冀中南地区农田生物量及碳截获能力时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在人类活动的影响下,全球温室气体不断增加,给社会、经济和自然环境等带来一系列不利影响。为了控制温室气体、应对全球变化、减少灾害发生,诸多国内外专家学者进行了大量的研究。目前,碳汇、碳循环研究成为了当前研究的热点领域之一。在碳汇、碳循环研究中,人们对森林碳汇的研究较多,而对农田的研究较少。然而,农田作为陆地生态系统的重要组成部分,不仅是人类粮食安全的保障,而且在碳汇、碳循环中也占有重要的地位。目前,一些研究表明农田已经由碳源转变为碳汇。为此,对农田碳汇、碳循环的研究具有非常重要的意义,而且通过分析农田碳截获能力的时空分异特征,可以为气候变化和农田系统碳循环研究提供数据基础和理论支持。
     冀中南地区位于河北省中南部,它由西部的太行山和东部的广阔平原组成。它作为河北省乃至中国一个重要的粮食产区,下垫面比较均一,农田特征明显。本文选取冀中南地区的农田作为研究对象可以更好的对农田系统碳汇、碳循环进行研究。文中以4期(1980、1990、2000和2008年)土地利用数据和1984~(-2)008年的粮食产量数据为基础,对农田生物生物生产力和碳截获能力进行了估算,并对其时空差异特征及其影响因素进行了分析。
     研究结果表明:自上世纪80年以来,农田生物量和碳截获量即生物生产力表现为增强趋势,地区内总生物量和碳截获总量分别达到0.065 Pg和0.025 Pg。农田地上生物量从1985年的600 g·m~(-2)·a~(-1)左右,增加到2008年的1200 g·m~(-2)·a~(-1)。尽管在2003~(-2)005年间农田地上生物量受粮食产量影响有所下降,但总体上实现了高速增长。同时,冀中南地区农田生物量呈现先增加后减少再增加的时间变化趋势,空间上呈现低平原地区增加而山前平原及西部山区出现减少的现象。太行山山前平原区农作物的碳截获能力最大,碳截获量为700 g C /m2~1000 g C·m~(-2)·a~(-1);而低平原地区较小,且相差约400 g C·m~(-2)·a~(-1);山区和滨海地区的农作物碳截获能力更低,仅为150 g C·m~(-2)·a~(-1)左右。通过进一步分析发现山区农田和山前平原的碳截获能力均有下降的趋势,而低平原地区呈现逐年增加的趋势。这主要是由于农业技术和投入的提高增加了低平原地区农田的生物产量,致使低平原地区农田生物生产能力增强,而山前平原农业相对发达,多受人类经济活动的驱使,导致农作物种植面积减少,进而造成农田生物生产能力减弱。农田碳截获能力的增加或减少反映了其碳转换率的状况,所以冀中南地区农田碳截获能力的增加,加速了碳循环和碳汇的过程。另一方面,农田碳截获总量很大,虽然只是动态的碳库,但是如果能够合理利用必将增加农田的实际固碳能力。
Under the influence of human activities, increased global greenhouse gases leads to adverse effects on the social, economic and natural environment. In order to slow down the global change and reduce disasters happening, many domestic and foreign experts and scholars paid lots of attention on carbon sinks and cycle research. In this area, more people study on the forest carbon sink, and fewer on farmland. As an important part of terrestrial ecosystems, farmland not only protects the human food safety, but also is an important position in carbon sinks and carbon cycle. At present, some studies showed that farmland had changed into carbon sinks from carbon source. So, research on carbon sequestration and carbon cycle in farmland is very significant which can provide theory support through tem-spatial variation characteristics of agricultural carbon capture analysis.
     The study area is located in mid-south of Hebei Province (MSHP), which consists of the west and east of the Taihang Mountains plain. MSHP takes important part in food producing with homogeneous underlying surface. This paper selected farmland of MSPH as a study area for the agricultural carbon sinks and cycle research. On the basis of four years land-use data (1980, 1990, 2000 and 2008) and food production (1984~(-2)008), agricultural biological productivity and carbon capture capacity were estimated, and their spatial-temporal characteristics of different factors were analyzed.
