基于多壁碳纳米管和4-SPCE的福氏志贺氏菌酶免疫传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
志贺氏菌是引起人类传染性疾病的主要病原体之一,平均每年都有上百万人感染痢疾。由志贺氏菌感染而引发的痢疾每年造成100多万人死亡,其中大多数是发展中国家的儿童。因此,志贺氏菌的检测对全球性痢疾和死亡的威胁非常重要,也对公众健康非常重要。
     过去几十年里,基于抗原-抗体特异性反应的电化学免疫传感器直是研究热点,广泛应用于食品分析、临床诊断、环境监测等研究领域。新型纳米材料和纳米技术的迅速发展为电分析化学提供了更多新的机会,多壁碳纳米管具有生物电化学稳定性和明显促进生物分子的电子传递作用,能作为生物活性物质的固定基质和构建生物传感器,在生物传感器领域具有较大的应用前景。
     本论文主要围绕以下几个方面开展了一些研究工作:
     1福氏志贺氏菌抗原的制备与灭活
     本试验成功制备了福氏志贺氏菌抗原,平板计数得抗原浓度为1011cfu/mL,然后以0.4%(v/v)甲醛灭活12 h。抗原形态学与文献报道一致,具有良好的生物活性和特异性,为后续工作的顺利开展奠定了基础。
     2多壁碳纳米管修饰的4-SPCE直接检测过氧化氢的研究
     构建用于过氧化氢检测的多壁碳纳米管修饰四通道丝网印刷碳电极,循环伏安阳极最大电流法测试结果表明:多壁碳纳米管能提高电极的有效表面积和加速电子的传递,循环伏安阳极最大电流与过氧化氢的浓度变化成线性关系,灵敏度和线性相关系数分别为0.3192μA/(mmol/L)和0.9979;检测方法过程简单,结果令人满意,为后续免疫传感器的研究打下了很好的基础。
     3基于多壁碳纳米管/DMF复合物和4-SPCE的福氏志贺氏菌酶免疫传感器的研制
     利用戊二醛交联法将辣根过氧化物酶标记的福氏志贺氏菌抗体固定在多壁碳纳米管修饰的四通道丝网印刷碳电极表面,制备了可用于检测福氏志贺氏菌的酶免疫传感器。采用循环伏安法对不同修饰电极进行电化学表征。根据抗原-抗体特异性结合形成的免疫复合物使敏感膜有效扩散截面积减小的特性,采用循环伏安法检测样品中的福氏志贺氏菌。在优化的实验条件下,该酶免疫传感器对福氏志贺氏菌的检测范围为104~109cfu/mL,检出限为3.4×103cfu/mL(S/N=3)。该酶传感器还具有较好的选择性、重现性、稳定性和准确性
     4基于多壁碳纳米管/壳聚糖复合物和4-SPCE的福氏志贺氏菌酶免疫传感器的研制
     为研究快速检测福氏志贺氏菌的电化学免疫传感器,将羧基化多壁碳纳米管与壳聚糖制备成复合物,应用此复合物将辣根过氧化物酶标记的福氏志贺氏菌抗体一步直接固定在四通道丝网印刷碳电极表面,制成快速检测福氏志贺氏菌的酶免疫传感器。采用原子力显微镜表征不同修饰电极的表面形态,循环伏安法考察不同电极的电化学特性和监测酶促反应,利用免疫反应前后还原峰峰电流的减小来测定福氏志贺氏菌。在优化的测定条件下,免疫电极对福氏志贺氏菌的检测范围为104~109cfu/mL,检出限为2.3×104 cfu/mL(S/N=3)。而且该酶免疫传感器具有较好的特异性、重现性、稳定性和准确性,该方法还具有快速、简便、易于操作和价格低廉等优点,具有用十福氏志贺氏菌快速筛检的潜力。
     5基于多壁碳纳米管/海藻酸钠复合物和4-SPCE的福氏志贺氏菌酶免疫传感器的研制
     为快速检测福氏志贺氏菌,将辣根过氧化物酶标记的福氏志贺氏菌抗体吸附在多壁碳纳米管/海藻酸钠复合物修饰的四通道丝网印刷碳电极表面,制得快速检测福氏志贺氏菌的酶免疫传感器。采用原子力显微镜表征不同修饰电极的表面形态,循环伏安法考察不同电极的电化学特性,采用一步免疫法检测福氏志贺氏菌和循环伏安法监测酶促反应,根据免疫反应前后还原峰峰电流的降低值来检测样品中的福氏志贺氏菌。在优化的实验条件下,酶免疫传感器与福氏志贺氏菌浓度的对数在104~1010 cfu/mL范围内保持良好的线性关系,检出限为3.1×103 cfu/mL(S/N=3)。该酶免疫传感器具有较好的特异性、重现性、稳定性和准确性,可望初步用于福氏志贺氏菌的快速筛检。
Shigella spp is one of the major causes of human infectious diseases and is responsible for millions of cases of diarrhea worldwide every year. More than one million deaths occur yearly due to infections with Shigella spp. and the victims are mostly children of the developing world. So as to deal with the global threat of disease and death caused by Shigella, its detection is very important for public health.
