三通件多向加载整体成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合国内外三通件、温挤压及镁合金变形规律和成形工艺的研究成果,针对目前汽车、摩托车上的发动机三通件及自行车车架的三叉接头存在的问题,论证了镁合金AZ31三通件,可以大大减轻车体的重量,采用等温挤压成形,降低了金属的变形抗力,减轻了模具损耗,减少了成形工序,提高了金属的可成形性,这可为镁合金热成形技术的开发研究提供借鉴,具有的普遍意义。
     本文以有限元仿真制造软件MSC—SuperForm2005为平台,进行了三维有限元数值模拟。分析了三通件等温挤压多向加载整体成形方式—多向同步加载、多向分步加载、多向顺序加载,分别对其加载时间—速度图、金属流动速度矢量图、等效应变图及载荷—行程曲线进行了数值模拟,通过比较,得出多向分步加载,为较合理、省力的工艺方案。
     针对多向分步加载,着重讨论了不同的变形温度、变形速度和摩擦条件对变形过程等效应变、等效应力以及挤压力—行程曲线的影响,得出在温度350℃、摩擦因子0.01、挤压速度100mm/s的条件下成形性较好,达到制造高精度三通件的目的。
     根据以上的模拟结果,结合本零件的结构特点,在分析了三通件工艺难点的基础之上,制定了较好的工艺方案。根据此方案选择了合理的毛坯形状、加热温度、润滑剂及挤压力,对此进行了模具设计,并选定了成形设备,达到了预期的目的。
According to the domestic and foreign T-shaped tube, the warm extrusion and The Magnesium Alloy distortion rule and the formed craft research results, in view on the present automobile, motorcycle's engine T-shaped tube and the bicycle frame's three fork attachment existence questions, have proven the magnesium alloy AZ31 T-shaped tube, may reduce chassis's weight greatly, use the uniform temperature press forming, reduce the metal resistance of deformation, reduce the mold loss, reduce the formed working procedure, enhance the metal formability, this may provide for the magnesium alloy hot forming technology development research profits from, the universal significance which has.
     This article takes finite element simulation manufacture software MSC-SuperForm2005 as a platform carried on the three dimensional finite element numerical simulation. Analyze the T-shaped tube uniform temperature extrusion multi-direction load whole forming way multi-direction synchronization to load, the multi-direction distribution to load, the multi-direction order to load, separately to its load time--speed chart, the metal flow velocity vector chart, the equivalent strain chart and the load--traveling schedule curve has carried on the numerical simulation, passed compared with, obtains multi-direction step by step loads for the craft plan which is most reasonable, most reduces effort.
     In view of the craft plan, discussed the different distortion temperature, the strain rate and the friction condition emphatically to the distortion process equivalent strain, the equivalent stress as well as the extrusion pressure traveling schedule curve influence, obtains in the temperature 350℃, under the friction factor 0.01, extrusion speed 100mm/s condition the forming is best, serves the manufacture high accuracy T-shaped tube purpose.
     According to the above analogue result, unifies this components the unique feature, in has analyzed above T-shaped tube craft difficulty foundation, has worked out the best craft plan. Has chosen the reasonable semifinished materials shape, the heating temperature, the lubricant and the extrusion pressure according to this plan, regarding this has carried on the mold design, and has designated the complete installation.
引文
[1] 向冬霞,曹建功,王军.镁合金配件在汽车、摩托车上的应用.汽车工艺与材料.2002(8):41-43.
    [2] 刘英.镁合金的研究进展和应用前景.轻金属.2002(8):56-72.
    [3] M.T.Perez-Prado,O.A.Ruano.Texture volution During Annealing of Magnesium AZ31 Alloy.Scripta Materialia 46 (2002):149-155.
    [4] 乔中莲.三通件挤压成形工艺研究.中北大学硕士学位论文.2006.
    [5] 王德林. AZ31 镁合金轿车轮毂温成形工艺研究. 中北大学硕士学位论文.2005.
    [6] 李忠盛,潘复生,张静.AZ31 镁合金的研究现状和发展前景.金属成形工艺.2004(1):54-57.
    [7] 夏巨谌,王新云,胡国安等.AZ31 变形镁合金挤压成形工艺的研究.中国科技论文.2004.
    [8] 周海涛,曾小勤,王渠东等. AZ31 镁合金型材挤压工艺和组织性能分析.轻合金加工技术.2003(9):28-30.
    [9] 程俊伟,夏巨谌,王新云等. AZ31 变形镁合金挤压成形工艺的研究.金属成形工艺.2004(3):4-10.
    [10] 祝立祥.我国镁工业与市场分析.沈阳镁铝设计研究院,世界有色金属.1996(1):12-15.
