全塑料注水阀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着液压技术的发展,作为一种自动控制手段,在众多的工业领域中液压技术已经成功地获得了广泛应用。阀类元件也随着液压技术的发展而日趋完备,针对一些具体的工作要求,具有新型材料、结构及功能的阀类元件得到研究与应用。本文介绍的全塑料注水阀即是为铅酸蓄电池充液的特殊工作需要而研制的,是一种响应灵敏、控制精度高及性能稳定、可靠的自动控制元件。
     本文通过认真分析研究国内外塑料阀类元件及注水系统的发展现状,提出了研制的技术关键,然后在此基础上研究设计了全塑料注水阀。由于本阀特殊的工况,即强酸性且温度较高的工作环境,因此采用了耐酸、耐高温的塑料作为阀的材料。且要求注水阀在充液达到一定量的情况下,实现自动关闭以停止充液。本阀采用杠杆作用的原理,利用液体对注水阀浮筒产生的浮力,通过杠杆推动阀芯使阀口关闭,实现了自动控制的功能。
     运用CFD(Computational Fluid Dynamics)软件FLUENT对全塑料注水阀阀口进行3D数值仿真研究,描绘了注水阀工作过程中,液体在阀腔内的压力场和速度场的分布情况。并由仿真结果计算作用在阀芯上平衡力及液动力,分析比较了两种不同的阀口结构形式,为合理设计注水阀结构提供了依据。
     在全塑料注水阀结构设计的基础上,本文依据阀口流量方程和阀芯动力学平衡方程,建立了注水阀的静、动态数学模型,并运用数字仿真技术对该阀的特性进行了仿真分析,从理论上分析了各种结构参数对阀的静、动态特性的影响,为注水阀的参数设计提供了依据。
     最后,研制出四个注水阀样机,并建立了注水实验平台,测试了单个注水阀的注水性能,并用四个注水阀样机组成了注水系统,进行了注水实验研究。
With the development of hydraulic technology, hydraulics has been applied widely in many industry fields as an automatic control means. The various valves are also studied with the development of hydraulics. In order to satisfy some special industry requirements, the new types of valves are studied and applied with new material, new structures and new functions. The watering valve presented in this paper is researched for the water supplement of lead-acid batteries. The valve is one kind of autocontrol components, which has sensitive response, accurate control and steady function.
     Domestic and foreign research of plastic valves and watering system are generalized, and the difficulties to develop the valve and watering system are discussed. The watering valve is designed based on it. Because of acidity and high temperature work condition, the watering valve is made of acid-resistant and high temperature resistant material. The valve should stop watering automatically when the water supplement is enough. The upward force which the liquid acts on the pontoon, pushes down the valve core until the orifice is closed by the lever which connects the pontoon and valve core.
     Through numerical 3D simulation research for all plastic watering valve with CFD (Computational Fluid Dynamics) software FLUENT, the pressure field and velocity field of the flow inside the valve were mastered while the valve was working. Figured out the value of counterbalance and hydrodynamic force acting on the valve core according to the result of simulation research, and the two different structure formations were analyzed and compared, sequentially supplied the basis for the suitable design of the valve structure.
     The mathematical model describing the characteristics of the valve is established based on Orifice Flow Equation and Poppet Balance Equation. Computer numerical simulation is introduced to analyze the characteristics of the valve, and the structure parameters influencing the characteristics of the valve are discussed. The investigation provides the support for parameter design of the valve.
     Finally, four samples of watering valves are manufactured, and a watering test system is established and the watering function of each single watering valve is tested. A watering system is built with the four watering valves designed, it’s function is tested with the same experiment system.
