华华,K (TCNQ)薄膜的制备及其电双稳特性[J].真空科学与技术学报,2001(05):p.364-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700