    [11] 刘奎立.镁合金的成形技术及其应用研究.锻压技术.2004(5):5-8.
    [12] 李国刚,吕如民等.紫铜管三通接头的轴向压缩胀形工艺及模具设计.锻压机械.2000(3):26-28.
    [13] 程东明,苑世剑,安学良.内压对Y型三通管内高压成形影响研究.塑性工程学报.2006(2):9-13.
    [14] 夏巨谌,杨春雨,胡安国,余晓武.T型管接头挤压胀形过程的有限元分析.锻压技术.2001(1):25-28.
    [15] Klaus Slegert, Markus Heussermann, Bruno Loesch, Ralf Rieger. Recent development in hydroforming technology. Journal of Material Processing Technology. 2000 (9):251-258.
    [16] Fuh-Kuo Chen, Shao-Jun Wang and Ray-Hau Lin.A study of forming pressure in the tube-hydroforming process. Journal of Materials Processing Technology. 2007(1): 404-409 .
    [17] Kashani Zadeh, Mosavi Mashhadi, Finite element simulation and experiment in tube hydroforming of unequal T shape, J. of Mater. Proc. Tech.2006,177,684-687.
    [18] H. Kashani Zadeh, Mosavi Mashhadi, Analysis of tube hydroforming parameters with FEMfor several cross-sections. International Congress on Manufacturing Engineering .2005.
    [19]] Y C Shiau, S Kobayashi,Three-dimensional Finite Element Analysis of Open-die Forging, Int.J.Num.Meth.Eng.1988;25:67-85.
    [20] D Y Yang et al., Simulation of T-section profile ring rolling by 3-D rigid-plastic finite element method Int.J.Mech.Sci.,1991;33(7):541-550.
    [21] M. Ahmetoglu, T. Altan.Tube hydroforming state-of-art and future trends Proc. 2000(8):25-33.
    [22] A.Gontarz, Forming Process of valve drop forging with three cavities, Journal of Materials Processing Technology,2006(4):228-232.
    [23] 郑廷顺,杨清国.铝轮毂多向等温模锻技术的开发.铝加工.1995(3):18-21.
    [24] 徐吉生.等径三通多向模锻金属流动研究.锻压技术.2002(4):11-13.
    [25] 吴 向 东 , 万 敏 , 周 贤 宾 .BH220 钢 板 屈 服 轨 迹 的 双 向 拉 伸 实 验 研 究 . 塑 性 工 程 学报.2004(11):44-47.
    [26] 付琼,付艳. 等径三通多向模锻工艺研究. 一重集团公司锻治处.1998(2):77-80.
    [27] 吕炎,徐福昌,薛克敏等.镁合金上机匣等温精锻工艺的研究.哈尔滨工业大学学报.2000,32(4):127-129
    [28] 洪慎章.温挤压工艺的应用.模具技术.2004(4):43-46.
    [29] 洪慎章.冷挤压实用技术. 北京:机械工业出版社.2005:447.
    [30] 邓冬梅.大型锻件锻造新理论与新工艺的数值模拟. 燕山大学硕士学位论文.2001.
    [31] 乐启炽,张新建,崔建忠.镁合金及其成形工工艺与应用状况.材料导报.2002,12(12):12-15.
    [32] Cray J E, Luan B. Protective Coatings on Magnesium and Its Alloys-a critical Review. Journal of Alloys and Compounds.2002,336(1-2):88-113.
    [33] 张士宏,许沂,王忠堂等.镁合金成形加工技术.世界科技研究与发展.2001,23(6):18-21.
    [34] 王勖成,邵敏. 有限元法基本原理和数值方法. 北京:清华大学出版社,2001.
    [35] Marcel P V, King I D. Elastic-plastic analysis of two-dimensional stress systems by the finite element method. 1967(8): 143-155.
    [36] Lee C H, Kobayashi S. Elasto-plastic analysis of plane-strain and axisymmetricflat punch indentation n by the finite element method.1970(13):349-370.
    [37]Lee C H, Kobayashi S. New solutions to rigid plastic deformation problems using a matrix method. Journal of Engineering for industry.1973(95): 865.
    [38] Chen C , Kobayashi S. Rigid plastic finite element analysis of ring compression. Application of Numerical Methods to Forming Processes. 1978(28): 163.
    [39] Chen C , Kobayashi S. Deformation analysis of multi-pass bar drawing.
    [40] Oh S I, Rebelo N, Kobayashi S. Finite element formulation for the analysis ofplastic deformation of rate-sensitive materials in metal forming. 1979,273.
    [41]Li G J, Kobayashi S. Rigid plastic finite element analysis of plane strain rolling. 1982(1):104.