     In the past decades, electrochemical immunosensors based on the specificity of antigen-antibody interactions with electrochemical transduction, have become an attractive subject for food analysis, clinical diagnosis, environmental monitoring and other fields.
     The rapid development of new nanomaterials and nanotechnologies has provided many new opportunities for electroanalysis. Particularly, multi-wall carbon nanotubes (MWCNT) exhibit promising potential within the realm of bioelectrochemistry as the matrix to incorporate biorecognition elements and construct biosensors.
     The comments of this paper was described as follows:
     1 Preparation of Shigella flexneri
     In this experiment, Shigella flexneri (S. flexneri) was successfully prepared. The concentration of S. flexneri (1011 cfu/mL) was acquired by plate colony-counting method. Then inactivated with formaldehyde at a concentration of 0.4%(v/v) for 12 h at room temperature. Experimental results showed that S. flexneri possessed good bioactivity. Following experiment could be successfully carried on because of the supportment of the above work.
     2 MWCNT modified four-channel screen-printed carbon electrode for hydrogen peroxide determination
     A MWCNT modified four-channel screen-printed carbon electrode was successfully constructed to be used to detect hydrogen peroxide. Cyclic voltammetry (CV) was used to measure the concentration of hydrogen peroxide. The results showed that the MWCNT could enlarge the effective surface area of four-channel screen-printed carbon electrode and could enormously enhance the electron transfer. The sensitivity and correlation coefficient for hydrogen peroxide detection were 0.3192μA/(mmol/L) and 0.9979. The procedure is simple and the results obtained are satisfied.
     3 Fabrication of enzymatic immunosensor for Shigella flexneri detection based on MWCNT/DMF composite and four-channel screen-printed carbon electrode
     An immunosensor based on MWCNT/DMF composite was successfully constructed. The horseradish peroxidase labeled antibodies to S. flexneri (HRP-anti-S. flexneri) was co-immobilized on the four-channel screen-printed carbon electrode surface by crosslinking with glutaraldehyde to form a combined sensing and electron transfer system. CV was carried out to characterize the electrochemical properties of different electrodes and to detect S. flexneri. When the antigen (S. flexneri) was bound to the antibody on the surface of the sensing film, a "barrier" occurred between the electrode and the redox centres in the bound HRP. Under optimal conditions, concentrations of S. flexneri from 104 to 109 cfu/mL could be detected, with a detection limit of 3.4×103 cfu/mL (S/N=3).The immunosensor showed satisfactory selectivity, reproducibility, stability and accuracy.
     4 Rapid detection of Shigella flexneri with MWCNT/chitosan modified four-channel screen-printed carbon electrode
     A disposable S. flexneri immunosensor based on MWCNT/chitosan/ HRP-anti-S. flexneri biocomposite on four-channel screen-printed carbon electrode without any other cross-linked reagents has been developed. The MWCNT/chitosan matrix provided a congenial microenvironment for the immobilization of HRP-anti-S. flexneri and promoted the electron transfer. Due to the strong electrocatalytic properties of HRP and MWCNT toward H2O2, the current signal was significantly amplified. The atomic force microscope (AFM) technology was used to characterize the surface morphologies of different electrodes. And CV was carried out to characterize the electrochemical properties of different electrodes and detect S. flexneri. Under optimal conditions, concentrations of S. flexneri from 104 to 109 cfu/mL could be detected, with a detection limit of 2.3×104 cfu/mL (S/N=3). The proposed immunosensor displayed a satisfactory stability, reproducibility and accuracy. Moreover, the immunosensor was inexpensive, relatively simple to fabricate and had a potential possibility for early assessment of S. flexneri.
     5 A disposable immunosensor for Shigella flexneri based on MWCNT/sodium alginate composite and four-channel screen-printed carbon electrode
     A novel S. flexneri immunosensor based on HRP-anti-S. flexneri immobilized by physical adsorption on the MWCNT/sodium alginate (MWCNT/SA) composite modified four-channel screen-printed carbon electrode surface was successfully fabricated. In this strategy, MWCNT/SA biocomposite acted as the matrix to adsorb and immobilize HRP-anti-S. flexneri. The preparation process of modified electrodes was characterized with AFM and CV. The analytical performance of proposed immunosensor toward S. flexneri was investigated by CV. Under optimal conditions, the concentration of S. flexneri from 104 to 1010 cfu mL-1 could be detected, with a detection limit of 3.1×103 cfu/mL (S/N=3). The specificity, reproducibility, stability and accuracy of the proposed immunosensor were also evaluated. The proposed immunosensor showed simply fabricative, economical, efficient and potential application for early assessment of S. flexneri.