     The results showed that:From 1980s, biological productivity and carbon capture capability increased and the total amount of biomass and carbon capture reached 0.065 Pg and 0.025 Pg. Aboveground biomass increased from 600 g C·m~(-2)·a~(-1) (in 1985) to 1200 g C·m~(-2)·a~(-1) (in 2008), though it was affected by the decline in food production in 2003~(-2)005 And finally, it increased with a high speed in general. Meanwhile, farmland biomass of MSPH increased at first, then decreased and increased finally. It increased in the piedmont plains and declined in western mountains and piedmont plains spatially. he carbon capture capacity of cropland in piedmont area is 700 g C·m~(-2)·a~(-1) to 1000 g C·m~(-2)·a~(-1), and low plain area is smaller. Mountainous and coastal areas had the lowest capability of agricultural carbon capture. Further analysis found that the carbon capture capacity decline in piedmont and mountains, and low plains increased trend year by year. This was mainly due to improved agricultural technologies and increased investment in the low plains with higher biological yield of farmland, resulting in the low plains of farmland increased biological productivity. Developed agriculture in the piedmont, drived by human economic activities, resulted in crop production and the capacity of farmland reduced.
     The growth of biological productivity and carbon capture capabilities, accelerate the carbon cycle and carbon sequestration process. Although farmland is just a dynamic carbon pool , but it will increase the carbon sequestration capacity with reasonable use.
引文
[1] WMO. Greenhouse Gas Bulletin: Bulletin No.6[R], 2010.
    [2] IPCC.Land Use,Land-Use Change,and Forestry[R], Cambridge, 2000.
    [3]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报, 1996, 16(5): 397-508.
    [4] Potter K N, Torbert H A, Jones O R, et al.Distribution and amount of soil organic C in long-term management systems in Texas[J].Soil and Tillage Research, 1998, 47(3-4):309-321.
    [5] Trumbore S E, Chadwick O A, Amundson R. Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change[J]. Science, 1996, 272(5260): 393-396.
    [6] Lal R, Follett R F, Kimble J, et al. Managing U.S. cropland to sequester carbon in soil[J]. Journal of Soil and Water Conservation, 1999, 54(1): 374-381.
    [7]杨景成,韩兴国,黄建辉,等.土壤有机质对农田管理措施的动态响应[J].生态学报, 2003, 23(4): 787-796.
    [8]李长生.土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究[J].第四纪研究, 2000, 20(4): 345-350.
    [9]韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望[J].植物生态学报, 2008, 32(3): 719-733.
    [10]梁二.近40年中国农业土壤碳汇源时空格局变化初探[D].中国农业科学院, 2007: 1-63.
    [11] Boysen Jensen P. Die stoffproduktion der pflanzen[M]. Jena: G. Fischer, 1932: 1-108.
    [12]方精云,柯金虎,唐志尧,等.生物生产力的“4P”概念、估算及其相互关系[J].植物生态学报, 2005, 25(4): 414-419.
    [13] Hagen J B. An Entangled Bank[M]. New Brunswick: Rutgers University Press, 1992.
    [14]中国生态系统研究网络.国际生物学计划(IBP) [EB/OL]. http://www.cern.ac.cn/7xsdt/detail.asp?id=2702, 2011-2-24.
    [15]中国科学院水利部水土保持研究所.国际生物学计划(IBP) [EB/OL]. http://loess.geodata.cn/html/kepu/docc/stxtbrow.asp-id=1822&classid=197.html, 2011-2-24.
    [16]中国知网.生物生产率[EB/OL]. http://www1.chkd.cnki.net/KNS50/XSearch.aspx? KeyWord=%e7%94%9f%e7%89%a9%e7%94%9f%e4%ba%a7%e7%8e%87, 2011-2-14.
    [17] Ebermayer E. Die gesamte Lehre der Waldstreu mit Rücksicht auf die chemische Stalik des Waldbaues[M]. berlin:Nabu Press 1876: 116.
