胶东金青顶金矿成因矿物学与深部远景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金青顶金矿床位于胶东牟乳成矿带中部,矿体产于中生代昆嵛山二长花岗岩中,受NNE向将军石-曲河庄断裂控制。矿床类型为石英脉型金矿。作者结合矿体及围岩蚀变特征,对该矿床成因矿物学和矿床成因进行了深入研究,并对Ⅱ号矿体深部成矿前景进行了预测。
     该矿床是多期多阶段形成的,深部矿石类型以黄铁矿石英脉为主。围岩蚀变范围和强度从地表到深部呈反复膨大收缩的豆荚状变化趋势。蚀变过程中与Au相关的成矿元素以带入为主,说明与成矿相关的元素主要为热液携带而来,并非都从围岩中萃取而来。
     黄铁矿的形成受岩浆热液控制,浅部受地下卤水淋滤作用影响,成矿物质具有多源性而不是直接来源于围岩昆嵛山岩体;黄铁矿形成温度集中在130~310℃;P%间接指示成矿热液由NNE下方沿断裂向SSW上方运移;热电性参数填图显示,Ⅱ号矿体-785m以下很可能已到根部,向下延深可能趋于尖灭;用热电导型变化梯度估算矿体的延伸规模是可行的;黄铁矿电阻率值与矿石金品位、矿化度和矿体产状变化程度成反相关关系;S、Pb、He和Ar同位素组成分析表明,成矿物质主要来源于下地壳,并与深部幔源流体发生不同程度的壳幔混合。
     石英包裹体均一温度介于145~345℃,盐度6.35%~12.5%,流体密度0.80~0.97g/cm3,属中低温、低盐度、低密度流体,且随着成矿流体从早期到主成矿期演化,呈逐渐降低趋势。成矿压力集中于50~75MPa,成矿深度集中于5.1~7.0km,与前人研究的从矿床形成至今胶东地区的剥蚀程度约为5.83km基本吻合。流体液相成分主要为Na+、Cl-、SO42-、Ca2+、Mg2+、K+,气相成分主要为H2O、CO2、H2,基本属于CO2-H2O-NaCl体系。F/Cl、Na/K、Na/(Ca+Mg)研究表明矿体具有岩浆热液和热卤水的双重特性,且浅部受地下卤水作用较大。成矿热液属于中酸性还原介质,fO2普遍较低,随着成矿从早到晚演化fO2先升高后降低,fCO2逐渐降低。热爆曲线显示:起爆温度低、低温区起爆频数较高、主爆裂峰较强往往指示金矿化的有利部位。热释光分析显示:热释光曲线呈双峰型、单峰峰位的温度值集中在230~250℃之间、半峰宽较大均能代表富矿段特征。
     深部预测研究表明:Ⅱ号矿体-785m已到根部,矿体向下延伸趋于尖灭。
JinQingDing gold deposit, the typical quartz vein type gold doposit in the Northeast of Shan dong province, located in the middle of the Muping-Rushan ore-formingbelt, occurs in Mesozoic Kunyunshan monzonitic granite. Ore bodies are controlled by the Jiangjunshi-Quhezhuang tectonic zones of NNE striking faults. According to the genetic mineralogy research of quartz and pyrite, it is discussed, combined with hydrothermal alteration, about the ore genesis, and the prospective prognosis in depth of orebody NO.Ⅱin the JinQingDing gold ore were proposed.
     The deposit is formed in multi-stage. Ore types in the deep are mainly in veins, Showed a trend of shrinking swollen of the scope and intensity of rock alteration from the surface to the deep. The elements associated with Au are mainly in bringing in during the alteration. Shows the elements associated with ore-forming are mainly brought into by hydrothermal water, not all come from the surrounding rock alteration.
