他莫昔芬抑制巨噬细胞FABP4表达—糖皮质激素受体和过氧化物酶体增殖物激活受体γ依赖型机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病已经成为人类健康与生命的重大威胁。冠心病是心血管疾病中最常见的一种,而动脉粥样硬化(atherosclerosis, AS)则是造成冠心病的主要病理之一。动脉粥样硬化的发生与多种因素有关,如血管内皮损伤,单核细胞和巨噬细胞聚集,血管平滑肌细胞增生以及多种趋化因子和细胞因子的产生等。其中,单核细胞衍生的巨噬细胞转化成泡沫细胞是动脉粥样硬化形成的起始与关键步骤。
     脂肪酸结合蛋白(Fatty acid binding proteins, FABPs)是一组同源小分子细胞胞浆蛋白,分子量为14-15kD,能够结合疏水性脂类并对其进行细胞内亚组织转运。脂肪细胞型脂肪酸结合蛋白(adipocyte fatty acid binding protein, FABP4,又称为A-FABP或aP2)是细胞内FABP家族成员之一。FABP4广泛存在于各种正常组织、细胞中,但在脂肪组织和巨噬细胞中高表达。FABP4能够可逆性结合饱和及不饱和长链脂肪酸,促进脂肪酸代谢和转运。此外,FABP4在其他生物学过程中尤其是代谢综合征的许多方面具有重要作用。FABP4基因敲除小鼠可以抑制由高脂肪饮食诱导的动脉粥样硬化发展,在巨噬细胞中诱导FABP4高表达会促进泡沫细胞形成,表明FABP4在动脉粥样硬化的发展中也具有重要作用。
     他莫昔芬(tamoxifen)是一种选择性雌激素受体调节剂(selective estrogen receptor modulator, SERM),同时也是抗血管再生因子和蛋白激酶C的抑制剂。在体内细胞色素P4502D6(CYP2D6)的作用下,tamoxifen可以被羟基化为四羟他莫昔芬(4-hydroxytamoxifen或4-OH-tamoxifen),四羟他莫昔芬具有更强的SERM活性。过去20多年中,作为化疗药tamoxifen在临床上用于治疗早期和晚期高表达雌激素受体的乳腺癌,同时大量的临床前和临床试验证明tamoxifen具有心血管保护功能。例如,tamoxifen可以降低绝经后妇女心肌梗死的发生率以及降低颈总动脉的内膜厚度;还可以增加男性晚期动脉粥样硬化内皮依赖性血流调控的血管扩张;在动物模型中,tamoxifen可以降低雄性野生型小鼠和apoE-/-小鼠以及通过手术绝经的雌猴体内由高脂肪饮食诱导的动脉损伤与动脉粥样硬化的发生。Tamoxifen虽具有心血管保护功能,但其作用的具体分子机制尚未完全清楚。因此本论文研究tamoxifen和4-OH-tamoxifen能否通过抑制FABP4表达以达到减少泡沫细胞形成从而抑制动脉粥样硬化发展的目的,同时我们将深入研究tamoxifen作用于FABP4表达的具体分子机制。
     首先,我们分离来自于雌性和雄性野生型小鼠腹腔的原代巨噬细胞,在tamoxifen和4-OH-tamoxifen作用下,发现tamoxifen和4-OH-tamoxifen抑制小鼠原代巨噬细胞FABP4蛋白表达且不存在性别依赖现象。我们前期研究成果表明地塞米松(dexamethasone, Dex)、匹伐他汀(pitavastatin)与dexamethasone结合、激活过氧化物酶体增殖物激活受体Y(PPARy)等皆诱导FABP4表达,为此,我们研究tamoxifen和4-OH-tamoxifen对上述诱导作用的拮抗效果。通过Western blot检测我们证明了tamoxifen和4-OH-tamoxifen能有效的拮抗上述诱导作用。在转录水平上,我们通过Northern blot发现tamoxifen和4-OH-tamoxifen抑制巨噬细胞FABP4mRNA表达,进一步我们对FABP4启动子活性进行分析,探究tamoxifen和4-OH-tamoxifen下调FABP4表达的具体分子机制。通过分析,我们发现FABP4启动子区域存在糖皮质激素受体(GR)的正负调节元件(pGRE和nGRE)以及PPARγ的两个潜在结合元件(PPRE1和PPRE2)。双荧光素酶活性实验和EMSA实验结果证明,tamoxifen和4-OH-tamoxifen通过激活nGRE活性并增加核转录因子GR与nGRE结合同时抑制PPRE1活性以及核转录因子PPARγ与PPRE结合,从而下调FABP4启动子活性,抑制FABP4转录与表达。之后,我们利用Western blot结合荧光标记定位实验证明,tamoxifen和4-OH-tamoxifen不影响GR表达,但是可以抑制由dexamethasone诱导的GR核转移。
     此外,我们检测tamoxifen和4-OH-tamoxifen对FABP4表达的抑制作用在小鼠体内和人血单核细胞衍生的巨噬细胞中是否存在。我们分别喂食雌性和雄性apoE-/-小鼠含有tamoxifen的高脂食物(0.5%的胆固醇和21%的脂肪)一个月,之后分别收集小鼠腹腔巨噬细胞和脂肪组织,检测FABP4蛋白表达的变化情况。结果与体外实验一致,tamoxifen以非性别依赖的方式抑制巨噬细胞和脂肪组织中FABP4蛋白表达。同时,我们从志愿者身上获取血液并提取白细胞,其衍生的巨噬细胞中FABP4蛋白表达同样被tamoxifen和4-OH-tamoxifen所抑制,与小鼠体内外实验结果一致。
     为研究tamoxifen是否可以抑制动脉粥样硬化斑块的形成,我们喂食雌性apoE-/.小鼠含有tamoxifen的高脂食物(雄性小鼠已有报道)16周后,完整分离出其主动脉进行油红O染色后观察斑块的形成情况,发现tamoxifen确实可以抑制动脉粥样硬化斑块的形成。此外,我们通过FABP4RNA干扰实验证明tamoxifen减少泡沫细胞形成并起到抑制动脉粥样硬化作用是与其抑制FABP4表达密切相关。
     综上所述,本文首次证明了tamoxifen和4-OH-tamoxifen通过GR和PPARy两条信号通路相结合来抑制巨噬细胞FABP4表达从而减少FABP4诱导的泡沫细胞形成,最终起到心血管保护作用。我们的研究为临床上治疗动脉粥样硬化等疾病提供了一定的理论基础。
Cardiovascular disease is the biggest threat to our health and life. Coronary heart disease (CHD) is a major disease in cardiovascular system. The atherosclerotic lesion is the one of major pathogens for CHD. Formation of atherosclerosis is a complex process including endothelial injury, monocyte adhesion, macrophage differentiation and accumulation, smooth muscle cells proliferation and production of a variety of chemotactic factors and cytokines in arteries. During the development of atherosclerosis, monocyte-derived macrophages express macrophage scavenger receptors which bind and internalize large amounts of low-density lipoprotein (LDL) and modified LDL. The accumulation of lipids in macrophages drives the formation of foam cell, the major component in lesions. Thus, the formation of foam cells is the initial and critical step in the lesion development.