    [18] Lieth H, Whittaker R H.Primary productivity of the biosphere[M]. New York:Springer Verlag : Distributed by Chapman and Hall, 1975.
    [19] Lieth H, Whittaker R H , (王业蘧译).生物圈的第一性生产力[M].北京市:科学出版社, 1985: 1-14.
    [20] Boysen Jensen P, Studier over Skovtr?ernes For Forhold til Lyset[C], K?benhavn: 1910, 1-116.
    [21] Schroeder H. Die j?hrliche Gesamtproduktion der grünen Pflanzendecke der Erde[J]. Naturwissenschaften, 1919, 7(1): 8-12.
    [22] IBP. INTERNATIONAL BIOLOGICAL PROGRAMME[J]. The Lancet, 1964, 283(7340): 969-970.
    [23] IBP. The international biological programme (IBP)[J]. Biological Conservation, 1968, 1(1): 31-32.
    [24]陈国荣.闽南山地相思人工林生物量及生产力分析[D].福建农林大学, 2007: 1-35.
    [25]杨同辉.浙江天童国家森林公园常绿阔叶林生物量研究[D].华东师范大学, 2005: 1-54.
    [26]冯险峰. GIS支持下的中国陆地生物量遥感动态监测研究[D].陕西师范大学, 2000: 1-59.
    [27]王玲.川西北地区主要灌丛类型生物量及其模型的研究[D].四川农业大学, 2009: 1-48.
    [28] Kotto-Same J, Woomer P L, Appolinaire M, et al. Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon[J]. Agriculture, Ecosystems & Environment, 1997, 65(3): 245-256.
    [29] Alig R J, Adams D M, McCarl B A. Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets[J]. Forest Ecology and Management, 2002, 169(1-2): 3-14.
    [30] Houghton R A. Temporal patterns of land-use change and carbon storage in China and tropical Asia[J]. Science in China(Series C), 2002, 45(Supp): 10-17.
    [31] West T O, Marland G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J].Agriculture, Ecosystems & Environment, 2002, 91(1-3): 217-232.
    [32] Thomson A M, Izaurralde R C, Rosenberg N J, et al. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China[J]. Agriculture, Ecosystems & Environment, 2006, 114(2-4): 195-209.
    [33] López-Bellido R J, Lal R, Owens L B, et al. Does North Appalachian agriculture contribute to soil carbon sequestration?[J]. Agriculture, Ecosystems & Environment, 2010, 137(3-4): 373-376.
    [34] Wattenbach M, Sus O, Vuichard N, et al. The carbon balance of European croplands: A cross-site comparison of simulation models[J]. Agriculture, Ecosystems & Environment, 2010, 139(3): 419-453.
    [35] Pathak H, Byjesh K, Chakrabarti B, et al. Potential and cost of carbon sequestration in Indian agriculture: Estimates from long-term field experiments[J]. Field Crops Research, 2011, 120(1): 102-111.
    [36] Banfield G E, Bhatti J S, Jiang H, et al. Variability in regional scale estimates of carbon stocks in boreal forest ecosystems: results from West-Central Alberta[J]. Forest Ecology and Management, 2002, 169(1-2): 15-27.
    [37] Liski J, Perruchoud D, Karjalainen T. Increasing carbon stocks in the forest soils of western Europe[J]. Forest Ecology and Management, 2002, 169(1-2): 159-175.
    [38] Woodbury P B, Smith J E,Heath L S. Carbon sequestration in the U.S. forest sector from 1990 to 2010[J]. Forest Ecology and Management, 2007, 241(1-3): 14-27.
    [39] Smith B, Knorr W, Widlowski J-L, et al. Combining remote sensing data with process modelling to monitor boreal conifer forest carbon balances[J]. Forest Ecology and Management, 2008, 255(12): 3985-3994.
    [40] Swanson M E. Modeling the effects of alternative management strategies on forest carbon in the Nothofagus forests of Tierra del Fuego, Chile[J]. Forest Ecology andManagement, 2009, 257(8): 1740-1750.