    [42] Zienkiewcz O C, Godbole P N. A penalty function approach to problems ofplastic flow of metal with large surface deformations. J.Strain Analysis, 1975(10): 180.
    [43] Zienkiewcz O C, Jain P C. Onate E, Flow of solids during forming and extrusion. 1978(14):15.
    [44] Wu W T, Oh S I. ALPID. A general purpose FEM code for simulation of non-isothermal forming processes.
    [45] Oh S I, Wu W T, etc. Capabilities and applications of FEM code DEFORM theperspective of developer. 1991(27): 25-42.
    [46]Osakada K, Nakano J, Mori K. Finite element method of rigid plastic analysis of metal forming formulation for finite deformation. 1982(24):459.
    [47] Kopp R, Becker M. A concept for dynamic remeshing at FEM simulation showed by the example of the forging process. 1990(1):179.
    [48]Yang D Y, Yoon Y h, Lee N K. Modular remeshing: a practical method of 3-Dremeshing in forging of complicated parts. 19909(1): 171.
    [49]Blacker T D, Stephenson M B. Paving: A new approach to automated quadrilateral mesh gene-ration.Int.J,for Num.Methods in Eng,1991(32): 811.
    [50]Yukawa N, Ishikawa T, etc. Adaptive remeshing method for thermo-rigid-plastic finite element analysis. Adv. 1993(3): 1071.
    [51]李如生. 非平衡态热力学和耗散结构. 清华大学出版社.1986.
    [52] Prasad Y V R K, Gegel H L, etc. Modeling of dynamic material behavior in hot deformation forging of Ti-6242. Metallurgical and materials transactions A.1984(15).
    [53]Sellars C M, Whiteman J A. Computer modeling of hot working processes.Mater. 1955(1): 325.
    [54]Yada H, Senuma T. Resistance to hot deformation of steel. 1986(27):33.
    [55]Yada H. Accelerated cooling of rolled steels. Conf. of. Metallurgists, PergamonPress, Canada: 105-120.
    [56]Kopp R, Karnhausen K, Souza M M. Numerical simulation method for designing thermomecha-nical treatment. Illustrated by Bar Rolling,.1991(20): 351.
    [57] 杜坤.筒件多道次普通缩旋三维弹塑性有限元模拟研究. 西北工业大学硕士学位论文.2001.
    [58] 闰世成.Ti-1023 合金复杂结构件等温锻造过程的数值模拟. 西北工业大学硕士毕业论文.2005.
    [59] 赵新海,赵国群,王广春.金属体积成形预成形设计的现状及发展.塑性工程学报.2000,7(3):1-6.
    [60] 梁清香,张根全.有限元与 MARC 实现.北京:机械工业出版社.2003.
    [61] 林海.TC6 钦合金锻造过程的数值模拟. 西北工业大学硕士学位论文.2002.
    [62] 赵恒章.杯形件反挤压成形过程模拟研究.西安理工大学硕士学位论文.2003.
    [63] Schneiders R.A-grid algorithm for the generation of hexahedral element meshes. Engineering with Computers.1996(12):168-177.
    [64] 吕炎.精密塑性体积成形技术.北京:国防工业出版社.2003.
    [65] 许莹.链条滚子反挤压刚塑性有限元模拟研究. 合肥工业大学硕士学位论文.2003.
    [66] 陈火红.Marc 有限元实例分析教程.北京:机械工业出版社.2002.
    [67] 马兰.直齿圆柱齿轮挤压成形数值模拟.上海交通大学博士学位论文.1999.
    [68] 锻压技术手册委员会编.锻压设计手册.国防工业出版社.1989
    [69] 张清萍,赵国群,栾贻国等.基于三维有限元模拟的直齿圆柱齿轮精锻新工艺方案设计.热加工工艺.2004(1):14-17.
    [70] 海锦涛.锻造过程的数值模拟与设计优化.先进制造技术.机械工业出版.1998.
    [71] 郑岩,顾松东,吴斌.Marc2001 从入门到精通.中国水利水电出版社.北京:2003.
    [72] 樊百林,黄钢汉.紫铜热塑性变形的研究.塑性工程学报.2000.3(7):37-39.
    [73] 徐秉业,陈森灿.塑性理论简明教程.清华大学出版社,1981.7.
    [74] 庞玉华.金属塑性加工学. 西北工业大学出版社,2004(12):332-335.
    [75] 汪大年.金属塑性成形原理.机械工业出版社,1985(6):32-38.
    [76] 刘光宇,虞跃生,万贤毅.计算机模拟技术在金属塑性成形中的应用.汽车科技.2000(6):34-37.
    [77] 韩宝坤,李晓雷,黄华.高速履带车辆平稳性能仿真及影响因素分析.兵工学报.2004(5):514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700