玉米智能测产成图系统研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物产量是农民经济收益的重要标志,是评估农业生产效率的重要因素,还是指导科学的田间管理的重要依据。玉米是世界上分布最广泛的粮食作物之一,它在中国的播种面积很大。中国年玉米产量仅次于美国占世界第二位,因此,提高玉米产量是增加农民收入和满足国民需要的关键。实时获取准确的玉米小区产量信息和据此得到的小区产量分布图有利于提高田间精准管理能力和管理决策措施的有效性,是提高玉米产量的关键技术。但中国绝大部分地区玉米在收获时的含水率≥30%,不能进行玉米直接脱粒作业,所以不能直接得到玉米产量数据和玉米产量图。为了实时准确的获取玉米小区产量信息和小区产量分布图,及时了解地块产量差异及其分布,本文以ARM920T-S3C2410微处理器为核心,开发了一套玉米智能测产成图系统。
     本文结合国家“863”计划“玉米精准作业系统研究与应用”之子项目“玉米变量施肥喷药和智能测产技术研究”(合同号:2006AA10A309-6)和吉林大学研究生创新计划“基于GPS/PFA的穗状玉米智能测产系统研究与示范”(20091017)进行玉米智能测产成图系统研制与开发。研究的主要工作与结果如下:
     1)建立玉米产量模型。为了建立适合于穗状玉米智能测产的玉米产量模型,本文组建了玉米收获试验装置,确定了收获机进行玉米田间收获的升运器轴速。在2009年10月吉林农业大学试验田,使用玉米测产装置,在玉米收获机行进速度为2km/h、升运器轴速为550r/min的条件下进行了玉米收获试验。通过研究该测产装置测得的玉米穗产量与实际玉米穗产量之间的关系从而获得了预测玉米穗产量关系式,结合该关系式和玉米穗粒转换关系式进而得到玉米产量模型。
     2)构建玉米智能测产成图系统开发平台。本文选择ARM920T-S3C2410微处理器作为玉米智能测产成图系统硬件平台核心,构建了田间玉米实时测产成图系统硬件平台运行环境;选择WinCE操作系统作为玉米智能测产成图系统软件平台,并自主定制和运行了WinCE操作系统。
     3)开发玉米智能测产成图系统。本文基于玉米智能测产成图系统平台基础上,采用模块化程序设计原则,使用EVC4.0开发工具和C++语言开发设计了玉米智能测产成图系统。系统主要由数据输入/输出模块、玉米产量转换模块、田块轮廓图生成模块、网格划分模块、玉米产量分布图生成模块、图例生成模块、玉米产量直方图生成模块、地图操作模块组成。
     4)玉米智能测产成图系统应用。本文将玉米智能测产成图系统嵌入到穗状玉米产量监测器中,在2010年10月吉林省吉林农业大学试验田进行了玉米实时测产成图试验。试验结果表明:本系统能够根据实时读取的玉米穗产量信息和田块参数信息,计算得到玉米产量信息,绘制田块网格图、玉米产量分布图和玉米产量直方图。
     本文研究的创新点如下:
     1)建立了适合于穗状玉米智能测产的玉米产量模型,在玉米智能测产成图系统中使用该玉米产量模型能够实时将玉米穗产量转换为玉米产量。
     2)以ARM920T-S3C2410微处理器为核心开发了一套玉米智能测产成图系统。将该系统嵌入到穗状玉米产量监测器中,玉米收获作业时能够实现实时读取、处理原始数据信息,通过玉米产量模型实时获取玉米产量,实时绘制田块网格图、玉米产量栅格图、玉米产量图例、玉米产量直方图等功能。
Crop yield is an important symbol of the economic benefits of farmers, an important factor of assessing agricultural productivity, and an important basis of guiding the scientific field management. Corn is one of the world's most widely-distributed crops, which is planted in most of areas in China. In China, corn yearly yield accounts for the second place in the world, only after the United States. Therefore, increasing corn yield is the key to improve the income of farmers and meet the national demands. According to the accurate, real-time information of corn yield of grid, the yield distribution map can be accomplished, which can be used to improve the ability of fields precision management and the effectiveness of decision-making measurement. That is the key technology of improving the corn yield. However, in most areas in China, the corn moisture content at the time of harvest is more than 30%, which can not be directly threshed, so corn yield and corn yield maps can not be obtained directly. In order to obtain the accurate, real-time information on corn yield in every grid, draw the yield map and timely understand the difference and distribution of corn yield between each grid, this paper developed a corn yield mapping system based on ARM920T-S3C2410 microprocessor in this paper.