     Fatty acid binding proteins (FABPs) is a family of cytoplasmic proteins with small molecular-weight (14-15kD) and capable of binding hydrophobic fatty acids with high affinity. Adipocyte fatty acid binding protein (FABP4, also known as A-FABP or aP2), is a member of the FABP family. FABP4is widely expressed by various tissues and cells with the highest leves in adipose tissues and macrophages. In addition to fatty aicd transport and modulation of intracellular lipid metabolism, FABP4also plays an important role in other biological processes, particularly in many aspects of metabolic syndrome. Genetic deletion of FABP4expression inhibits the high fat diet-induced atherosclerosis in mice, and over-expressed FABP4facilitates foam cell formation in macrophages. Thus, FABP4plays an important role in the development of atherosclerosis.
     Tamoxifen is a selective estrogen receptor modulator. It also functions as an anti-angiogenesis factor and protein kinase C inhibitor. By the action of cytochrome P4502D6(CYP2D6), tamoxifen is hydroxylated into4-hydroxytamoxifen, which has more potent modulator activity. Clinically, tamoxifen has been used for more than two decades to treat both the early and advanced ER-positive breast cancer. However, both pre-clinical and clinical studies also have suggested the cardioprotective effects of tamoxifen. For example, tamoxifen reduces the incidence of fatal myocardial infarction and the intima-media thickness of the common carotid artery in postmenopausal women. It also increases the endothelium-dependent flow-mediated dilation (ED-FMD) in men with advanced atherosclerosis. In animal models, tamoxifen reduces the high-fat diet induced atherosclerotic lesions in both male wild type and apoE deficient (apoE-/-) mice and surgically postmenopausal monkeys. In spite of the cardioprotective effects, molecular mechanisms by which tamoxifen functions have not been fully elucidated. In the study, we determined if tamoxifen inhibits the development of atherosclerosis is completed through the inhibition on macrophage FABP4expression. We also disclosed the involved mechanism of tamoxifen-inhibited macrophage FABP4expression.
     Firstly, we isolated peritoneal macrophages from both male and female mice. We treated the cells with tamoxifen and4-hydroxytamoxifen at different concentrations overnight. The results of Western blot indicate that tamoxifen or4-hydroxtamoxifen inhibited FABP4protein expression in macrophages isolated either from male or female mice incidating the inhibition of macrophage FABP4expression by tamoxifen is in a sex-independent manner. Our previous studies suggest that dexamethasone or dexamethasone plus pitavastatin or PPARy activation can induce macrophage FABP4expression. In this study, we observed that tamoxifen and4-hudroxytamoxifen are able to antagonize the above inductions. FABP4mRNA expression was also inhibited by tamoxifen and4-hydroxytamoxifen indicating the. regulation is at the transcriptional level. In deed, we found that tamoxifen and4-hydroxytamoxifen inhibited FABP4promoter activity. We further disclosed the GRE (nGRE/pGRE) and putative PPRE (PPRE1/PPRE2) in FABP4promoter and our study indicated that tamoxifen and4-hydroxytamoxifen inhibited FABP4transcriptuon by activating nGRE and inhibiting PPRE1activity. EMSA.indicated that tamoxifen and4-hydroxytamoxifen enhanced the binding of nGRE with nuclear proteins but reduced the affinity of PPRE1to nuclear proteins. In addition, we determined tamoxifen did not affecet GR expression but reduced dexamethasone-induced GR nuclear translocation by Western Blot and image analysis.
     To disclose the physiological relavence of inhibition of macrophage FABP4expression by tamoxifen, we initially determined the inhibitory effect of tamoxifen on FABP4expression in vivo. We fed apoE-/-female and male mice a high-fat diet (0.5%cholesterol and21%fat) or the diet containing tamoxifen (2mg/100g food) for one month. After treatment, the peritoneal macrophages and adipose tissuses were individually collected and used to determine changes in FABP4protein expression. We observed the similar inhibitory effects on macrophage or adipose FABP4expression in vivo between male and female mice further suggesting the regulation of FABP4expression by tamoxifen is sex-independent. We also determined the effects of tamoxifen and4-hydroxytamoxifen on FABP4protein expression in human monocyte-derived macrophages from a healthy donor's blood. Similar to mouse macrophages and in vivo, tamoxifen and4-hydroxytamoxifen inhibited human macrophage FABP4protein expression.