     The genetic mineralogy research of pyrite shows that the mineralization of pyrite was controlled by the magmatic wate and impacted by the eluviation of ground water. According to the thermoelectric, the mineralization temperature is 130 to 310℃; P% was along the NNE below to the SSW top along the fault showd a regular increasing trend, It’s an indirect indicator that the migration of hydrothermal and the Lateral direction of ore were in the same direction. With the mineralogy mapping of thermoelectric properties it is shows that P % and gold grade were all significantly reduced or weakening trend,, indicating the deep downward orebody No.Ⅱmay start to become less below -785m; The electric resistivity of pyrite showed an inverse correlation with an average gold grade,the mineralization intensity and the variation gradient of orebody occurrence; The analytical results of sulfur, lead, helium and argon isotope show that the source of matallogenic materials were mainly from low crust, and the mantle fluids were inwolved in the metallogenic process.
     The genetic mineralogy research of quartz shows that the homogeneous temperature is between 145~345℃, salinity: 6.35~12.5%, density: 0.80~0.97g/cm3. and ore-forming fluids is moderate to low temperature, low salinity, low density and CO2-rich.The trapping pressure is estimated at least to be 50 to75MPa,and the ore-forming depth ranges from 5.1 to7.0km(6.4km on average).Fluid inclusion analyses show that Na+、Cl-、SO42-、Ca2+、Mg2+ and K+ are main compositions of liquid phase,with minor of NO3-、Al3+ and F-;H2O、CO2 and H2 are dominating in gas phase,with minor of CO、CH4,and N2,and the pH ranges from 4.02 to 4.84(4.53 on average), Eh ranges from 0.68 to﹣0.51(-0.60 on average),lgfO2 ranges from -36.44 to -44.63 and lgfCO2 ranges from -1.11 to -1.75. It is characterized by lower explosive temperature,higher explosive frequency and higher intension of the quartz for the chief metallogenic stages, which is consistent with the Au-rich segments. The curve thermoluminescence of major metallogenic stages analyses show that the Au-rich segments are often characterized by a two-peak pattern, a curve peak location of 230~250℃,a higher peak and a broader half-width, which is as a prospecting criteria.
     Study on deep Forecast show that: the following of -785m ofⅡorebody has been to the roots of the ore. Tend to pinch down the extension.
引文
Alderton D H M,Pearce J A,Potts P J.1980.Rare earth element mobility during granite alteration:Evidence from southwest England.Earth and Planetary Science Letters,49:149– 165.
    Ballentine C J,Burgess R,Marry B.2002.Tracing fluid origin,transport and interaction in the crust,Collection in Noble Grases in Geochemistry and Cosmochemistry.Rev Mineral Geochem,47:539– 614.
    Bau M,Dulski P.1997.Comparative study of yttrium and rare2earth element behaviours in fluorine2rich hydrothermal fluids.Contributions to Mineralogy and Petrology,119:213– 223.
    Bajwah Z U,Seccombe P K,Offler R.1987.Trace element distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit,New South Wales,Australia.Mineral Deposita,22:292-300.
    Brill B A.1989.Trace-element contents and partitioning of elements in ore minerals fro the CSA Cu-Pb-Zn deposit,Australia.Can Mineral 27:263-274.
    Boyle,R.W.1959.The Geochemistry,origin and role of carbon dioxide,water,sulfur,and boron in the Yellowkiife gold deposits Northwest Territories,Canada.Economical geology,54:1506 – 1534.
    Burnard P G, Hu R, Turner G, et al.1999.Mantle, crustal and atmospheric noble gases in Ailaoshan Gold deposits, Yunnan Province.China.Geochim Cosmochim Acta, 63: 1595– 1604.
    Doe B R ,Zartman R E . 1979 . Plumbotectonics, the Phanerozoic . In : Barnes H L ,(ed.).Geochemistry of hydrothermal ore deposits.New York:Wiley Interscience,22– 70.
    Douville E,Bienvenu P and Charlou J I. 1999. Yttrium and rare earth elements in fluids from various deep- sea hydrothermal systems.Geochim. Cosmochim Acta,63:627– 643.
    Dunai T,Touret J L R.1995.Helium,neon and argon isotope systematics of European lithospheric mantle xenoliths:Implications for its geochemical evolution.Geochimica et Cosmochimica Acta,59:2767– 2783.
    Fan H R,Zhai M G,Xie Y H, Yang J H.2003.Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China,mineralium Deposita,38:739– 750.