     This paper has done some research on the development and practice of corn yield mapping system under the program of "Study on Variable Rate Fertilization, Spaying and Intelligent Yield Monitor Technology for Corn"(2006AA10A309-6) which was granted by the states 863 Program of "Research and Application of Precision Operating System for Corn" and under the program of "Study and Demonstration on Intelligent Yield Monitor System of Corn Ear Based on GPS/ PFA"(20091017)which belongs to Jilin University Graduate Innovation Plan. The research results are as follows:
     1) Establish the corn yield model. In this paper, the set of equipment for corn-harvest practice was built to establish the model used to detect the corn yield intelligently, by which the elevator speed was tested and selected while harvesting in the field. In October,2009, corn-harvest experiment under the conditions of harvester speed 2km/h and elevator speed 550r/min, was carried out in the experimental fields of Jilin Agricultural University in Changchun, using the equipment for corn-harvest practice. In the experiment, the corn ear yield was detected and recorded. By studying the relation between the recorded corn ear yield and the actual corn ear yield, the formula can be determined to predict the corn ear yield. Then, based on that formula and the corn ear-kernel transform formula, the corn yield model can be established.
     2) Build up the platform for developing yield mapping system. The ARM920T-S3C2410 microprocessor is chosen as the core of the yield mapping system, which builds up the hardware environment.And the customized WinCE operating system was chosen to build up the software development enrollment for yield mapping system.
     3) Design and develop the yield mapping system. After building up the hardware and software platform, the yield mapping system was completed by using EVC4.0 developing tool and C++language based on the modular program developing principle. The yield mapping system mainly included data input/output module, the yield conversion module, meshing module, the yield grid map gridding module, the legend editor module, yield data analysis module, the map operation modules and other components.
     4) Apply the corn yield mapping system. This corn yield mapping system is embedded in the yield monitor system in our lab and used for the corn harvest test in the experimental fields in Changchun Agricultural University in October,2010. The results showed that the yield mapping system can read the real-time information of corn ear yield and plots parameter information, calculate the corn yield,and draw the grid map, yield distribution map and yield histogram.
     The innovations of this paper are as follows:
     1) The corn yield model is established to predict the corn yield intelligently, in which the corn ear yield can be transferred into the corn yield in real-time.
     2) The corn yield mapping system was developed based on the ARM920T-S3C2410 microprocessor. It can be embedded in the yield monitor system and can accomplish the functions like reading and processing the real-time original data, recording the real-time corn yield, gridding the field, drawing the grid map, yield distribution map and yield histogram.
引文
[1]邝继双,张漫.产量分布图生成系统的研究[J].中国农业大学学报,2003,8(4):9-13.
    [2]黄杏元.地理信息系统概论(M).高等教育出版社,1990.9:1-24.
    [3]刘光,刘小东.地理信息系统二次开发实例教程[M].清华大学出版社,2004,6:94~96.
    [4]孙玉雪.农作物测产方法[N].云南农业知识广角.2011,1.
    [5]Gene R Safir, Stuart H Gage, Manual Colunga-Garcia, et al. Simulation of corn yields in the Upper Great Lakes Region of the US using a modeling framework[J].computers and Electronics in Agriculture,2008,60(2):301-305.
    [6]McKinion J M, Willers J L, Jenkins J N. Spatial analyses to evaluable multi-crop yield stability for a field [J]. Computers and Electronics in Agirculture,2010,70(1):187-198.
    [7]陈劲松,黄建熙,林珲等.基于遥感信息和作物生长模型同化的水稻估产方法研究[J].中国科学,2010,40:173~183.
    [8]王纯枝,宇振荣,辛景峰等.基于遥感和作物生长模型的作物产量差估测[J].农业工程学报,2005,21(7):84~89.
    [9]李佛琳,李本逊,曹卫星等.作物遥感估产的现状及其展望[J].云南农业大学学报,2005,20(5):680~684.
    [10]祝青园,王书茂,谭或.谷物联合收割机测产技术研究[J].中国农业机械学会,2008.
    [11]张瑞玲,张银丽.信息技术在精细农业中的应用[J].安徽农业科学,2007,35(6).