     Finally, to disclose if the inhibition of FABP4expression by tamoxifen would impact the development of atherosclerosis in apoE-/-female mice (the effect on male mice has been reported), we fed the mice a high-fat diet or the diet containing tamoxifen (2mg/100g food) for16weeks. We observed that tamoxifen inhibited the development of atherosclerosis in en face aortas induced by the Western diet. By using FABP4siRNA, we observed that the inhibition of foam cells by tamoxifen was completed by inhibiting macrophage FABP4expression that can be attributed to the inhibitory properties of tamoxifen on atherosclerosis.
     Taken together, for the first time, our study suggests that tamoxifen inhibits macrophage FABP4expression by a GR and PPARy combinational pathway. Tamoxifen inhibits the development of atherosclerosis is partially related to its inhibition of macrophage FABP4expression. Also, our study may have implication for the clinical treatment of atherosclerosis.
引文
[1]Libby P, Ridker PM, Maseri A, et al. Inflammation in atherosclerosis. Circulation,2012, 105(9):1135-1143.
    [2]Megens RT, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost,2012,107(3).
    [3]Sila C, et al. Medical treatment of intracranial atherosclerosis has been shown to be superior. J Neurointerv Surg,2012,4(2):83-84.
    [4]Stringer MD,VV Kakkar, et al. Markers of disease severity in peripheral atherosclerosis. Eur J Vasc Surg,1990,4(5):513-518.
    [5]Belamarich PF, et al. Response to diet and cholestyramine in a patient with sitosterolemia. Pediatrics,1990,86(6):977-981.
    [6]Tertov VV, et al. Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis. Exp Mol Pathol,1990,52(3):300-308.
    [7]Valek J, et al. [Abdominal obesity and cardiovascular risk in type 2 diabetics]. Vnitr Lek, 2000,46(6):332-336.
    [8]Zusman RM, et al. Clinical and economic implications of atherosclerosis. Manag Care, 2000,9(5 Suppl):2-6.
    [9]Firdaus M, JM Asbury, and DW Reynolds. A new paradigm of cardiovascular risk factor modification. Vasc Health Risk Manag,2005,1(2):101-109.
    [10]Kotyla PJ, et al. [Risk of atherosclerosis development in patients with systemic lupus erythematosus]. Pol Arch Med Wewn,2005,114(5):1138-1143.
    [11]Couderc R, M Maachi, et al. [Lipoprotein (a):risk factor for atherosclerotic vascular disease important to take into account in practice]. Ann Biol Clin (Paris),1999,57(2):157-167.
    [12]Ashman N, et al. Increased platelet-monocyte aggregates and cardiovascular disease in end-stagerenal failure patients. Nephrol Dial Transplant,2003,18(10):2088-2096.
    [13]Takahashi K, M Takeya, N Sakashita, et al. Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc,2002,35(4):179-203.
    [14]Adler I, et al. Studies in Experimental Atherosclerosis:A Preliminary Report. J Exp Med, 1914,20(2):93-107.
    [15]Kanani PM, Sperling MA. Hyperlipidemia in adolescents. Adolesc Med,2002,13(1): 37-52.
    [16]Skalen K, Gustafsson M, Rydberg EK, et al. Subendothelial retention of atherogenie lipoproteins in early atherosclerosis. Nature,2002,417(6890):750-754.
    [17]Esper RJ, Vilari no JO, Machado RA, et al. Endothelial dysfunction in normal and abnormal glucose metabolism. Adv Cardiol,2008,45:17-43.
    [18]Boos CJ, Blann AD, Lip GY. Assessment of endothelial damage/dysfunction:A focus on circulating endothelial cells. Methods Mol Med,2007,139:211-224.
    [19]Ott SJ, ElMokhtari NE, Musfeldt M, et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation,2006,113(7): 929-937.
    [20]Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340(2):115-126.
    [21]Koerig W. Inflammation and coronary heart disease:an overview. Cardiol Rev,2001,9(1): 31-35.
    [22]Yu H, Rifin N. High sensitivity CRP and atherosclerosis, from theory to therapy. Clinic Biochemistry,2000,33(8):601-610.
    [23]Albert MA, Ridker PM. The role of CRP in cardiovascular disease risk. Curr Cardiol Rep, 1999,1(2):99-104.
    [24]Memon RA, Stapraus L, Noor M, et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler Thromb Vasc Biol,2000,20(6):1536-542.
    [25]Pentikainen MO, Ooni K, Korpel M, et al. Modified LDL-trigger of atherosclerosis and inflammation in the arterial intima. J Inter Med,2000,247(3):359-370.
    [26]Geng YJ, Phillips JE, Mason RP, et al. Cholesterol crystallization and macrophage apoptosis: implication for atherosclerotic plaque instability and rupture. Biochem Pharmacol,2003, 66(8):1485-1492.
    [27]Huff MW. Dietary cholesterol, cholesterol absorption, postprandial lipemia and atherosclerosis. Can J Clin Pharmacol,2003,10 SuppI A:26A-32A.
    [28]Krams R, Segers D, Maat W, et al. Inflammation and atherosclerosis:mechanisms underlying vulnerable plaque. J Interv Cardiol,2003,16(2):107-113.
    [29]Fuster V and R Vedanthan. Cardiovascular disease and the UN Millennium Development Goals:time to move forward. Nat Clin Pract Cardiovasc Med,2008,5(10):593.