    Grant J A.1986.The isocon diagram-a simple solution to Gresens equation for metasomaticalteration.Economical geology,81:1976– 1982.
    Haas J R,Shock E L,Sassani D C.1995.Rare earth elements in hydrothermal systems:Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures.Geochimica et Cosmochimica Acta,59:4329– 4350.
    Hall D L Sterner S M,Bodnar R J.1988.Freezing point depression of NaCl-H2O solutions.Econ Geol.83:197– 202.
    Hollister V.F,ed,1985.Discoveries of Epithermal Precious Metal Deposits.Case histories of mineral discoveries,New Jersey,1:169.
    Hopf S.1993.Behaviour of rare earth elements in geothermal systems of New Zealand.Journal of Geochemical Exoloration,47:333– 357.
    Hoefs.1980.Stable Isotope Geochemistry.2nd edition.208 pp,52 figs, 23 tables.Berlin, Heidelberg, New York: Springer-Verlag.
    Hu F F,Fan H R,Yang J H,Want Y S,Liu DY,Zhai M G,Jin C W.2004.Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula:SHRIMP U-Pb dating on hydrothermal zircon.Chinese Science Bulletin,49(15):1629– 1636.
    Hu R Z, Burnard P G, Bi X W, et al. 2004.Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River–Jinshajiang fault belt, SW China. Chem Geol, 203: 305– 317.
    Kendrick M A, Burgess R, Pattrick R A D, et al. 2001.Fluid inclusion noble gas and halogen evidence on the origin of Cu porphyry mineralizing fluids.Geochim Cosmochim Acta, 65: 2651– 2668.
    Kerrich R.2000.The characteristics,origins and dynamic setting of supergiant gold metallogenic province.Science in China(D), 43:1– 81.
    Keppler H.1996.Constraints from partitioning experiments on the composition of subduction zone fluids.Nature,380:237– 240.
    Mamyrin B A,Tolstikhin I N.1984.Helium isotopes in nature,In:Fyfe W S,(ed.).Developments in geochemistry.Elsevier,Amsterdam,273.
    Potter R WⅡ.1977.Pressure correction for fluid inclusion homogenization tempreture based on the volumetre properties of the system NaCl-H2O.J Res VS Geol Surv.5:603– 607.
    Shepherd T J, Rankin A H,Alderton D H M.1985.A Practical Guild to Fluid IncluisionStudies.London:Blackie &Son Ltd.,1– 239.
    Sibson R H.1994.Crustal stress,faulting and fluid flow.In:Parnell J,ed.Geological Society Special Publication.78:69– 84.
    Sibson RH,Robert F,Poulsen KH.1988.High -angle reverse faults,fluid -pressure cycling and mesothermal gold -quartz deposits.Geology,16:551– 555.
    Stuart F M, Turner G.1992.The abundance and isotopic composition of the noble gases in ancient fluids. Chem Geol, 101: 97– 109.
    Stuart F M,Turner G,Duckworth R C,et al.1994.Helium isotopes as tracers of trapped hydrothermal fluids in ocean floor sulfides.Geology,22:823– 826.
    Stuart F M, Burnard P G, Taylor R P, et al. 1995.Resolving mantle andcrustal contributions to ancient hydrothermal fluids: He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralisation, South Korea. Geochim Cosmochim Acta, 59: 4663– 4673.
    Wedepohl K H.1995.The composition of the continental crust.Geochemica Cosmochimica.Acta,59 (7),121– 1217.
    Zartman R E,Doe B R.1981.Plumbotectonics—The model.Tectonophysics,75:135– 142.
    Новгородва, M.И,Гамлдин,Г.Н.,Щедин,А.И.1980.Тидоморфиэмзолотовосинхсулвфидовдихмидералвнихассодаций.Бнв.Обпиеволроетидоморфизмминералон,Изд.НаукаМосква.
    Сейфуллии,Р.С,1978.Возмжиостпкперспектцвнразвнтзлтермозлектрическогомотоляизуче-никрулнжхмннералов, 3ВМО.вшп.5.