引文
[1]樊永祥.加强食品安全工作是关系人民群众健康的一件大事[J].中华预防医学杂志,2005,39(2):75-77.
    [2]索玉娟,于宏伟,凌巍,等.食品中金黄色葡萄球菌污染状况研究[J].中国食品学报,2008,8(3):88-93.
    [3]张志健,李里特.食品安全导论[M].北京:化学工业出版社,2009:50.
    [4]冯贻泽.食品微生物学的快速检测方法和自动化操作:25年回顾和预测[J].中国食品学报,2009,9(2):1-4.
    [5]李杜娟,王剑平,应义斌,等.检测食源性致病菌的生物传感器[J].中国生物化学与分子生物学报,2007,23(3):194-199.
    [6]Li Y, Zhuang S, Mustapha A. Application of a multiplex PCR for the simultaneous detection of Escherichia coli O157:H7, Salmonella and Shigella in raw and ready-to-eat meat products[J]. Meat Science,2005,71(2):402-406.
    [7]Andresen L O, Klausen J, Barfod K, et al. Detection of antibodies to Actinobacillus pleuropneumoniae serotype 12 in pig serum using a blocking enzyme-linked immunosorbent assay[J]. Veterinary Microbiology,2002,89(1):61-67.
    [8]Hale T L. Genetic basis of virulence in shigella specices[J]. Microbiology and Molecular Biology Reviews,1991,55(2):206-224.
    [9]Warren B R, Parish M E, Schneider K R. Shigella as a Foodborne Pathogen and Current Methods for Detection in Food[J]. Critical Reviews in Food Science and Nutrition,2006, 46(7):551-567.
    [10]黄金英,华卫平,孙小康.清远市1988-2001年细菌性痢疾流行情况分析[J].热带医学杂志,2002,2(2):203-204.
    [11]Korhary M H, Babu U S. Infective dose of foodborne pathogens in volunteers:a review[J]. Journal of Food Safety,2001,21(1):49-68.
    [12]许素芬,周海慧.一起腹泻爆发的病原检测[J].浙江预防医学,2007,19(10):27.
    [13]曹巍鲲,彭爱国,王发军.1起福氏志贺菌引起的腹泻病暴发调查[J].预防医学论坛,2007,13(9):851-852.
    [14]许兰菊,王川庆,胡功政,等.鸡志贺氏菌在我国的发现及其病原特性研究[J].中国预防兽医学报,2004,26(4):281-286.
    [15]陆季严,林禧,林汉城.从进口家禽冻品检出志贺氏菌[J].动植物检疫,1996,(1):22-24.
    [16]尹旭,陈惠清.从阿根廷进口冻鸡爪检出福氏志贺氏菌[J].中国动物检疫,1998,15(1):19-20.
    [17]Noriega F R, Liao F M, Maneval D R, et al. Strategy for cross-protection among Shigella flexneri serotypes[J]. Infection and immunity,1999,67(2):782-788.
    [18]Kotloff K L, Winickoff J P, Ivanoff B, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies[J]. Bulletin of the World Health Organization 1999,77(8):651-666.
    [19]严小蓉,任红兵,孙光忠,等.一起食源性痢疾疫情病原菌检测分析[J].预防医学情报杂志,2008,24(1):79-80.
    [20]陶哲,喻书彻.福氏志贺菌感染的发病机制和疫苗研制[J].国际儿科学杂志,2006,33(4):248-250.
    [21]Sansonetti P I. Shigella plays dangerous games[J]. American Society for Microbiology News,1999,65:612-616.
    [22]GB/T 4789.5-2003,食品卫生微生物学检验,志贺氏菌检验[S].
    [23]张红,黄策.点免疫结合试验和反向间接血凝试验检测粪便中福氏志贺氏菌的研究[J].单克隆抗体通讯,1992,8(4):22-26.
    [24]蔡亦红,姚余有.3种食源性致病菌的多重PCR快速检测方法的建立[J].中国卫生检验杂志,2007,17(11):1959-1962.
    [25]严笠,田小军,薛燕萍,等.应用多重PCR方法检测大肠埃希菌Ol 57:H7的初步研究[J].中国人兽共患病杂志,2001,17(3):80-82.
    [26]Kong R Y C, Lee S K Y, Law T W F, et al. Rapid detection of six types of bacterial pathogens in marine waters by multiplex PCR[J]. Water Research,2002, 36(11):2802-2812.