    [12]邹伦等.地理信息系统原理、方法和应用[M].北京:科学出版社,2001:21~23.
    [13]http://aike.baidu.com/view/1243.htm.
    [14]http://www.chinaneast.gov.cn/2011-01/30/c_13713032.htm.
    [15]ttp://www.bctb.gov.cn/sqfw/read.asp?id=1611.
    [16]左璐.嵌入式系统现状与发展前景研究[J].现代商贸工业,2010,1(15):331.
    [17]栾禄祥.32位嵌入式系统在工业控制方面的应用[J].机械设计与制造,2010,(4):87~89.
    [18]王立凤.嵌入式系统的应用[J].中国新技术新产品,2008,(8):17.
    [19]陈树人,李耀明,张西良.谷物联合收割机测产系统研究现状与展望[J].农业机械论坛.2008,62~63.
    [20]张倩.精确农业产量监测系统研究与应用[D].长春:吉林大学硕士学位论文,2006.
    [21]Michael J.Krumpelman, Kenneth A.Sudduth. Design and Analysis of a Grain Weighing System. Annual International Meeting,2000:9-12.
    [22]G. Pelletier, Shrini K, Upadhyay. Development of a tomato load:yield monitor. Computers and Electronics in Agriculture,1999,23:103-117.
    [23]K. Maertens, P. Reyns, J. De Baerdemaeker. Double adaptive notch filter for mechanical grain flow sensors. Journal of Sound and Vibration,2003, 266:645-654.
    [24]Selcuk Arslan, Thomas S.Colvin. An evaluation of the response of yield monitors and combines to varying yields[J].Precision Agriculture,2002,(3):107-122.
    [25]Blackmore B S.A yield map primer[R].Seminar on Precision Farming in Japan, U.S.A, and Europe,1998.
    [26]Mark Moore. An Investigation into the accuracy of yield maps and their subsequent use in crop management:[Dissertation].Denmark:Department of Agriculture and Biosystems Engineering,1998.
    [27]Birell S.J, Sudduth K.A, Borgelt S.C. Comparison of sensors and techniques of crop yield mapping. Computers and Electronics in Agriculture,1996,14: 215-223.
    [28]Murphy P, Schnug E, Haneklaus S. Yield mapping-A guide to improved technique and strategies.Proc.2nd International Conference on Site-Specific Management of Agriculture Systems. University of Minneapolis,1994,27-30.
    [29]Earl R, Wheeler P.N, Blackmore B.S, Godwin R.J. Precision Farming -The Management of Variability, Landwards, Institution of Agricultural Engineers, 1996,56(4):18-23.
    [30]陈树人,胡鹏等.谷物产量分布图生成系统的开发研究[J].农业工程学报,2008,24(8):182~184.
    [31]吴文波.GPS/GIS集成与开发及其在变量施肥中的应用研究[D].长春:吉林大学博士学位论文,2005.
    [32]胡均万,罗锡文等.双板差分冲量式谷物流量传感器设计[J].农业机械学报,2009,40(4):69~72.
    [33]胡均万,罗锡文,阮欢等.双板差分冲量式谷物流量传感器设计[J].农业机械学报,2009(4):69~72.
    [34]胡均万,罗锡文,陈树人等.联合收割机产量传感器振动信号影响分析与消除方法[J].中国农业机械学会,2008.
    [35]陈树人,杨洪博,李耀明等.双板差分冲量式谷物流量传感器性能试验[J].农业机械学报,2010,41(8):171~174.
    [36]孙宇瑞,汪懋华等.冲量法谷物流量测量系统的试验研究.农业机械学报,2001,32(4):48~50.
    [37]周俊,刘成良.平行梁冲量式谷物质量流量传感器信号处理方法[J].农业工程学报,2008(1):183~187.
    [38]周俊,周国祥,苗玉彬等.悬臂梁冲量式谷物质量流量传感器阻尼设计[J].农业机械学报,2005(11).
    [39]周俊,苗玉彬,张凤传等.平行梁冲量式谷物质量流量传感器田间实验[J].农业机械学报,2006(6):102~105.
    [40]周俊,刘成良.平行梁冲量式谷物质量流量传感器弹性元件设计[J].农业工程学报,2007(4):110~114.