    [30]Fuster G, Busquets S, Figueras M, et al. PPARdelta mediates IL15 metabolic actions in myotubes:effects of hyperthermia. Int J Mol Med,2009,24(1):63-68.
    [31]Fuster JJ, Jovani D, Serrano M, et al. Increased gene dosage of the Ink4/Arf locus does not attenuate atherosclerosis development in hypercholesterolaemic mice. Atherosclerosis,2012, 221(1):98-105.
    [32]Libby P, M DiCarli, R Weissleder, et al. The vascular biology of atherosclerosis and imaging targets. J Nucl Med,2010,51 Suppl 1:33S-37S.
    [33]Libby P and Folco E. Tension in the plaque:hypoxia modulates metabolism in atheroma. Circ Res,2011,109(10):1100-1102.
    [34]Libby P. Molecular and cellular mechanisms of the thrombotic complications of atherosclerosis. J Lipid Res,2009,50 Suppl:S352-357.
    [35]Merched AJ, Williams E and Chan L. Macrophage-specific p53 expression plays a crucial role in atherosclerosis development and plaque remodeling. Arterioscler Thromb Vasc Biol, 2003,23(9):1608-1614.
    [36]Lucas AD and Greaves DR. Atherosclerosis:role of chemokines and macrophages. Expert Rev Mol Med,2001,3(25):1-18.
    [37]Watanabe Y, Inaba T, Gotoda T, et al. Role of macrophage colony-stimulating factor in the initial process of atherosclerosis. Ann N Y Acad Sci,1995,748:357-364; discussion 364-366.
    [38]Jambou D, Dejour N, Bayer P, et al. Effect of human native low-density and high-density lipoproteins on prostaglandin production by mouse macrophage cell line P388D1:possible implications in pathogenesis of atherosclerosis. Biochim Biophys Acta,1993,1168(1): 115-121.
    [39]Plenz G and Robenek H. Monocytes/macrophages in atherosclerosis. Eur Cytokine Netw, 1998,9(4):701-703.
    [40]Hoogeveen RC, Morrison A, Boerwinkle E, et al. Plasma MCP-1 level and risk for peripheral arterial disease and incident coronary heart disease:Atherosclerosis Risk in Communities study. Atherosclerosis,2005,184(2):301-307.
    [41]Sekalska B. [Aortic expression of monocyte chemotactic protein-1 (MCP-1) gene in rabbits with experimental atherosclerosis]. Ann Acad Med Stetin,2003,49:79-90.
    [42]Blankenberg S, Barbaux S, TiretL. Adhesion molecules and atherosclerosis. Atherosclerosis, 2003,170(2):191-203.
    [43]Inoue M, Ishida T, Yasuda T, et al. Endothelial cell-selective adhesion molecule modulates atherosclerosis through plaque angiogenesis and monocyte-endothelial interaction. Microvasc Res,2010,80(2):179-187.
    [44]Muller WA and Randolph GJ. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol,1999,66(5): 698-704.
    [45]Green M and Harrington MA. A comparison of macrophage colony-stimulating factor (M-CSF) gene expression in primary and immortalized endothelial cells. J Hematother Stem Cell Res,2000,9(2):237-246.
    [46]Shimano H, Yamada N, Motoyoshi K, et al. Plasma cholesterol-lowering activity of monocyte colony-stimulating factor (M-CSF). Ann N Y Acad Sci,1990,587:362-370.
    [47]Devaraj S, Yun JM, Duncan-Staley C, et al. C-reactive protein induces M-CSF release and macrophage proliferation. J Leukoc Biol,2009,85(2):262-267.
    [48]Sjoland H, Eitzman DT, Gordon D, et al. Atherosclerosis progression in LDL receptor-deficient and apolipoprotein E-deficient mice is independent of genetic alterations in plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol,2000,20(3):846-852.
    [49]Kodama T, Freeman M, Rohrer L, et al. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature,1990,343(6258):531-535.
    [50]Guest CB, Hartman ME, O'Connor JC, et al. Phagocytosis of cholesteryl ester is amplified in diabetic mouse macrophages and is largely mediated by CD36 and SR-A. PLoS One, 2007,2(6):e511.
    [51]Eguchi A, Kaneko Y, Murakami A, et al. Zerumbone suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells. Biosci Biotechnol Biochem,2007,71(4):935-945.
    [52]Gough PJ and Gordon S. The role of scavenger receptors in the innate immune system. Microbes Infect,2000,2(3):305-311.
    [53]Sun B, Boris B, Webb NR, et al. Distinct mechanisms for ox-LDL uptake and cellular trafficking by class B scavenger receptors CD36 and SR-BI. Lipid Res,2007,48(12): 2560-2570.
    [54]Martin-Fuentes p, Civeira F, Recalde D, et al. Individual variation ofscavenger receptor expression in human macrophages with oxidized low density lipoprotein is associated with a differential inflammatory response. J Immunol,2007,179(5):3242-248.
    [55]Greaves DR and Gordon S. Thematic review series:the immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. Lipid Res,2005, 46:11-20.
    [56]Nagarajan S. Anti-OxLDL IgG blocks OxLDL interaction with CD36, but promotes FcgammaR, CD32A-dependent inflammatory cell adhesion. Immunol Lett,2007,108(1): 52-61.
    [57]Sigurdardottir V, Fagerberg B, Wikstrand J, et al. Circulating oxidized low-density lipoprotein is associated with echolucent plaques in the femoral artery independently of hsCRP in 61-year-old men. Atherosclerosis,2007,190(1):187-193.