引文
[1] 李壮云,葛宜远,陈尧明.液压元件与系统.北京:机械工业出版社,1999:5~7
    [2] 许福玲,陈尧明.液压与气压传动.北京:机械工业出版社,1997:4~5
    [3] G.h.Lim, P. S. K. Chua, Y. B. He. Modern Water Hydraulics—the New Energy Transm -ission Technology in Fluid Power. Applied Energy, 2003 (76): 239~246
    [4] Li Zhuangyun. The Development and Perspective of Water Hydraulics. Fluid Power Forth JHPS International Symposium, JHPS,1999, 212~215
    [5] 张奕.水液压系统的发展现状与面临的挑战.液压与气动,1999(1):2~3
    [6] 杨尔庄.我国液压气动技术现况及展望.液压与气动,1998(6):1~6
    [7] M. Bhenia, D. M. Ellerman. Valves Gain TUV Approval. Reinforced Plastics, 2003(1): 13~15
    [8] 留今越.试论塑料阀类产品的市场前景及其新品开发.中外轻工科技,2001,No.1,8~10
    [9] SHIN KOBE ELECTRIC MACHINERY. Water supplement stopper for lead storage battery used for electrically driven forklift truck. Patent Number(s): JP2004288559-A
    [10] YUASA CORP KK(YUAS). Stopper for water supplement apparatus of liquid type battery package. Patent Number(s): JP2003346782-A
    [11] 万大松.油田注水自动化的设计与应用.自控工程设计,2005(6):79~81
    [12] 李云光,王书方,周学文.一分压注水技术工程实例.工程论坛,2005(5):104~105
    [13] 徐龙,李贵年,白亿平等.三套压力注水系统在低渗透油藏的开发实践.内蒙古石油化工,2004(30):98~99
    [14] 马一骏,李家俊,刘玉民等.采油厂注水系统腐蚀研究与控制.工业水处理,2004(6):62~65
    [15] 张瑞杰,常玉连,任永良等.油田注水系统生产运行优化.钻采工艺,2005(9):44~46
    [16] Dagfinn B. Sivertsen. Single-point watering of lead/acid batteries. Journal of Power Sources, 1995 (53): 293~295
    [17] 沈建国,洪仕苗,常风云等.蓄电池注水装置水位控制原理研究与实现.海军工程大学学报,2003(15):73~76
    [18] JAPAN STORAGE BATTERY CO LTD (NIST). Water-supplement apparatus for lead storage battery. Patent Number(s): JP200 -5056632-A
    [19] 卢国琦等著.铅酸蓄电池的原理与制造.北京:国防工业出版社,1988:33~38
    [20] J. E. Manders, N. Bui, D. W. H. Lambert, J.Navarette, R.F. Nelson, etc. Lead/acid battery design and operation. Journal of Power Sources 1998 (73): 152~161
    [21] 王德志,范孝铨,李兰宁著.阀控密封铅酸蓄电池.北京:中国铁道出版社,2001:45~50
    [22] 朱松然主编.铅蓄电池技术.北京:机械工业出版社,2000:60~68
    [23] 徐品弟,柳厚田著.铅酸蓄电池基础理论和工艺原理.上海:上海科学技术出版社,1996:78~84
    [24] D. A. J. Rand, D. P. Boden, etc. Manufacturing and Operational Issues with Lead-acid Batteries. Journal of Power Sources 2002 (107): 280~300
    [25] 隋福楼编著.非金属材料学.武汉:华中理工大学出版社,1994:90~98
    [26] 周新建.MXG-500/4.5H电牵引采煤机纯水介质调高系统连续增压的实现.液压与气动,2002(3):41~43
    [27] 池田他.超高压海水ポソプの开发.油压と空气压,1998(6):1~6
    [28] Pohls O. Kuikko. Sea Water Hydraulic Axial Piston Machine. The 6th Scandinavian International Conference on Fluid Power. Tampere Finland, 1999(5): 26~28
    [29] 张孝民编著.塑料模具技术.北京:机械工业出版社,2003:45~50
    [30] 余祖耀.高压大流量差压压力控制阀的研制.武汉:华中理工大学硕士论文,1996:23~26
    [31] 杨钢.高压随动压力控制阀的研制.武汉:华中理工大学硕士论文,1998:10~13
    [32] 宋鸿尧.液压阀设计与计算.北京:机械工业出版社,1982:82~85
    [33] E. C. Fitch, I. T. Hong. Hydraulic Component Design and Selection. Oklahoma: BarDyne, Inc. 2001: 6~11
    [34] 韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用.北京:北京理工大学出版社,2004:19~22
    [35] 王虎.高压气动阀控缸一体化元件的研究.武汉:华中科技大学硕士论文,2005:38~40
    [36] 王福军编著.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004:21~22
    [37] Z. Mazur, R. Campos-Amezcua, G.Urquiza-Beltran, A. Garca-Gutierrez. Numerical 3D simulation of the erosion due to solid particle impact in the main stop valve of a steam turbine.Applied Thermal Engineering 2004 (24): 1877~1891
    [38] 付文智,李明哲,李东平等.液压锥阀的数值模拟.机床与液压,2004(2):4~6
    [39] 甘登岱,杨占尧,李纪英编著.Pro/ENGINEER 2000i/i2与三维模型设计.北京:清华大学出版社,2002
    [40] 许辉,邹早建.基于FLUENT软件的小水线面双体船粘性流数值模拟.武汉理工大学学报,2004,28(1):8~10
    [41] Matthew J.Stevenson, Xiao Dong Chen. Visualization of the Flow Patterns in a High -pressure Homogenizing Valve Using a CFD Package. Journal of Food Engineering 1997 (33): 151~165
    [42] 李振辉.锥阀特性研究.长春光学精密机械学报,1998(12):56~58
    [43] K.L.McElhaney. An Analysis of Check Valve Performance Characteristics Based on Valve Design. Nuclear Engineering and Design 2000(197): 169~182
    [44] Jianwei She, Mingyang Li, Lianjin Huan, Yanzheng Yu.Dynamic characteristics of prosthetic heart valves. Medical Engineering & Physics. 1995 (17): 273~281
    [45] 刘元林,刘春生,张艳军.具有阀座面的圆锥阀芯直动式溢流阀特性的研究.机床与液压,2005(6):80~82
    [46] 曹秉刚,郭卯应,中野和夫.内流式锥阀液动力及阀心锥面压强分布的实验研究.西安交通大学学报,1995,29(7):7~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700