    [27]信息荟萃.天津致病菌检测基因芯片项目申请12项专利[J].上海医药,2003,24(6):288.
    [28]Sapsford K E, Rasooly A, Taitt C R, et al. Detection of Campylobacter and Shigella Species in Food Samples Using an Array Biosensor[J]. Analytical Chemistry,2004, 76(2):433-440.
    [29]Li Y, Mustapha A. Development of a polymerase chain reaction assay to detect enteric bacteria in ground beef[J]. Food Microbiology,2004,21(3):369-375.
    [30]钟青萍,葛萃萃,张世伟,等.检测食品中志贺氏菌的双抗夹心ELISA方法的研究[J].食品科技,2007,32(10):199-202.
    [31]胡建华,李洁莉,马兆飞,等.牛奶样品中志贺氏菌的快速PCR检测技术研究[J].食品科学,2007,28(8):433-437.
    [32]杨平,杨迎伍,陈伟,等.食品中4种致病微生物的多重PCR快速检测技术研究[J].西南大学学报:自然科学版,2007,29(5):90-94.
    [33]Zhu W J, Chen L L, Yang Z H, et al. Automatic detection of Staphylococcus aureus and Shigella dysenteriae with separated electrodes series piezoelectric sensing technique[J]. World Journal of Microbiology and Biotechnology,2008,24(7):1073-1079.
    [34]Jin D Z, Qi H J, Chen S H, et al. Simultaneous detection of six human diarrheal pathogens by using DNA microarray combined with tyramide signal amplification[J]. Journal of Microbiological Methods,2008,75(2):365-368.
    [35]吴清平,范宏英,张菊梅.食源性致病菌免疫及分子检测新技术研究进展[J].食品科学,2005,26(11):269-273.
    [36]李志勇,王菊芳.食源性致病菌的快速检验方法[J].检验检疫科学,2005,15:129-132.
    [37]North JR. Immunosensors:antibody-based biosensors[J]. Trends in Biotechnology,1985, 3(7):180-186.
    [38]Pemberton R M, Hart J P, Mottram T T. An electrochemical immunosensor for milk progesterone using a continuous flow system[J]. Biosensors and Bioelectronics,2001, 16(9-12):715-723.
    [39]Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for Schistosoma japonium antibody assay[J]. Analytical Chemistry,2001,73(14):3219-3226.
    [40]Lin J H, Yan F, Hu X Y, et al. Chemiluminescent immunosensor for CA19-9 based on antigen immobilization on a cross-linked chitosan membrane[J]. Journal of immunological methods,2004,291(1-2):165-174.
    [41]Messina G A, De Vito I E, Raba J. Screen-printed immunosensor for quantification of human serum IgG antibodies to Helicobacter pylori[J]. Sensors and Actuators:B. Chemical,2007,128(1):23-30.
    [42]Zhao G Y, Xing F F, Deng S P. A disposable amperometric enzyme immunosensor for rapid detection of Vibrio parahaemolyticus in food based on agarose/Nano-Au membrane and screen-printed electrode[J]. Electrochemistry Communications,2007, 9(6):1263-1268.
    [43]Pribyl J, Hepel M, Halamek J, et al. Development of piezoelectric immunosensors for competitive and direct determination of atrazine[J]. Sensors and Actuators:B. Chemical, 2003,91(1-3):333-341.
    [44]藤嫣昭,相泽益男,井上撤.电化学测定方法[M].北京:北京大学出版社1995:169.
    [45]贾铮,戴长松,陈玲.电化学测量方法[M].北京:化学工业出版社2006,第一版:137.
    [46]Schreiber A, Feldbriigge R, Key G, et al. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction[J]. Biosensors and Bioelectronics,1997,12(11):1131-1137.
    [47]Xu Y F, Velasco-Garcia M, Mottram T T. Quantitative analysis of the response of an electrochemical biosensor for progesterone in milk[J]. Biosensors and Bioelectronics, 2005,20(10):2061-2070.
    [48]Gilmartin M A T, Hart J P, Birch B. Voltametric and amperometric behavior of uric acid at bare and surface-modified screen-printed electrodes:studies towards a disposable acid sensor[J]. Analyst,1992,117:1299-1303.
    [49]Kirgoz U A, Tural H, Timur S, et al. Laccase biosensors based on mercury thin film electrode[J]. Artificial Cells, Blood Substitutes and Biotechnology,2005,33(4):447-456.
    [50]Solna R, Dock E, Christenson A, et al. Amperometric screen-printed biosensor arrays with co-immobilised oxidoreductases and cholinesterases[J]. Analytica Chimica Acta, 2005,528(1):9-19.