    [58]Hu C, Dandapat A, Sun L, et al. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high cholesterol diet. Cardiovas Res,2008,79(2):287-293.
    [59]Ishino S, Mukai T, Kume N, et al. Lectin-like oxidized LDL receptor-1 (LOX-1) expression is associated with atherosclerotic plaque instability-analysis in hypercholesterolemic rabbits. Atherosclerosclerosis,2007,195(1):48-56.
    [60]Novelli G, Mango R, Vecchione L, et al. New insights in atherosclerosis research:LOX-1, leading actor of cardiovascular diseases. Clin Ter,2007,158(3):239-248.
    [61]Yancey PG, Bortnick AE, Kellner-Weibel G, et al. Importance of different pathways of cellular cholesterol efflux. Arterioscler Thromb Vasc Biol,2003,23(5):712-719.
    [62]Rigotti A, Miettinen H, Krieger M, et al. The role of the high density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr Rev,2003,24(3): 357-387
    [63]Trigatti BL, KriegerM, Rigotti A. Influence of the HDL receptor SR-BI on lipoprotein metabolism and Atherosclerosis. Arterioscler Thromb Vase Biol,2003,23(10):1732-1738.
    [64]Goldstein JL and Brownz MS. Atherosclerosis:the low-density lipoprotein receptor hypothesis. Metabolism,1977,26(11):1257-1275.
    [65]Goldstein JL and Brown MS. Regulation of low-density lipoprotein receptors:implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation,1987, 76(3):504-507.
    [66]Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis. Lessons from an animal counterpart of familial hypercholesterolemia. N Engl J Med,1983, 309(5):288-296.
    [67]Shentu TP, Titushkin I, Singh DK, et al. oxLDL-induced decrease in lipid order of membrane domains is inversely correlated with endothelial stiffness and network formation. Am J Physiol Cell Physiol,2010,299(2):C218-229.
    [68]Triau JE, Meydani SN, Schaefer EJ, et al. Oxidized low density lipoprotein stimulates prostacyclin production by adult human vascular endothelial cells. Arteriosclerosis,1988, 8(6):810-818.
    [69]Iwasaki T, Takahashi S, Ishihara M, et al. The important role for betaVLDLs binding at the fourth cysteine of first ligand-binding domain in the low-density lipoprotein receptor. J Hum Genet,2004,49(11):622-628.
    [70]Wenqi Yao, Ke Li, Kan Liao, et al. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells. Acta Biochim Biophys Sin,2009,41(9):773-780.
    [71]Kruth HS, Jones NL, Huang W, et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem, 2005,280(3):2352-2360.
    [72]Chiara Buono, Joshua J Anzinger and Marcelo Amar, et al. Fluorescent pegylated nanoparticles demonstrate fluid phase pinocytosis by macrophages in mouse atherosclerotic lesions. J Clin Invest,2009,119(5):1373-1381.
    [73]BuonoC, W aldo SW, Kruth HS, et al. Liver X receptors inhibit human monocyte derived macrophage foam cell formation by inhibiting fluid-phase pinocytosis of LDL. J Lipid Res, 2007,48(1):2411-2418.
    [74]Guest CB, Chakour KS, Freund GG. Macropinocytosis is decreased in diabetic mouse macrophages and is regulated by AMPK. BMC Immunol,2008,9:42.
    [75]Rudel LL and Farese RV Jr. ACAT inhibition and the progression of coronary atherosclerosis. N Engl J Med,2006,354(24):2616-2617.
    [76]Sliskovic DR, JA Picard, BR Krause. ACAT inhibitors:the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. Prog Med Chem,2002,39:121-171.
    [77]Osada-Oka M, Kita H, Yagi S, et al. Angiotensin AT1 receptor blockers suppress oxidized low-density lipoprotein-derived formation of foam cells. Eur J Pharmacol,2012,679(1-3): 9-15
    [78]Nhan TQ, Liles WC, and Schwartz SM. Role of caspases in death and survival of the plaque macrophage. Arterioscler Thromb Vasc Biol,2005,25(5):895-903.
    [79]Fisman EZ, Motro M, Tenenbaum A. Cardiovascular diabetology in the core of a novel interleukins classification:the bad, the good and the aloof. Cardiovasc Diabetol,2003,2: 11.
    [80]Brizzi MF, Formato L, Dentelli P, et al. Interleukin-3 stimulates migration and proliferation of vascular smooth muscle cells:a potential role in atherogenesis. Circulation,2001,103(4): 549-554.
    [81]Ball RY, Stowers EC, Burton JH, et al. Evidence that the death of macrophage foam cells contributes to the lipid core of atheroma. Atherosclerosis,1995,114(1):45-54.
    [82]Bjkerud S and Bjkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol,1996,149(2):367-380.
    [83]Poitou C, Dalmas E, Renovato M, et al. CD14dimCD16+and CD14+CD16+ monocytes in obesity and during weight loss:relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vase Biol,2011,31(10):2322-2330.
    [84]Chen W, Wang F, Li Z, et al. p53 Levels positively correlate with carotid intima-media thickness in patients with subclinical atherosclerosis. Clin Cardiol,2009,32(12):705-710.
    [85]Florys B, Glowinska B, Urban M, et al. [Metalloproteinases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2 levels in children and adolescents with type 1 diabetes]. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw,2006,12(3):184-189.
    [86]Fiotti N, Tubaro F, Altamura N, et al. Alcohol reduces MMP-2 in humans and isolated smooth muscle cells. Alcohol,2008,42(5):389-395.
