长庆超低渗储层特征及渗流规律实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用恒速压汞技术、核磁共振技术、离心实验技术和微量驱替实验技术,对来自长庆油田的超低渗砂岩储层岩样进行研究,并将其实验结果与长庆的特低渗储层岩样和致密储层岩样的实验结果进行对比,研究了超低渗储层特征及渗流规律,得到以下结论:
     1.通过对储层微观孔隙结构的研究可知,长庆超低渗储层孔隙和喉道发育比特低渗储层要差,比致密储层要好。相对于特低渗储层来说,超低渗储层孔喉比较大且分布范围较宽,大喉道及大喉道所控制的孔隙体积明显较少。
     2.通过对储层可动流体的研究可知,长庆超低渗砂岩储层与特低渗砂岩储层可动流体饱和度都超过了40%。即使是可动流体饱和度相近的超低渗(K>0.3×10-3μm2)岩样与特低渗岩样,超低渗岩样大喉道控制的可动流体也明显少于特低渗岩样大喉道控制的可动流体;致密储层的可动流体饱和度小于特低渗和超低渗储层的可动流体饱和度,可动流体几乎全为半径小于0.2μm的小喉道所控制。长庆超低渗储层T2截止值平均值为15.22ms。
     3.通过对储层单相流体渗流规律的研究可知,相对于长庆特低渗储层来说,超低渗储层和致密储层注水将更加艰难。长庆渗透率小于0.3×10-3μm2的超低渗储层启动压力梯度要远高于特低渗储层,而低于致密储层;渗透率、有效喉道半径以及可动流体饱和度均对启动压力梯度有一定的影响。
By using rate-controlled mercury penetration technology, NMR technology, centrifuged laboratory experiment and micro displacement experiment, this paper studied the rock samples from ultra-low permeability sandstone reservoirs in Changqing oil field. Then, the experiment results of these samples are compared with that of extra-low permeability ones and tight ones also coming from Changqing so that the reservoir characteristics and seepage law of ultra-low permeability reservoirs can be discussed. The studies provide the following results:
     1. From the study of reservoir microcosmic pore structure, it can be known that the pore and throat development of ultra-low permeability reservoirs in Changqing is worse than that of extra-low permeability reservoirs in Changqing and better than that of tight reservoirs in Changqing. Compared with extra-low permeability reservoirs, the pore throat ration of ultra-low permeability reservoirs is bigger and its distribution range is broader; meanwhile, the large throats and the pore volume controlled by large throats in ultra-low permeability reservoirs are far less.
     2. From the study of reservoir movable fluid, it can be known that the average of movable fluid saturation of extra-low permeability reservoirs and ultra-low permeability reservoirs in Changqing is more than 40%. Even though the total movable fluid saturation in ultra-low permeability (K>0.3x10-3μm2) sample is close to that in extra-low permeability one, the movable fluid content controlled by large throats in ultra-low permeability (K>0.3x10-3μm2) sandstone sample is far less than that in extra-low permeability one. The movable fluid saturation of tight reservoirs is less than that of extra-low permeability or ultra-low permeability reservoirs and the movable fluid in tight reservoirs is nearly controlled by fine throats whose radius is less than 0.2μm. The average of T2 cutoff value of ultra-low permeability reservoirs in Changqing is suggested to be 15.22ms.
     3. From the study of reservoir monophasic fluid seepage law, it can be known that compared with extra-low permeability reservoirs in Changqing, it is harder to inject water for ultra-low permeability and tight reservoirs in Changqing. The threshold pressure gradient of ultra-low permeability reservoirs in Changqing whose permeability is less than 0.3x10-3μm2, is far higher than that of extra-low permeability reservoirs in Changqing and lower than that of tight reservoirs in Changqing. Permeability, valid throat radius and movable fluid saturation all affect threshold pressure gradient.
引文
[1]胡文瑞.中国低渗透油气的现状与未来[J].中国石油企业,2009(6):54-58.
    [2]郝明强,李树铁,杨正明等.可动流体相对体积对低渗透油藏开发效果的影响[J].新疆石油地质,2006,27(3):335-337.
    [3]杨平,郭和坤,姜鹏等.长庆超低渗砂岩储层可动流体实验[J].科技导报,2010,28(16):48-51.
    [4]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997.
    [5]孙卫,杨希濮,高辉.溶孔-粒间孔组合对超低渗透储层物性的影响——以西峰油田庆阳区长8油层为例[J].西北大学学报(自然科学版),2009,39(3):507-509.