    [41] Nunery J S, Keeton W S. Forest carbon storage in the northeastern United States: Net effects of harvesting frequency, post-harvest retention, and wood products[J]. Forest Ecology and Management, 2010, 259(8): 1363-1375.
    [42] Usuga J C L, Toro J A R, Alzate M V R, et al. Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests[J]. Forest Ecology and Management, 2010, 260(10): 1906-1913.
    [43] Paustian K, Andrén O, Janzen H H, et al. Agricultural soils as a sink to mitigate CO2 emissions[J]. Soil Use and Management, 1997, 13(4): 230-244.
    [44] Adger W N, Brown K, Shiel R S, et al. Sequestration and emissions from agriculture and forestry : Carbon in the dock[J]. Land Use Policy, 1992, 9(2): 122-130.
    [45] Bohlin F, Eriksson L O. Evaluation criteria for carbon dioxide mitigating projects in forestry and agriculture[J]. Energy Conversion and Management, 1996, 37(6-8): 1223-1228.
    [46] Solomon A M, Leemans R.Boreal forest carbon stocks and wood supply: past, present and future responses to changing climate, agriculture and species availability[J]. Agricultural and Forest Meteorology, 1997, 84(1-2): 137-151.
    [47]李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报, 1998, 22(4): 300-302.
    [48]李凌浩,陈佐忠.草地生态系统碳循环及其对全球变化的响应I.碳循环的分室模型、碳输入与贮量[J].植物学通报, 1998, 15(2): 14-22.
    [49]王艳芬,陈佐忠.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报, 1998, 22(6): 545-551.
    [50]傅华,陈亚明,王彦荣,等.阿拉善主要草地类型土壤有机碳特征及其影响因素[J].生态学报, 2004, 24(3): 469-476.
    [51]朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学报, 2004, 28(4): 491-498.
    [52]常天军,王建林,李鹏,等.藏北高寒草地植被的碳密度与碳贮量[J].生态科学, 2007, 26(5): 437-442.
    [53]张峰.中国草原碳库储量及温室气体排放量估算[D].兰州大学, 2010: 1-81.
    [54] Svirejeva-Hopkins A, Schellnhuber H J, Pomaz V L. Urbanised territories as a specific component of the Global Carbon Cycle[J].Ecological Modelling, 2004, 173(2-3): 295-312.
    [55] Svirejeva-Hopkins A, Schellnhuber H J. Urban expansion and its contribution to the regional carbon emissions: Using the model based on the population density distribution[J]. Ecological Modelling, 2008, 216(2): 208-216.
    [56] Lebel L. Carbon and water management in urbanization[J]. Global Environmental Change Part A, 2005, 15(4): 293-295.
    [57] Churkina G.Modeling the carbon cycle of urban systems[J]. Ecological Modelling, 2008, 216(2): 107-113.
    [58]赵荣钦,黄贤金,徐慧,等.城市系统碳循环与碳管理研究进展[J].自然资源学报, 2009, 24(10): 1847-1859.
    [59]王迪生.基于生物量计测的北京城区园林绿地净碳储量研究[D].北京林业大学, 2010: 1-118.
    [60] SempéréR, Panagiotopoulos C, Lafont R, et al. Total organic carbon dynamics in the Aegean Sea[J]. Journal of Marine Systems, 2002, 33-34(1-2): 355-364.
    [61] Falck E, Anderson L G. The dynamics of the carbon cycle in the surface water of the Norwegian Sea[J]. Marine Chemistry, 2005, 94(1-4): 43-53.
    [62] Riedel A, Michel C, Gosselin M, et al. Winter-spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean[J]. Journal of Marine Systems, 2008, 74(3-4): 918-932.
    [63] Kivim?e C, Bellerby R G J, Fransson A, et al. A carbon budget for the Barents Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(12): 1532-1542.
    [64] Yoshimura T, Nishioka J, Suzuki K, et al. Impacts of elevated CO2 on organic carbon dynamics in nutrient depleted Okhotsk Sea surface waters[J]. Journal of Experimental Marine Biology and Ecology, 2010, 395(1-2): 191-198.