    [87]Bhaskaran R, Palmier MO, Bagegni NA, et al. Solution structure of inhibitor-free human metalloelastase (MMP-12) indicates an internal conformational adjustment. J Mol Biol, 2007,374(5):1333-1344.
    [88]Gomez-Hemandez A, Martin-Ventura JL, Sanchez-Galan E, et al. Overexpression of COX-2, Prostaglandin E synthase-1 and prostaglandin E receptors in blood mononuclear cells and plaque of patients with carotid atherosclerosis:regulation by nuclear factor-kappaB. Atherosclerosis,2006,187(1):139-149.
    [89]Gomez-Hernandez A, Sanchez-Galan E, Martin-Ventura JL, et al. Atorvastatin reduces the expression of prostaglandin E2 receptors in human carotid atherosclerotic plaques and monocytic cells:potential implications for plaque stabilization. J Cardiovasc Pharmacol, 2006,47(1):60-69.
    [90]Cimmino G, D'Amico C, Vaccaro V, et al. The missing link between atherosclerosis, inflammation and thrombosis:is it tissue factor? Expert Rev Cardiovasc Ther,2011,9(4): 517-523.
    [91]Camera M, Brambilla M, Facchinetti L, et al. Tissue Factor and Atherosclerosis:Not only vessel wall-derived TF,but also platelet-associated TF. Thromb Res,2011.
    [92]Taubman MB, Fallon JT, Schecter AD, et al. Tissue factor in the pathogenesis of atherosclerosis. Thromb Haemost,1997,78(1):200-204.
    [93]Falk E and Fernandez Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol,1995,75(6):3B-11B.
    [94]Furuhashi M, Ishimura S, Ota H, et al. Serum fatty acid-binding protein 4 is a predictor of cardiovascular events in end-stage renal disease. PLoS One,2011,6(11):e27356.
    [95]Haunerland NH and Spener F. Fatty acid-binding proteins--insights from genetic manipulations. Prog Lipid Res,2004,43(4):328-349.
    [96]Chmurzynska A. The multigene family of fatty acid-binding proteins (FABPs):function, structure and polymorphism. J Appl Genet,2006,47(1):39-48.
    [97]Spiegelman BM, Frank M, Green H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem,1983, 258(16):10083-10089.
    [98]Yeung DC, Wang Y, Xu A, et al. Epidermal fatty-acid-binding protein:a new circulating biomarker associated with cardio-metabolic risk factors and carotid atherosclerosis. Eur Heart J,2008,29(17):2156-2163.
    [99]Boiteux G, Lascombe I, Roche E, et al. A-FABP, a candidate progression marker of human transitional cell carcinoma of the bladder, is differentially regulated by PPAR in urothelial cancer cells. Int J Cancer,2009,124(8):1820-1828.
    [100]MacDougald OA and Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem,1995,64:345-373.
    [101]Fu Y, Luo N, Lopes-Virella MF, et al. The adipocyte lipid binding protein (ALBP/FABP4) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis,2002, 165(2):259-269.
    [102]Kazemi MR, McDonald CM, Shigenaga JK, et al. Adipocyte fatty acid-binding protein expression and lipid accumulation are increased during activation of murine macrophages by toll-like receptor agonists. Arterioscler Thromb Vasc Biol,2005,25(6):1220-1224.
    [103]Xu A, Wang Y, Xu JY, et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem,2006,52(3):405-413.
    [104]Coll B, Cabre A, Alonso-Villaverde C, et al. The fatty acid binding protein-4 (FABP4) is a strong biomarker of metabolic syndrome and lipodystrophy in HIV-infected patients. Atherosclerosis,2008,199(1):147-153.
    [105]Aeberli I, Beljean N, Lehmann R, et al. The increase of fatty acid-binding protein aP2 in overweight and obese children:interactions with dietary fat and impact on measures of subclinical inflammation. Int J Obes (Lond),2008,32(10):1513-1520.
    [106]HotamisligilGS, Johnson RS, Distel RJ, et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science,1996, 274(5291):1377-1379.
    [107]Coe NR, Simpson MA, Bernlohr DA, et al. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. Lipid Res,1999,40(5):967-972.
    [108]Smith AJ, Thompson BR, Sanders MA, et al. Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase:regulation by fatty acids and phosphorylation. J Biol Chem,2007,282(44):32424-32432.
    [109]Prinsen CF and Veerkamp JH. Transfection of L6 myoblasts with adipocyte fatty acid-binding protein cDNA does not affect fatty acid uptake but disturbs lipid metabolism and fusion. Biochem J,1998,329 (Pt 2):265-273.
    [110]Fu Y, Luo L, Luo N, et al. Lipid metabolism mediated by adipocyte lipid binding protein (ALBP/aP2) gene expression in human THP-1 macrophages. Atherosclerosis,2006,188(1): 102-111.
    [111]Grundy SM, Hansen B, Smith SC Jr, et al. Clinical management of metabolic syndrom: report of the American Herat Association/National Heart, Lung and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation,2004,109(4):551-556.
    [112]Xu A, Wang Y, Xu JY, et al. Adipocyte fatty acid binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem,2006,52:405-413.
    [113]Shimomura T, Hiyama T, Tanaka S, et al. Synchronous and subsequent lesions of serrated adenomas and tubular adenomas of the colorectum. Pathobiology,2010,77(5):273-277.
    [114]Lee EJ, Park CK, Kim JM, et al. Deletion mutation of BRAF in a serrated adenoma from a patient with familial adenomatous polyposis. APMIS,2007,115(8):982-986.
    [115]Boord JB, Maeda K, Makowski L, et al. Adipocyte fatty acid-binding protein, FABP4, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler Thromb Vasc Biol,2002,22(10):1686-1691.