    [51]Yu H, Yan F, Dai Z, et al. A disposable amperometric immunosensor for α-1-fetoprotein based on enzyme-labeled antibody/chitosan-membrane-modified screen-printed carbon electrode[J]. Analytical Biochemistry,2004,331(1):98-105.
    [52]李松林,崔建明.导电聚合物固定酶生物传感器研究进展[J].材料导报,2006,20(4):38-40.
    [53]Zheng H, Xue H G, Zhang Y F, et al. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst[J]. Biosensors and Bioelectronics,2002,17(6-7):541-545.
    [54]Zhou H H, Chen H, Luo S L, et al. Preparation and bioelectrochemical responses of the poly(m-phenylenediamine) glucose oxidase electrode[J]. Sensors and Actuators:B. Chemical,2004,101(1-2):224-230.
    [55]Hench L L, West J K. The sol-gel process[J]. Chemical Reviews,1990,90(1):33-72.
    [56]Walcarius A. Electroanalysis with Pure, Chemically Modified and Sol-Gel-Derived Silica-Based Materials[J]. Electroanalysis,2001,13(8-9):701-718.
    [57]董绍俊,程广金,李彬,等.凝胶包埋酶制备生物传感器的方法:中国,96123528.4[P].1999-11-17.
    [58]董绍俊,李彬,王炳全.溶胶-凝胶包埋酶制备生物传感器的方法:中国,97117266.8[P].2001-6-20.
    [59]Ulman, A. An introduction to ultrathin organic films from Langmuir-Blodgett to self assembly[M]. Academic Press:New York,1991.
    [60]李景虹,程广金,董绍俊.自组装膜技术在电分析化学中的研究与应用[J].分析化学,1996,24(9):1093-1099.
    [61]秦玉华,张术勇,庞琳.自组装单分子膜在生物传感器中的应用[J].东北电力学院学报,2004,24(1):27-30.
    [62]姜雄平,许丹科,马立人.金自组膜固定生物分子技术在核酸及免疫传感器中的应用[J].解放军药学学报,2001,17(5):262-265.
    [63]李丹,王桦,吴朝阳,等.基于巯基自组装单层膜技术的补体C3压电免疫传感器的研究[J].分析科学学报,2005,21(3):241-244.
    [64]林丽,曹旭妮,张文,等.碳纳米管修饰电极用于高效液相色谱对全血中巯基化合物的测定[J].分析化学,2003,31(3):261-265.
    [65]骆永全,王伟平,李剑峰,等.碳纳米管悬浮液的光限幅特性实验研究[J].强激光与粒子束,2006,18(6):895-898.
    [66]Zhao Q, Gan Z H, Zhuang Q K. Electrochemical sensors based on carbon nanotubes[J]. Electroanalysis,2002,14(23):1609-1613.
    [67]Ajayan PM. Nanotubes from Carbon[J]. Chemical Reviews,1999,99(7):1787-1800.
    [68]Ajayan P M, Ebbesen T W. Nanometre-size tubes of carbon[J]. Reports on Progress in Physics,1997,60:1025-1062.
    [69]Poncharal P, Wang Z L, Ugarte D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science,1999,283(5407):1513-1516.
    [70]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:56-58.
    [71]Banks C E, Compton R G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection:an edge plane pyrolytic graphite electrode study[J]. Analyst,2005, 130:1232-1239.
    [72]Jeykumari D R S, Ramaprabhu S, Narayanan S S. A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide[J]. Carbon,2007,45(6):1340-1353.
    [73]Shahrokhian S, Zare-Mehrjardi H R. Application of thionine-nafion supported on multi-walled carbon nanotube for preparation of a modified electrode in simultaneous voltammetric detection of dopamine and ascorbic acid[J]. Electrochimica Acta,2007, 52(22):6310-6317.
    [74]Guo M L, Chen J H, Nie L H, et al. Electrostatic assembly of calf thymus DNA on multi-walled carbon nanotube modified gold electrode and its interaction with chlorpromazine hydrochloride[J]. Electrochimica Acta,2004,49(16):2637-2643.
    [75]Sotiropoulou S, Gavalas V, Vamvakaki V, et al. Novel carbon materials in biosensor systems[J]. Biosensors and Bioelectronics,2003,18(2-3):211-215.
    [76]Zare H R, Nasirizadeh N. Hematoxylin multi-wall carbon nanotubes modified glassy carbon electrode for electrocatalytic oxidation of hydrazine[J]. Electrochimica Acta, 2007,52(12):4153-4160.
    [77]Qi H L, Zhang C X. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes[J]. Electroanalysis, 2005,17(10):832-838.