    毕献武,胡瑞忠,Cornell D H.2001.富碱侵入岩与金成矿关系:云南省姚安金矿床成矿流体形成演化的微量元素和同位素证据.地球化学,30 (3):263– 2721.
    博伊尔.1984.金的地球化学及金矿床.马万钧译.北京:地质出版社.
    陈光远,孙岱生,邵伟,等.1989.胶东金矿成因矿物学与找矿.重庆:重庆科技出版社.
    陈光远,孙岱生,周珣若.1993.胶东郭家岭花岗闪长岩成因矿物学与金矿化.北京:中国地质大学出版社,207.
    陈绪松,徐九华,刘建明.2002.山东金青顶金矿床和七宝山金矿床的流体包裹体REE组成.矿床地质, 21(4):387– 392.
    陈衍景,郭光军,李欣.1998.华北克拉通花岗绿岩地体中中生代金矿床的成矿地球动力学背景.中国科学(D),28(1) :35– 40.
    陈振胜,张理刚,等.1994.胶东区域岩石铅同位素地球化学背景研究.地质找矿论丛,9(1):65– 78.
    陈岳龙,杨忠芳,等.2005.同位素地质年代学与地球化学.北京:地质出版社,262– 270.
    迟清华,鄢明才.2007.应用地球化学元素丰度数据手册.北京:地质出版社,8,75,101– 114.
    邓军,翟裕生,等.1999.剪切带构造—流体—成矿系统动力学模拟.地学前缘,6(1):115– 127.
    范宏瑞,胡芳芳,杨进辉,等.2005.胶东中生代构造体制转折过程中流体演化和金的大规模成矿.岩石学报,21(5):1317– 1327.
    高太忠,赵伦山,等.2001.山东牟乳金矿带成矿演化机制探讨.大地构造与成矿学,25(2):155– 160.
    郭敬辉,陈福坤,张晓曼,等.2005.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学.岩石学报,21 (4) :1281– 1301.
    贺振,张学仁.2006.山东牟乳金矿带构造控矿特征及综合预测.地质与勘探,42 (4):41– 45.
    何学贤,郭敦一,等.2001.热电离质谱_TIMS_铀系法测定中的难点与对策.22(2):17– 22.
    胡瑞忠,毕献武,Turner G,等. 1997.云南马厂箐铜矿床氦同位素组成研究.科学通报, 42: 1542– 1545.
    胡瑞忠,毕献武,Turner G,等. 1999.哀牢山金矿带成矿流体氦、氩同位素地球化学.中国科学(D):地球科学, 29: 321– 330.
    胡瑞忠,钟宏,叶造军,等. 1998.金顶超大型铅、锌矿床氦、氩同位素地球化学.中国科学(D):地球科学, 28: 208– 213.
    胡受奚,赵懿英,等.2002.华北地台重要金矿成矿过程中的流体作用及其来源研究.南京大学学报(自然科学),38(3):381– 391.
    胡楚雁.2001.黄铁矿的微量元素及热电性和晶体形态分析.现代地质,15 (2):238– 241.
    胡芳芳范洪瑞,杨进辉.2006.胶东乳山金矿蚀变岩中绢云母_40_Ar_39_Ar年龄及其对金成矿事件的制约.矿物岩石地球化学通报,25(2) :109– 114.
    胡芳芳,范宏瑞.沈坤,等.2005.胶东乳山脉状金矿床成矿流体性质与演化.岩石学报, 21(5):1329– 1338.
    黄德业.1994.胶东金矿成矿系列硫同位素研究.矿床地质,13(1):75– 87.
    黄德业.1995.氧同位素在成岩_成矿系列中的演化规律和应用_以胶东地区金_银矿为例.地质地球化学,6:26– 30.
    靳是琴,李鸿超.1984.成因矿物学概论:下册.长春:吉林大学出版社.
    孔庆友,张天祯,于学峰,等.2006.山东矿床.山东:山东科学技术出版社,391– 396.
    李胜荣,陈光远,邵伟,等.1993.胶东乳山金矿田成因矿物学.北京:地质出版社, 1– 24.