    [116]Makowski L, Boord JB, Maeda K, et al. Lack of macrophage fatty-acid-binding protein FABP4 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med,2001, 7(6):699-705.
    [117]Iwamoto N, Abe-Dohmae S, Lu R, et al. Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein alpha to downregulate ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol,2008,28(12): 2282-2287.
    [118]Yeung DC, Xu A, Cheung CW, et al. Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler Thromb Vasc Biol,2007, 27(8):1796-1802.
    [119]Desta Z, BA Ward, NV Soukhova, et al. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro:prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther,2004,310(3):1062-1075.
    [120]Lin SX, Chen M, Mazumdar D, et al. Molecular therapy of breast cancer:progress and future directions. Nat Rev Endocrinol,2010,6(9):485-493.
    [121]Ewer MS and Gluck S. A woman's heart:the impact of adjuvant endocrine therapy on cardiovascular health. Cancer,2009,115(9):1813-1826.
    [122]Santen RJ. Clinical review:Effect of endocrine therapies on bone in breast cancer patients. J Clin Endocrinol Metab,2011,96 (2):308-319.
    [123]Wiseman H, Cannon M, Arnstein HR, et al. Tamoxifen inhibits lipid peroxidation in cardiac microsomes. Comparison with liver microsomes and potential relevance to the cardiovascular benefits associated with cancer prevention and treatment by tamoxifen. Biochem Pharmacol,1993,45(9):1851-1855.
    [124]Wiseman H, Paganga G, Rice-Evans C, et al. Protective actions of tamoxifen and 4-hydroxytamoxifen against oxidative damage to human low-density lipoproteins:a mechanism accounting for the cardioprotective action of tamoxifen? Biochem J,1993, 292(3):635-638.
    [125]Holleran AL, Lindenthal B, Aldaghlas TA, et al. Effect of tamoxifen on cholesterol synthesis in HepG2 cells and cultured rat hepatocytes. Metabolism,1998,47(12): 1504-1513.
    [126]Gylling H, Mantyla E, Miettinen TA. Tamoxifen decreases serum cholesterol by inhibiting cholesterol synthesis. Atherosclerosis,1992,96(2-3):245-247.
    [127]Suarez Y, Fernandez C, Gomez-Coronado D, et al. Synergistic upregulation of low-density lipoprotein receptor activity by tamoxifen and lovastatin. Cardiovasc Res,2004,64(2): 346-355.
    [128]Love RR, Wiebe DA, Newcomb PA, et al. Effects of tamoxifen on cardiovascular risk factors in postmenopausal women. Ann Intern Med,1991,115(11):860-864.
    [129]Dewar JA, Horobin JM, Preece PE, et al. Long term effects of tamoxifen on blood lipid values in breast cancer. BMJ,1992,305(6847):225-226.
    [130]Bonanni B, Johansson H, Gandini S, et al. Effect of tamoxifen at low doses on ultrasensitive C-reactive protein in healthy women. J Thromb Haemost,2003,1(10):2149-2152.
    [131]Cushman M, Costantino JP, Tracy RP, et al. Tamoxifen and cardiac risk factors in healthy women:Suggestion of an anti-inflammatory effect. Arterioscler Thromb Vasc Biol,2001, 21(2):255-261.
    [132]Stamatelopoulos K.S, Lekakis JP, Poulakaki NA, et al. Tamoxifen improves endothelial function and reduces carotid intima-media thickness in postmenopausal women. Am Heart J, 2004,147(6):1093-1099.
    [133]Simon T, Boutouyrie P, Simon JM, et al. Influence of tamoxifen on carotid intima-media thickness in postmenopausal women. Circulation,2002,106 (23):2925-2929.
    [134]Clarke SC, Schofield PM, Grace AA, et al. Tamoxifen effects on endothelial function and cardiovascular risk factors in men with advanced atherosclerosis. Circulation,2001,103(11): 1497-1502.
    [135]Grainger DJ, Witchell CM, Metcalfe JC. Tamoxifen elevates transforming growth factor-beta and suppresses diet-induced formation of lipid lesions in mouse aorta. Nat Med, 1995,1(10):1067-1073.
    [136]Reckless J, Metcalfe JC, Grainger DJ. Tamoxifen decreases cholesterol sevenfold and abolishes lipid lesion development in apolipoprotein E knockout mice. Circulation,1997, 95(6):1542-1548.
    [137]Williams JK, Wagner JD, Li Z, et al. Tamoxifen inhibits arterial accumulation of LDL degradation products and progression of coronary artery atherosclerosis in monkeys. Arterioscler Thromb Vasc Biol,1997,17(2):403-408.
    [138]Braunwald E. Shattuck Lecture--Cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med,1997,337(19):1360-1369.
    [139]Moghadasian MH. Experimental atherosclerosis:a historical overview. Life Sci,2002, 70(8):855-865.
    [140]Williams JK, Sukhova GK, Herrington DM, et al. Pravastatin has cholesterol-lowering independent effects on the artery wall of atherosclerotic monkeys. J Am Coll Cardiol,1998, 31(3):684-691.
    [141]Danesh J, Wheeler J G, Hirsch field G M, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med,2004, 350(14):1387-1397.
    [142]Curb J D, Abott RD, Rodriguez BL, et al. C-reactive protein and the future risk of thromboembolic stroke in healthy men. Circulation,2003,107(15):2016-2020.
    [143]Lusis AJ. Atherosclerosis. Nature,2000,407(6801):233-241.
    [144]Aharoni A, Dixit S, Jetter R, et al. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell,2004,16(9):2463-2480.