    [65] Yu Y, Guo Z, Wu H, et al. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000[J]. Global Biogeochemical Cycles, 2009, 23(2): GB2021.
    [66]杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义[J].地理科学, 2003, 23(1): 101-106.
    [67]赵荣钦.农田生态系统碳源/汇的时空差异及增汇技术研究[D].河南大学, 2004: 1-61.
    [68] Schneider U a. Agricultural options for mitigation of greenhouse gas emissions in the united states[D]. Texas A&M University, 2000: 1-224.
    [69] Schneider U A, McCarl B A,Schmid E. Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry[J]. Agricultural Systems, 2007, 94(2): 128-140.
    [70]朴世龙,方精云,黄耀.中国陆地生态系统碳收支[J].中国基础科学, 2010, 12(2): 20-22、65.
    [71] Piao S, Ciais P, Lomas M, et al. Contribution of climate change and rising CO2 to terrestrial carbon balance in East Asia: A multi-model analysis[J]. Global and Planetary Change, 2011, 75(3-4): 133-142.
    [72] Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013.
    [73]朴世龙,方精云,郭庆华. 1982-1999年我国植被净第一性生产力及其时空变化[J].北京大学学报(自然科学版), 2001, 37(4): 563-569.
    [74]方精云,郭兆迪,朴世龙,等. 1981~2000年中国陆地植被碳汇的估算[J].中国科学(D辑:地球科学), 2007, 37(6): 804-812.
    [75] Fang J, Chen A, Peng C, et al. Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998 [J]. Science, 2001, 292:2320-2322.
    [76] Fan S, Gloor M, Mahlman J, et al. A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models [J]. Science, 1998, 282: 442-446.
    [77] Lieth H. Modelling the primary productivity of the world[J]. Nature and resources, 1972, VIII(2): 5-10.
    [78] Lieth H, Whittaker R H. Primary productivity of the biosphere[M]. New York Springer-Verlag, 1975: 1-339.
    [79] Lieth H, Box E O X.Evapotranspiration and Primary Productivity: C. W. Thornthwaite Memorial Model[J].Publications in Climatology, 1972, 25(2): 37-46.
    [80] Uchijima Z, Seino H. Agroclimate evaluation of net primary productivity of naturalvegetation. (1) Chikugo model for evaluating net primary productivity[J]. Journal of Agricultural Meteorology 1985, 40(4): 343-352.
    [81]朱志辉.自然植被净第一性生产力估计模型[J].科学通报, 1993, 38(15): 1422-1426.
    [82] Jiang H, Apps M J, Zhang Y, et al. Modelling the spatial pattern of net primary productivity in Chinese forests[J]. Ecological Modelling, 1999, 122(3): 275-288.
    [83] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-842.
    [84] Parton W J, Schimel D S, Cole C V, et al. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands[J]. Soil Sci Soc Am J, 1987, 51(5): 1173-1179.
    [85] Parton W J, Rasmussen P E.Long-term effects of crop management in wheat-fallow: II, CENTURY model simulations[J]. Soil Science Society of America journal, 1994, 58(2): 530-536.
    [86]刘卫国.新疆陆地生态系统净初级生产力和碳时空变化研究[D].新疆大学, 2007: 1-136.
    [87] Lieth H, The net primary productivity of the earth with special emphasis on the land area, American Institute of Biological Sciences Second National CongressMiami, Florida, 1971.
    [88]刘洪杰. Miami模型的生态学应用[J].生态科学, 1997, 16(1): 52-55.
    [89]张宪洲.我国自然植被净第一性生产力的估算与分布[J].自然资源, 1993, (1):15-21.
    [90] Uchijima Z, Seino H. An agroclimatic method of estimating net primary productivity of natural vegetation[J]. J. Agr. Res. Quat. ,1988, 21(4): 244-250.
    [91]李迪强,孙成永,张新时.中国潜在植被生产力的分布与模拟[J].植物学报, 1998, 40(6): 560-566.