    李胜荣,陈光远,邵伟,等.1994.胶东乳山金青顶金矿区黄铁矿化学成分研究.黄金科学技术, 2(6):7– 12.
    李胜荣,陈光远,邵伟,等.1995.胶东乳山金矿石英中H_2O和CO_2相对光密度研究.矿物学报, 15(1):97– 103.
    李胜荣.2008.结晶学与矿物学.北京:地质出版社.
    李治平.1992.胶东乳山金矿床成因.矿床地质, 11(2):165– 178.
    李士先,等.2007.胶东金矿地质.北京:地质出版社,.
    李振江,刘善宝,孙玉堂.1999.金青顶金矿床成因及富集规律.黄金, 20 (5) :8– 12.
    李惠,等.2000.山东金青顶金矿床原生叠加晕特征的跟踪研究及预测.地质找矿论丛, 15 (2):151– 157.
    李兆龙,杨敏之,等.1993.胶东金矿床地质地球化学.天津:天津科学技术出版社, 109–127.
    李碧乐,王力,霍亮,等.2009.胶东玲珑金矿52#脉群成矿流体特征及成因.自然科学进展,19(1):51– 60.
    刘善宝,张宝林,徐兴旺,等.2005.金青顶金矿床成矿流体的空间定位机制.黄金科学技术, 13 (3) :7– 16.
    刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社,260.
    刘斌,段光贤.1987.NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,7:345–352.
    刘斌,朱思林,沈昆.2000.流体包裹体热力学参数计算软件及算例.北京:地质出版社,:1-252.
    卢焕章,范宏瑞,倪培,等.2004.流体包裹体.北京:科学出版社.
    卢焕章,Guha J,方根保.1999.山东玲珑金矿的成矿流体特征.地球化学,28(5):421– 437.
    罗天明.1992.脉岩与热液脉状金矿化的时空伴生及其地质意义.矿产与地质,6:118– 125.
    林文蔚,殷秀兰,等.1998.胶东金矿成矿流体同位素的地质特征.岩石矿物学杂志,17(3):249– 258.
    凌鸿飞,胡受奚,孙景贵,等.2002.胶东金青顶和大尹格庄金矿床花岗质围岩的蚀变地球化学研究.矿床地质, 21 (2) :187– 197.
    毛景文,胡瑞忠,陈毓川,等.2006.大规模成矿作用与大型矿集区.北京:地质出版社.
    毛景文,赫英,丁悌平.2002.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,21(2):121– 128.
    毛景文,李厚民,王义天,等.2005.地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据.地质学报,79(6):839– 857.
    倪师军,滕彦国,张成江等.1999.成矿流体活动的地球化学示踪研究综述.地球科学进展,14(4):346~352.
    裘有守,王孔海,崔克英,等.1988.山东牟平-乳山地区变质岩和花岗岩含金性及其与金矿成矿关系.中国金矿主要类型区域成矿条件文集(5,胶东地区).北京:地质出版社,120– 177.
    山东省地矿局.1990.山东地质志.北京:地质出版社.
    邵洁连.1988.金矿找矿矿物学.北京:中国地质大学出版社,38– 45.
    邵伟,陈光远,孙岱生.1990.黄铁矿热电性研究方法及其在胶东金矿的应用.现代地质, 4 (1) :46– 57.
    沈保丰,骆辉,李双保,等.1996.华北陆台太古宙绿岩带地质与找矿.北京:地质出版社.
    沈昆,胡受奚,孙景贵,等.2000.山东招远大尹格庄金矿成矿流体特征.岩石学报,16(4):542– 550.
    苏文超.1997.黔西南烂泥沟金矿黄铁矿热电性研究及其找矿意义.黄金地质, 3 (2) :7– 12.
    孙丰月,金巍,李碧乐,等.2000.关于脉状热液金矿床成矿深度的思考.长春科技大学学报,30(金矿专辑):27– 30.
    孙丰月,石准立,冯本智.1995.胶东金矿地质与幔源C-H-O流体分异成岩成矿.长春:吉林人民出版社,1– 170.