    [41]刘成良,周俊,苑进等.新型冲量式谷物联合收割机智能测产系统[J].中国科学:信息科学,2010:226~231.
    [42]赵利军.利用PFA进行穗状玉米产量监测的可行性研究[D].长春:吉林大学硕士学位论文,2008.
    [43]齐江涛,张书慧,牛序堂等.穗状玉米测产系统设计与试验[J].农业机械学报,2011,42(1):181~185.
    [44]王晓丹.基于GPS的玉米测产数据采集和处理单元研究[D].长春:吉林大学硕士论文,2009.
    [45]张文革.一种谷物联合收割机自动测产控制系统:中国,200420067271.0[P].2005-08-31.
    [46]刘刚.基于CAN总线用于产量监测和变量作业的智能控制终端:中国,200520104284.5[P].2006-09-13.
    [47]侯建华.基于CAN总线的联合收割机智能控制系统的设计与实现[J].电子技术设计与运用,2010:24~26.
    [48]张彦娥,张漫,张文革等.采棉机测产系统数据采集与处理的试验研究[J].农业机械学报,2005,36(4):95~98.
    [49]李民赞,张文革,李相平等.谷物实时测产技术研究.“863计划”数字农业重大专项总体专家组、国家农业信息化工程技术中心,2005.
    [50]张伟,李民赞,张成龙.谷物测产系统智能监控技术研究.中国农业工程学会,2007.
    [51]孙志强,刘成良,曹其新.基于GPS的联合收割机智能测产仪器研制[J].机电工程,2003,20(2):5-8.
    [52]乔俊.谷物测产系统智能监控技术研究[D].黑龙江:八一农垦大学硕士论文,2009.
    [53]陈树人,张彦娥等人.基于农田空间管理系统的棉花产量图生成技术[J].江苏大学学报.2004,25(5):369~371.
    [54]陈伟,马蓉,卢帅等.棉花产量监测系统及应用研究[J].安徽农业科学,2010,38(30):17208~17210.
    [55]蔡伟伟,王秀,刘贺平.组件式GIS作物产量数据处理系统[J].微机发展,2005,15(8):98~104.
    [56]徐志莹.我国玉米收获机械发展现状[J].农业科技与装备.2010,10:83~85.
    [57]柳琪.国内主流玉米收获机产品竞争力分析[J].农业机械.2008,15:22-24.
    [58]http:/www.nongji360.com/subsidy/.
    [59]http://www.nongjitong.com/butie/2011_jilin/2011225402.aspx.
    [60]Ag Leader Technology. Precision Farming System Operators Manual. Ag Technology.1999.
    [61]王利霞.基于处方图的变量喷药系统研制[D].长春:吉林大学博士学位论文,2010.
    [62]冯锡仲,刘恒立等.中华人民共和国国标粮食、油料水分两次烘干测定法.中国标准出版社,2006.
    [63]陈赜.ARM嵌入式技术实践教程[M].北京:北京航空航天大学出版社,2005.2.
    [64]2410开发板快速开始手册.博创科技公司.
    [65]NETARM2410dvp for WINCE 实验指导书.Beijing Universal Pioneering Technology Co.,LTD.
    [66]Raj Kamal. Embedded Systems Architecture Programming and Design [M].北京:清华大学出版社,2005.
    [67]郑方晟WinCE 和 GPRS在水处理监控中的应用[D].武汉:武汉理工大学硕士学位论文,2009.
    [68]蓝旭.基于WinCE5.0的ARM9视频监控系统研究[D].成都:西南交通大学硕士学位论文,2009.
    [69]张瑛蕾.基于WinCE的车载多功能系统平台的研制[D].南京:南京理工大学硕士学位论文,2010.
    [70]张超,陈丙咸.地理信息系统[M].北京:高等教育出版社,1995.
    [71]Trimble Navigation Ltd. AgGPS 124/132 Operation Manual [M]. Sunnyvale, CA: Trimble Navigation Ltd.2000:153-163.
    [72]胡鹏.谷物产量数据处理及产量分布图生成系统的开发研究[D].镇江:江苏大学硕士学位论文,2005.
    [73]CASE Co.AFS Tutorial,2000.
    [74]http://zhidao.baidu.com/question/67953312.html.
    [75]http://baike.baidu.com/view/758812.htm.
    [76]高守传,聂云铭,郑静等.Visual C++6.0开发指南[M].北京:人民邮电出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700