    [92]周广胜.自然植被净第一性生产力模型及其应用[J].林业科学, 1998, 34(5): 2-11.
    [93]周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报, 1995, 19(3): 193-200.
    [94]郑元润,周广胜.基于NDVI的中国天然森林植被净第一性生产力模型[J].植物生态学报, 2000, 24(1): 9-12.
    [95]黄忠良.运用Century模型模拟管理对鼎湖山森林生产力的影响[J].植物生态学报,2000, 24(2): 175-179.
    [96]高鲁鹏,梁文举,姜勇,等.利用CENTURY模型研究东北黑土有机碳的动态变化Ⅰ.自然状态下土壤有机碳的积累[J].应用生态学报, 2004, 15(5): 772-776.
    [97]张峰,周广胜,王玉辉.基于CASA模型的内蒙古典型草原植被净初级生产力动态模拟[J].植物生态学报, 2008, 32(4): 786-797.
    [98] Hicke J A, Asner G P, Randerson J T, et al. Satellite-derived increases in net primary productivity across North America, 1982-1998[J]. Geophys. Res. Lett., 2002, 29(10): 1427.
    [99] Hicke J A, Asner G P, Randerson J T, et al. Trends in North American net primary productivity derived from satellite observations, 1982-1998[J]. Global Biogeochem. Cycles, 2002, 16(2): 1018.
    [100]朴世龙,方精云,郭庆华.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报, 2001, 25(5): 603-608、644.
    [101] Fang J, Piao S, Field C B, et al. Increasing net primary production in China from 1982 to 1999[J]. Frontiers in Ecology and the Environment, 2003, 1(6): 293-297.
    [102] Piao S, Fang J, Zhou L, et al. Changes in vegetation net primary productivity from 1982 to 1999 in China[J]. Global Biogeochem. Cycles, 2005, 19(2): 1-16.
    [103] Piao S, Fang J, He J. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999[J]. Climatic Change, 2006, 74(1): 253-267.
    [104] Lobell D B, Hicke J A, Asner G P, et al. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982-98[J]. Global Change Biology, 2002, 8(8): 722-735.
    [105] Tao F, Yokozawa M, Zhang Z, et al. Remote sensing of crop production in China by production efficiency models: models comparisons, estimates and uncertainties[J]. Ecological Modelling, 2005, 183(4): 385-396.
    [106] Field C B, Randerson J T, Malmstr?m C M. Global net primary production: Combining ecology and remote sensing[J]. Remote Sensing of Environment, 1995, 51(1): 74-88.
    [107]朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算—以中国内蒙古为例[J].遥感学报, 2005, 9(3): 300-307.
    [108] Group I T C W. The Terrestrial Carbon Cycle: Implications for the Kyoto Protocol[J]. Science, 1998, 280(5368): 1393-1394.
    [109]赵敏.上海碳源碳汇结构变化及其驱动机制研究[D].华东师范大学, 2010: 1-107.
    [110]石玉胜.海河流域土地利用/覆被与景观格局变化对地表蒸散量的影响研究[D].北京:中国科学院研究生院, 2009: 1-82.
    [111]王珍. GIS环境下区域农田硝酸盐淋失风险评价模型研究[D].北京市:中国科学院研究生院, 2010: 1-76.
    [112]河北省人民政府,河北省统计局.河北农村统计年鉴[M].中国统计出版社, 2009: 210-224.
    [113]河北省人民政府,河北省统计局.河北经济年鉴[M].北京:中国统计出版社, 2009: 564-603.
    [114]中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社, 2009: 37.
    [115] R.K.M.Hay,卫云宗.收获指数在植物育种和作物生理学上的应用[J].麦类文摘.种业导报, 1996, 16(4): 1-8.
    [116]张福春,朱志辉.中国作物的收获指数[J].中国农业科学, 1990, 23(2): 83-87.
    [117]王振华,张喜英,陈素英,等.分层施肥及供水对冬小麦生理特性、根系分布和产量的影响[J].华北农学报, 2008, 23(6): 176-180.