    王莉娟,王京彬,王玉往等.2004.新疆准噶尔地区金矿床成矿流体稀土元素地球化学特征.岩石学报,20(4):977~987.
    王义文,朱奉三,等.2002.构造同位素地球化学—胶东金矿集区硫同位素再研究.黄金,4(23):1– 16.
    王真光,张姿旭.1991.矿物包裹体成分物理化学参数的计算程序.地质与勘探,27(7):22– 27
    谢奕汉,王英兰.1989.小秦岭含金石英脉中包裹体的热爆曲线特征及其找矿意义.岩石学报,5(4):15– 21.
    徐景奎.1991.胶东金矿集中区地壳演化与成矿作用.中国地质大学博士论文,23– 26.
    应汉龙.1994.,胶东金青顶和邓格庄金矿床的同位素组成及其地质意义.贵金属地质, 3(3):201– 207.
    杨敏之,李治平.1989.胶东东部金青顶金矿床围岩蚀变岩带的地球化学、形成机理及找矿方向的研究.地质找矿论丛, 4 (2) :1– 17.
    杨敏之.1998.金矿床围岩蚀变带地球化学-以胶东金矿为例.北京:地质出版社,11– 81.
    杨士望.1986.论胶东半岛西北部胶东群地层、金的矿源层和金矿床的层控性质.地质找矿论丛,1(2,3).
    杨忠芳,赵伦山,周奇明,等.1994.胶东牟平金矿带浅成热液金矿成矿作用的物理化学条件.矿物学报,14(3):270–278.
    杨进辉,翟明国,周新华.2001.胶东牟平金矿矿石_硫化物钕同位素组成及地质意义.矿床地质,20(3):279– 284.
    姚凤良,刘连登,孔庆存,等.1990.胶东西北部脉状金矿.长春:吉林科学技术出版社.
    叶先仁,吴茂炳,孙明良.2001.岩矿样品中稀有气体同位素组成的质谱分析.岩矿测试,20(3):174– 178.
    张德全,徐洪林,孙桂英.1997.胶东昆嵛山花岗岩的特征、成因及其与金矿的关系.岩石矿物杂志, 16 (2) :131– 142.
    张华锋,翟明国,童英,等.2006.胶东半岛三佛山高Ba-Sr花岗岩成因.地质论评,52(1):43–53.
    张华锋,翟明国,等.2004.胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义.岩石学报,20 (3):369– 380.
    张华锋,李胜荣,翟明国,等.2006.胶东半岛早白垩世地壳隆升剥蚀及其动力学意义.岩石学报,22(2):285– 295.
    张连昌,曾庆栋,邹为雷,等.2001.胶东邓格庄金矿深部地球化学及预测.地质与勘探,37(1):27– 37.
    翟建平,胡凯,陆建军.1995.山东乳山金矿床的流体包裹体和氢氧同位素地球化学研究孙岱生[J].地球化学, 24(增刊):141– 149.
    翟建平,胡凯,陆建军.1996.乳山金矿床的成因机制.科学通报,41(12):1119– 1121.
    翟建平,胡凯,陆建军.1996.乳山金矿煌斑岩及流体和氢、氧、锶同位素研究.矿床地质, 15(4):358– 364.
    翟明国,孟庆任,刘建明,等.2004.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨.地学前缘,11(1) :85–98.
    翟裕生,苗来成,向运川,等.2002.华北克拉通绿岩带型金成矿系统初析.地球科学-中国地质大学学报,27(5):522– 531.
    赵明川.2006.金青顶金矿床地质特征及成矿作用.地质找矿论丛, 21(增刊):48– 51.
    赵伦山,吴悦斌,等.1996.胶东金矿成矿构造——地球化学动力学研究.现代地质,10 (2):213– 221.
    赵葵东. 2005.华南两类不同成因锡矿床同位素地球化学及成矿机理研究(博士论文).南京:南京大学. 39– 51.
    朱炳泉.1998.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化,北京:科学出版社,213– 221.
    周学武,李胜荣,鲁力等.2005.浙江弄坑金银矿区黄铁矿成分标型研究.矿物岩石地球化学通报,24(4):317~326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700