    [145]Makowski MR, Varma G, Wiethoff AJ, et al. Noninvasive assessment of atherosclerotic plaque progression in ApoE-/- mice using susceptibility gradient mapping. Circ Cardiovasc Imaging,2011,4(3):295-303.
    [146]Makowski MR, Forbes SC, Blume U, et al. In vivo assessment of intraplaque and endothelial fibrin in ApoE(-/-) mice by molecular MRI. Atherosclerosis,2012,221(1): 43-49.
    [147]Makowski L and G S Hotamisligil. The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol,2005,16(5):543-548.
    [148]Makowski MR, Wiethoff AJ, Blume U, et al. Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med,2011,17(3):383-388.
    [149]Sarkar PD, T M S, Madhusudhan B. Association between paraoxonase activity and lipid levels in patients with premature coronary artery disease. Clin Chim Acta,2006,373(1-2): 77-81.
    [150]Yeung AC. Atherosclerosis. The role of C-reactive protein. Rev Cardiovasc Med,2006,7(2): 106-107
    [151]Agardh HE, Folkersen L, Ekstrand J, et al. Expression of fatty acid-binding protein 4/aP2 is correlated with plaque instability in carotid atherosclerosis. J Intern Med,2011,269(2): 200-210.
    [152]Peeters W, de Kleijn DP, Vink A, et al. Adipocyte fatty acid binding protein in atherosclerotic plaques is associated with local vulnerability and is predictive for the occurrence of adverse cardiovascular events. Eur Heart J,2011,32(14):1758-1768.
    [153]Peeters W, Hellings WE, de Kleijn DP, et al. Carotid atherosclerotic plaques stabilize after stroke:insights into the natural process of atherosclerotic plaque stabilization. Arterioscler Thromb Vasc Biol,2009,29(1):128-133.
    [154]Furuhashi M, Tuncman G, Gorgiin CZ, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature,2007,447(7147):959-965.
    [155]Furuhashi M and GS Hotamisligil. Fatty acid-binding proteins:role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov,2008,7(6):489-503.
    [156]Coller JK, Krebsfaenger N, Klein K, et al. The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol,2002,54(2):157-167.
    [157]Dehal SS and Kupfer D. CYP2D6 catalyze tamoxifen 4-hydroxylation in human liver. Cancer Res,1997,57(16):3402-3406.
    [158]Howell A, Osborne CK, Morris C, et al. ICI 182,780 (Faslodex):development of a novel, "pure" antiestrogen. Cancer,2000,89(4):817-825.
    [159]Wakeling AE, Valcaccia B, Newboult E, et al. Non-steroidal antioestrogens—receptor binding and biological response in rat uterus, rat mammary carcinoma and human breast cancer cells. J Steroid Biochem,1984,20(1):111-120.
    [160]Colletta AA, JR Benson, and M Baum. Alternative mechanisms of action of anti-oestrogens. Breast Cancer Res Treat,1994,31(1):5-9.
    [161]Butta A, MacLennan K, Flanders KC, et al. Induction of transforming growth factor beta 1 in human breast cancer in vivo following tamoxifen treatment. Cancer Res,1992,52(15): 4261-4264.
    [162]Rohlff C, Blagosklonny MV, Kyle E, et al. Prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase C and induction of p21(wafl/cipl). Prostate,1998,37(1):51-59.
    [163]Gylling H, Pyrhonen S, Mantyla E, et al. Tamoxifen and toremifene lower serum cholesterol by inhibition of delta 8-cholesterol conversion to lathosterol in women with breast cancer. J Clin Oncol,1995,13(12):2900-2905.
    [164]de Medina P, Payre BL, Bernad J, et al. Tamoxifen is a potent inhibitor of cholesterol esterification and prevents the formation of foam cells. J Pharmacol Exp Ther,2004,308(3): 1165-1173.
    [165]Morales M, Santana N, Soria A, et al. Effects of tamoxifen on serum lipid and apolipoprotein levels in postmenopausal patients with breast cancer. Breast Cancer Res Treat,1996,40(3):265-270.
    [166]Wiseman H. Tamoxifen as an antioxidant and cardioprotectant. Biochem Soc Symp,1995, 61:209-219.
    [167]Cheng WC, Yen ml, Hsu SH, et al. Effects of raloxifene, one of the selective estrogen receptor modulators, on pituitary-ovary axis and prolactin in postmenopausal women. Endocrine,2004,23(2-3):215-218.
    [168]Eidelman RS, Hollar D, Hebert PR, et al. Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease. Arch Intern Med,2004,164(14):1552-1556.
    [169]Dong P, Xie T, Zhou X, et al. Induction of macrophage scavenger receptor type BI expression by tamoxifen and 4-hydroxytamoxifen. Atherosclerosis,2011,218(2):435-442.
    [170]Cook JS, Lucas JJ, Sibley E, et al. Expression of the differentiation-induced gene for fatty acid-binding protein is activated by glucocorticoid and cAMP. Proc Natl Acad Sci U S A, 1988,85(9):2949-2953.
    [171]Fu Y, Luo N, Lopes-Virella MF. Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. J Lipid Res,2000,41(12):2017-2023.
    [172]Hu W, Zhou X, Jiang M,et al. Statins synergize dexamethasone-induced adipocyte fatty acid binding protein expression in macrophages. Atherosclerosis,2012,222(2):434-443.
    [173]Pelton PD, Zhou L, Demarest KT, et al. PPARgamma activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun,1999,261(2):456-458.
    [174]Nagy L, Tontonoz P, Alvarez JG, et al. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell,1998,93(2):229-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700