    [118]薛玲.基于NDVI遥感数据的华北平原作物蒸散量、产量时空分布研究(1981—2001)[D].中国农业大学, 2004: 1-46.
    [119]袁婺洲,官春云.影响油菜收获指数的几个生理因子[J].作物学报, 1997, 23(5): 580-586.
    [120]袁婺洲,官春云,廖爱玲.油菜收获指数对经济产量的贡献[J].湖南师范大学自然科学学报, 1999, 22(1): 65-69.
    [121]田伟华,徐克章,邴鑫,等.吉林省不同年代育成大豆品种某些农艺性状的变化[J].中国油料作物学报, 2007, 29(4): 397-401.
    [122]张喜英.作物根系与土壤水利用[M].北京市:气象出版社, 1999: 35-51.
    [123]陈福军,沈彦俊,李倩,等.中国陆地生态系统近30年NPP时空变化研究[J].地理科学, 2011.
    [124]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报, 2000,55(1): 36-45.
    [125]王彧,黄耀,张稳,等.中国农业植被净初级生产力模拟(Ⅱ)—模型的验证与净初级生产力估算[J].自然资源学报, 2006, 21(6): 916-925.
    [126]李贵才.基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D].中国科学院研究生院(遥感应用研究所), 2004: 1-153.
    [127]刘勇洪,权维俊,高燕虎.华北植被的净初级生产力研究及其时空格局分析[J].自然资源学报, 2010, 25(4): 564-573.
    [128]刘纪远,张增祥,徐新良,等. 21世纪初中国土地利用变化的空间格局与驱动力分析[J].地理学报, 2009, 64(12): 1411-1420.
    [129]刘纪远,张增祥,庄大方,等. 20世纪90年代中国土地利用变化时空特征及其成因分析[J].地理研究, 2003, 22(1): 1-12.
    [130]李秀彬.中国近20年来耕地面积的变化及其政策启示[J].自然资源学报, 1999, 14(4): 329-333.
    [131]张国平,刘纪远,张增祥.近10年来中国耕地资源的时空变化分析[J].地理学报, 2003, 58(3): 323-332.
    [132]葛全胜,戴君虎. 20世纪前、中期中国农林土地利用变化及驱动因素分析[J].中国科学(D辑:地球科学), 2005, 35(1): 54-63.
    [133]葛全胜,戴君虎,何凡能.过去三百年中国土地利用变化与陆地碳收支[M].北京市:科学出版社, 2008: 108-130.
    [134]史培军,王静爱,冯文利,等.中国土地利用/覆盖变化的生态环境安全响应与调控[J].地球科学进展, 2006, 21(2): 111-119.
    [135] Xiao J., Shen Y., Ge J., et al. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing[J]. Landscape and Urban Planning, 2006, 75(1-2): 69-80.
    [136]肖捷颖,葛京凤,沈彦俊,等.基于TM和ETM+遥感分析的石家庄市土地利用/覆被变化研究[J].地理科学, 2005, 25(4): 495-500.
    [137]肖捷颖,葛京凤,沈彦俊,等.基于GIS的石家庄市城市土地利用扩展分析[J].地理研究, 2003, 22(6): 789-798.
    [138]肖捷颖.基于GIS和Landsat TM/ETM+遥感资料分析的城市土地利用/覆盖变化研究—以石家庄为例[D].河北师范大学, 2002: 1-60.
    [139]史培军,宫鹏,李晓兵.土地利用/覆盖变化研究的方法与实践[M].北京:科学出版社, 2000: 19-22.
    [140]陈广生,田汉勤.土地利用/覆盖变化对陆地生态系统碳循环的影响[J].植物生态学报, 2007, 31(2): 189-204.
    [141]高志强,刘纪远,曹明奎,等.土地利用和气候变化对农牧过渡区生态系统生产力和碳循环的影响[J].中国科学(D辑:地球科学), 2004, 34(10): 946-957.
    [142] XueJie G, DongFeng Z, ZhongXin C, et al. Land use effects on climate in China as simulated by a regional climate model[J]. Science in China(Series D:Earth Sciences), 2007, 50(4): 620-628.