    [6]秦同洛.关于低渗透油田的开发问题[J].断块油气田,1994,1(3),21-23.
    [7]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998.
    [8]樊成.长庆油田超低渗透油藏开发技术研究与应用[J].石油化工应用,2009,28(2):30-35.
    [9]胡志明.低渗透储层的微观孔隙结构特征研究及应用[D].廊坊:中国科学院渗流流体力学研究所,2006.
    [10]原海涵.毛管理论在测井解释中的应用——毛管电动力学与多孔性岩石[M].北京:石油工业出版社,1995.
    [11]Fatt I. Trans AIME Pet Div,1956,207:144-164.
    [12]Dodds J A, Llioyd P J. Power Technol,1971,5:69.
    [13]Pfeifer P, Avnir D. Chemistry in nonintegral dimensions between two and three [J]. J Chem Phys,1983,79(7):3369-3558.
    [14]Krohn C E. Sandstone fractal and Euclidean pore volume distributions [J]. Geophys Res,1988,93(B4):3286-3296.
    [15]Krohn C E. Fractal measurements of sandstone, shales and carbonates [J]. Geophys Res,1988,93(B4):3297-3305.
    [16]杨正明,苗盛,刘先贵.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报:自然科学版,2007,22(2):96-99.
    [17]肖立志.核磁共振测井原理与应用[M].北京:石油工业出版社,2007.~50~
    [18]Timur, A. An investigation of permeability, porosity and residual water saturation relationships [J]. Annual Logging Symposium Transactions:Society of Professional Well Log Analysts,1968.
    [19]T.H.Hassoun, K. Zainalabedin and C. Cao Minh. Hydrocarbon detection in low-contrast resistivity pay zones, capillary pressure and ROS determination with NMR logging in Saudi arable [J]. SPE 37770.
    [20]Rahul Dastidar, Chandra Rai and Carl Sondergeld. Integrating nmr with other petrophysical information to characterize a turbidite reservoir [J]. SPE 89948.
    [21]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44.
    [22]高瑞民.核磁共振测试天然气藏可动气体饱和度[J].天然气工业,2006,26(6):33-35.
    [23]郭平,黄伟岗,姜贻伟等.致密气藏束缚与可动水研究[J].天然气工业,2006,26(10):99-101
    [24]杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2004.
    [25]B.A.弗洛林.同济大学土力学及地基基础教研室译.土力学原理[M].北京:中国工业出版社,1964.
    [26]吴景春.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油学院学报,1999,23(2):83-84.
    [27]贾振岐.低渗低速下非达西渗流特征及影响因素[J].大庆石油学院学报,2001,25(3):74-75.
    [28]李中锋.低渗透储层非达西渗流机理探讨[J].特种油气藏,2005,12(2):38.
    [29]贝尔著.李竟生译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [30]薛定谔 AE.多孔介质中的渗流物理[M].北京:石油工业出版社,1982.
    [31]冯文光.非达西低速渗流的研究现状与展望[J].石油勘探与开发,1986(4):76-80.
    [32]宋付权.低渗透多孔介质中新型渗流模型[J].新疆石油地质,2001,22(1):56-58.
    [33]阮敏.低渗透非达西流临界点及临界参数判别法[J].西安石油学院学报,1999,22(1):21-24.
    [34]姚约东.石油非达西渗流的新模式[J].石油钻采工艺,2003,25(5):40-41.
    [35]高辉.特低渗透砂岩储层微观孔隙结构与渗流机理研究[D].西安:西北大学,2009.
    [36]王瑞飞.低渗砂岩储层微观特征及物性演化研究[D].西安:西北大学,2007.
    [37]宋广寿.鄂尔多斯盆地0.3毫达西类储层特征及开发对策研究[D].西安:西北大学,2009.
    [38]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25.
    [39]李彩云,李忠兴,周荣安等.安塞油田长6特低渗储层特征[J].西安石油学院学报(自然科学版),2001,16(6):30-32.
    [40]李治硕,杨正明,刘学伟等.特低渗透砂砾岩储层核磁共振可动流体参数分析[J].科技导报,2010,28(7):88-90.
    [41]杨秋莲,李爱琴,孙燕妮等.超低渗储层分类方法探讨[J].岩性油气藏,2007,19(4):51-55.
    [42]李海波,朱巨义,郭和坤.核磁共振T2谱换算孔隙半径分布方法研究[J].波谱学杂志,2008,25(2):273-280.
    [43]沈平平.油层物理实验技术[M].北京:石油工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700