    [78]Yan X B, Chen X J, Tay B K, et al. Transparent and flexible glucose biosensor via
    layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase[J]. Electrochemistry Communications,2007,9(6):1269-1275.
    [79]麦智彬,谭学才,邹小勇.基于碳纳米管的化学修饰电极及电化学生物传感器的研究进展[J].分析测试学报,2006,25(3):120-125.
    [80]欧朝凤,袁若,柴雅琴,等.基于硫堇/碳纳米管修饰金电极的过氧化氢生物传感器[J].分析化学,2007,35(7):1011-1014.
    [81]周君,狄俊伟,吴莹,等.基于多壁碳纳米管化学修饰电极直接测定饮料中的麦芽酚[J].应用化学,2008,25(1):81-84.
    [82]Cheng Y X, Liu Y J, Huang J J, et al. Fabrication of tyrosinase biosensor based on multiwalled carbon nanotubes-chitosan composite and its application to rapid determination of coliforms[J]. Electroanalysis,2008,20(13):1463-1469.
    [83]姚冬生,文圣梅,刘大岭,等.多壁碳纳米管固定化生物酶修饰电极检测杂色曲霉素的初步研究[J].生物工程学报,2004,20(4):601-606.
    [84]Deo R P, Wang J, Block I, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor[J]. Analytica Chimica Acta,2005,530(2):185-189.
    [85]Wu K B, Hu S S, Fei J J, et al. Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes[J]. Analytica Chimica Acta,2003,489(2):215-221.
    [86]张东东,漆红兰,李小蓉.碳纳米管组装电化学免疫传感器测定IgG抗体的研究[J].传感技术学报,2008,21(5):719-723.
    [87]朱力,刘先凯,赵格,等.弗氏2a志贺菌2457T株碱性蛋白质组图谱的建立[J].生物技术通讯,2007,18(3):430-433.
    [88]牛天贵,张宝芹,李淑高.食品微生物检验[M].北京:中国计量出版社,2006:212.
    [89]GB/T 4789.2-2008,食品卫生微生物学检验.菌落总数测定[S].
    [90]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,1999:28-30,92-95.
    [91]彭琨,王洋,谭慧.食品中过氧化氢残留量的测定[J].粮油食品科技,2004,12(6):33-34.
    [92]赵士权,林明珠.水发产品浸泡液中过氧化氢的快速测定方法[J].中国卫生检验杂 志,2006,16(3):295.
    [93]潘勇军,谢洪泉,谭晓明,等.碘量滴定法测定过氧化氢溶液浓度的改进[J].理化检验-化学分册,2003,39(7):404-405.
    [94]朱明霞.过氧化氢在类普鲁士蓝化学修饰电极上的伏安性质[J].化学研究与应用,1999,11(2):216-217
    [95]麦智彬,潭学才,邹小勇.一种基于碳纳米管的安培型过氧化氢生物传感器[J].分析化学,2006,34(6):801-804.
    [96]高风仙,袁若,柴雅琴,等.基于聚硫堇和纳米金共修饰的过氧化氢生物传感器的研究[J].分析测试学报,2007,26(1):81-84.
    [97]Liu C Y, Hu J M. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film[J]. Biosensors and Bioelectronics,2009,24(7):2149-2154.
    [98]李利军,喻来波,程吴,等.多壁碳纳米管修饰电极-不可逆双安培法测定双嘧达莫[J].分析化学,2008,36(8):1077-1082.
    [99]Li Q S, Ye B C, Liu B X, et al. Enhancement of the sensitivity and selectivity of oxidation of H2O2 on platinum wire at low working potential by platinization and covering of heteropolypyrrole film for amperometric micro-biosensor construction [J]. Fresenius' Journal of Analytical Chemistry,1999,363(3):246-250.
    [100]林丽,张华杰,仇佩虹,等.羧基化多壁碳纳米管修饰电极伏安法测定多巴胺[J].温州医学院学报,2003,33(2):73-75.
    [101]Viswanathan S, Wu L C, Huang M R, et al. Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes[J]. Analytical Chemistry,2006,78(4):1115-1121.
    [102]Okuno J, Maehashi K, Kerman K, et al. Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes[J]. Biosensors and Bioelectronics,2007,22(9-10):2377-2381.
    [103]孙延一,吴康兵,胡胜水.多壁碳纳米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺[J].高等学校化学学报,2002,23(11):2067-2069.
    [104]Yu X, Kim S N, F Papadimitrakopoulos, et al. Protein immunosensor using single-wall carbon nanotube forests with electrochemical detection of enzyme labels[J]. Molecular
    BioSystems,2005,24(1):70-78.
    [105]陈文静,屈建莹.基于静电吸附碳纳米管和壳聚糖固定葡萄糖氧化酶的生物传感器[J].分析化学,2009,37(5):733-736.