    [143] Xuejie G, Yong L, Wantao L, et al. Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model[J]. Advances in Atmospheric Sciences, 2003, 20(4): 583-592.
    [144]郭旭东,陈利顶,傅伯杰.土地利用/土地覆被变化对区域生态环境的影响[J].环境科学进展, 1999, 7(6): 66-75.
    [145]周旺明,王金达,刘景双,等.三江平原不同土地利用方式对区域气候的影响[J].水土保持学报, 2005, 19(5): 155-158.
    [146]欧春平,夏军,王中根,等.土地利用/覆被变化对SWAT模型水循环模拟结果的影响研究—以海河流域为例[J].水力发电学报, 2009, 28(4): 124-129.
    [147]葛京凤,冯忠江,高伟明,等.河北太行山区土地利用/覆被变化及其对水循环的影响机理及优化模式研究[A].中国江苏南京, 2007.
    [148] HongYu L, Zhaofu L.Impacts on WetLand Biodiversity by Land Use Landscape Change - A Case Study on Surrounding Area of Honghe Nature Reserve,China[A]. Beijing, 2007.
    [149]丘君,陈利顶,傅伯杰.土地利用/覆被变化对生物多样性的影响[A].中国云南昆明, 2002.
    [150]孙平,赵新全,徐世晓,等.评土地利用对生物多样性的影响[J].生态经济, 2002, (1): 40-45.
    [151]赵文智,程国栋.人类土地利用的主要生态后果及其缓解对策[J].中国沙漠, 2000, 20(4): 369-374.
    [152]周华锋,傅伯杰.景观生态结构与生物多样性保护[J].地理科学, 1998, 18(5): 472-478.
    [153]刘纪远,布和敖斯尔.中国土地利用变化现代过程时空特征的研究—基于卫星遥感数据[J].第四纪研究, 2000, 20(3): 229-239.
    [154]宋开山,刘殿伟,王宗明,等. 1954年以来三江平原土地利用变化及驱动力[J].地理学报, 2008, 63(1): 93-104.
    [155]刘纪远,刘明亮,庄大方,等.中国近期土地利用变化的空间格局分析[J].中国科学(D辑:地球科学), 2002, 32(12): 1031-1040、1058-1060.
    [156]朱会义,何书金,张明.环渤海地区土地利用变化的驱动力分析[J].地理研究, 2001, 20(6): 669-678.
    [157]李正才.土地利用变化对土壤有机碳的影响[D].中国林业科学研究院, 2006: 1-143.
    [158]沈彦俊,宋献方,肖捷颖,等.石家庄地区近70年来伴随经济发展的水文环境变化分析[J].自然资源学报, 2007, 22(1): 51-61.
    [159]张永强,刘昌明,沈彦俊.太行山山前平原浅层地下水位动态分析—以河北省栾城县为例[J].中国生态农业学报, 2001, 9(2): 38-40.
    [160]夏军,刘孟雨,贾绍凤,等.华北地区水资源及水安全问题的思考与研究[J].自然资源学报, 2004, 19(5): 550-560.
    [161]李淑华.气候变暖对我国农作物病虫害发生、流行的可能影响及发生趋势展望[J].中国农业气象, 1992, 113(2): 46-49.
    [162]张厚瑄.中国种植制度对全球气候变化响应的有关问题Ⅰ.气候变化对我国种植制度的影响[J].中国农业气象, 2000, 21(1): 9-13.
    [163]王效科,冯宗炜.森林生态系统生物量和碳储存量的研究历史[A].见:王如松,方精云,高林,等.现代生态学的热点问题研究[C].北京:中国科学技术出版社, 1996, 335-347.
    [164]周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报, 2002, 26(2): 250-254.
    [165] Arrouays D, Balesdent J, Mariotti A, et al. Modelling organic carbon turnover in cleared temperate forest soils converted to maize cropping by using 13C natural abundance measurements[J]. Plant and Soil, 1995, 173(2): 191-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700