    [106]O'Connor M, Kim S N, Killard A J, et al. Mediated amperometric immunosensing using single walled carbon nanotube forests[J]. Analyst,2004,129(12):1176-1180.
    [107]李利军,钟亮,蔡卓,等.对乙酰氨基酚在多壁碳纳米管L-半胱氨酸共组装修饰金电极上的电化学行为研究及其测定[J].分析化学,2008,36(12):1651-1656.
    [108]瞿万云,王宏,吴康兵.异烟肼在多壁碳纳米管修饰电极上的电化学行为及电化学测定[J].分析化学,2005,33(10):1431-1434.
    [109]钱军民,李旭祥.固定化技术在生物传感器中的应用[J].传感器技术,2001,20(7):6-10.
    [110]陈向强,何苗,蔡强,等.检测水中有机磷农药的酶传感器[J].环境科学,2006,27(8):1627-1630.
    [111]Li J P, Gao H L. A renewable potentiometric immunosensor based on Fe3O4 nanoparticles immobilized anti-IgG[J]. Electroanalysis,2008,20(8):881-887.
    [112]丁兆红,张明虎,赵常志.电位型无标记IgG免疫探针测人IgG[J].化学传感器,2005,25(1):36-38.
    [113]马静,张伟尉,李闻,等.基于纳米金固定大肠杆菌0157:H7酶免疫传感器的研究[J].中国卫生检验杂志,2007,17(12):2156-2173.
    [114]张凌燕,易旻.新型无标记h-IgG电流型免疫传感器的研究[J].西南师范大学学报:自然科学版,2008,33(2):64-68.
    [115]晋卫军,孙旭峰,王煜.碳纳米管溶解性及其化学修饰[J].新型炭材料,2004,19(4):312-318.
    [116]Zhang M G, Gorski W. Electrochemical Sensing Platform Based on the Carbon Nanotubes/Redox Mediators-Biopolymer System[J]. Journal of the American Chemical Society,2005,127(7):2058-2059.
    [117]Wu Z G, Feng W, Feng Y Y, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties[J]. Carbon,2007, 45(6):1212-1218.
    [118]时巧翠,彭图治,陈金媛.碳纳米管负载铂修饰电极结合溶胶-凝胶技术制备胆固 醇传感器[J].分析化学,2005,33(3):329-332.
    [119]王存嫦,阳明辉,鲁亚霜,等.一种新的多层碳纳米管复合膜修饰的葡萄糖生物传感器制备[J].传感技术学报,2007,20(1):18-21.
    [120]渠凤丽,史爱武,阳明辉,等.基于掺杂碳纳米管的复合体系电化学生物传感器研究[J].分析科学学报,2008,24(1):17-20.
    [121]池永明,李将渊,马曾燕,等.茜素红-多壁碳纳米管修饰电极测定尿酸[J].西华师范大学学报:自然科学版,2008,29(1):51-54.
    []22]艾珍,廖钫,朱林,等.酵母核糖核酸在碳纳米管修饰电极上的电化学行为及其分析测定[J].分析测试学报,2005,24(5):56-58.
    [123]Guan W J, Li Y, Chen Y Q, et al. Glucose biosensor based on multi-wall carbon nanotubes and screen printed carbon electrodes[J]. Biosensors and Bioelectronics,2005, 21(3):508-512.
    [24]王酉,徐惠,李光.基于碳纳米管修饰丝网印刷碳糊电极的葡萄糖和尿酸生物传感器[J].传感技术学报,2006,19(5):2077-2080.
    [125]Panini N V, Messina G A, Salinas E, et al. Integrated microfluidic systems with an immunosensor modified with carbon nanotubes for detection of prostate specific antigen (PSA) in human serum samples[J]. Biosensors and Bioelectronics,2008, 23(7):1145-1151.
    [126]Aziz M A, Park S, Jon S, et al. Amperometric immunosensing using an indium tin oxide electrode modified with multi-walled carbon nanotube and poly(ethylene glycol)-silane copolymer[J]. Chemical Communications,2007:2610-2612.
    [127]张凌燕,袁若,柴雅琴,等.基于辣根过氧化物酶/纳米金/辣根过氧化物酶/多壁纳米碳管修饰的过氧化氢生物传感器的研究[J].化学学报,2006,64(16):1711-1715.
    [128]Upadhyay AK, Peng Y Y, Chen S M. Immobilization of horseradish peroxidase and nile blue into the ormosil nanocomposite for the fabrication of hydrogen peroxide biosensor based on MWCNT modified glassy carbon electrode[J]. Sensors and Actuators:B. Chemical,2009,141(2):557-565.
    [129]刘润,郝玉翠,康天放.基于碳纳米管修饰电极检测有机磷农药的生物传感器[J].分析试验室,2007,26(9):9-12.
    [130]时巧翠,王素芬.辣根过氧化物酶生物传感器检测苯肼的研究[J].化学通报,
    2008(5):373-377.
    [131]吴子刚,林鸿波,封伟.碳纳米管/壳聚糖复合材料.化学进展,2006,18(9):1200-1207.
    [132]丁中华,康天放,郝玉翠,等.碳纳米管/壳聚糖修饰电极的制备及其对NADH的电催化氧化[J].化学研究与应用,2008,20(4):374-377.
    [133]Rosatto S S, Kubota L T, Oliveira Neto G. Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica-titanium[J]. Analytica chimica acta,1999,390(1-3):65-72.
    [134]Liu G D, Wu Z Y, Wang S P, et al. Renewable amperometric immunosensor for Schistosoma japonicium antibody assay[J]. Analytical Chemistry,2001, 73(14):3219-3226.
    [135]Dai Z, Yan F, Chen J, et al. Reagentless amperometric immunosensors based on direct electrochemistry of horseradish peroxidase for determination of carcinoma antigen-125[J]. Analytical Chemistry,2003,75(20):5429-5434.
    [136]Ghindilis A L, Atanasov P, Wilkins M, et al. Immunosensor:electrochemical sensing and other engineering approaches[J]. Biosensors and Bioelectronics,1998, 13(1):113-131.
    [137]孟辉,徐建军,梁汝萍,等.溶胶-凝胶非标记免疫传感器检测乙肝表面抗原[J].分析化学,2004,32(8):1011-1015.
    [138]李杜娟,王剑平,盖玲,等.快速检测大肠杆菌O157:H7的电化学阻抗免疫生物传感器[J].传感技术学报,2008,21(5):709-714.
    [139]Lin YH, Chen S H, Chuang Y C, et al. Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of foodborne pathogen Escherichia coli O157:H7[J]. Biosensors and Bioelectronics,2008,23(12):1832-1837.
    [140]赵广英,邢丰峰.基于琼脂糖和纳米金的电流型免疫传感器快速检测副溶血性弧菌[J].传感技术学报,2007,20(8):1697-1700.
    [141]Rehm B H A, Valla S. Bacterial alginates:biosynthesis and applications[J]. Applied Microbiology and Biotechnology,1997,48(3):281-288.
    [142]Liu C H, Guo X L, Cui H T, et al. An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase[J]. Journal of Molecular Catalysis. B, Enzymatic,2009,60(3-4):151-156.
    [143]Wang L, Shelton R M, Cooper P R, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering[J]. Biomaterials,2003,24:3475-3481.
    [144]孙文斌,吴芳辉.多壁碳纳米管修饰玻碳电极测定乳糖酸红霉素[J].理化检验-化学分册,2008,44(1):1-4.
    [145]Wang J, Musameh M, Lin Y. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors[J]. Journal of the American chemical society, 2003,125(9):2408-2409.
    [146]许淑霞,吴金生,张勇,等.纳米金固定辣根过氧化物酶的碳纳米管修饰第3代过氧化氢传感器的研究[J].分析测试学报,2008,27(10):1099-1102.
    [147]Zeng B Z, Huang F. Electrochemical behavior and determination of fluphenazine at multi-walled carbon nanotubes/(3-mercaptopropyl)trimethoxysilane bilayer modified gold electrodes[J]. Talanta,2004,64(2):380-386.
    [148]Li N, Yuan R, Chai Y Q, et al. Sensitive immunoassay of human chorionic gonadotrophin based on multi-walled carbon nanotube-chitosan matrix[J]. Bioprocess and Biosystems Engineering,2008,31(6):551-558.
    [149]Du D, Xu X X, Wang S F, et al. Reagentless amperometric carbohydrate antigen 19-9 immunosensor based on direct electrochemistry of immobilized horseradish peroxidase[J]. Talanta,2007,71(3):1257-1262.
    [150]Ju H X, Yan G F, Chen F, et al. Enzyme-linked immunoassay of α-1-Fetoprotein in serum by differential pulse voltammetry[J]. Electroanalysis,1999,11(2):124-128.
    [151]闵丽根,袁若,柴雅琴,等.基于纳米金与碳纳米管-纳米铂-壳聚糖纳米复合物固定癌胚抗原免疫传感器的研究[J].化学学报,2008,66(14):1676-1680.
    [152]Ou C F, Yuan R, Chai Y Q, et al. A novel amperometric immunosensor based on layer-by-layer assembly of gold nanoparticles-multi-walled carbon nanotubes-thionine multilayer films on polyelectrolyte surface[J]. Analytica chimica acta,2007, 603(2):205-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700