采用定量蛋白质组学技术筛选小鼠肝癌淋巴道转移相关蛋白
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:浸润性生长和转移潜能是恶性肿瘤不同于良性肿瘤的根本特征,是恶性肿瘤顽固性和难治性的根本原因。由转移所导致的恶性肿瘤患者死亡率高、预后差及其发生机制不清,长期以来一直是肿瘤学研究面临的难题之一。由上皮来源的恶性肿瘤,淋巴道转移是其早期转移的主要方式,因此对于淋巴道转移机制进行研究,发现淋巴道转移关键分子机制和通路,并建立起一套行之有效的针对性阻遏手段,将对恶性肿瘤患者具有重要的现实意义.。Hca-F和Hca-P是一对来源于同一亲本细胞、且淋巴道转移潜能显著不同的小鼠肝癌腹水型细胞株,其中Hca-F为高淋巴道转移力细胞株(> 70%),Hca-P为低淋巴道转移力细胞株(<30%),二者在肿瘤淋巴道转移机制研究中互为参照,是难得而有效的细胞模型。我们已应用基因芯片等高通量技术手段,在mRNA水平对Hca-F细胞株和Hca-P细胞株进行研究,发现二者有明显差异的基因表达。但是从mRNA水平进行研究,只包括了转录水平的调控,不但在丰度上不能反应蛋白质的表达水平,而且蛋白质复杂的翻译后修饰、亚细胞定位和迁移、蛋白质和蛋白质的相互作用等,也几乎无法从mRNA水平来判断。蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质的研究将直接阐明生命在生理和病理条件下的变化机制。蛋白质组学是对一个细胞或组织的基因组所包含的全部蛋白质进行的研究。但由于技术方法限制及蛋白质表达的时空差异,很难分离和得到表达的所有蛋白。因此发展可靠高通量的技术手段,将会推进对蛋白质组的研究。为实现这一目标,以双向凝胶电泳和质谱为基础的蛋白质组学分离和鉴定技术迅速发展起来。
     目的:本研究应用近年来发展起来的定量蛋白质组学技术—荧光差异双向凝胶电泳,在蛋白质水平对高、低淋巴道转移力小鼠肝癌腹水型细胞株Hca-F和Hca-P基因表达进行比较研究,建立相应的荧光差异双向凝胶电泳蛋白表达图谱,并对有统计学意义的差异性蛋白质点进行质谱分析,以筛选肝癌淋巴道转移相关蛋白,为进一步阐明淋巴道转移的分子机制奠定基础。
     方法:将冻存的Hca-F与Hca-P细胞株复苏后,进行细胞培养。以动物实验观察二者在615小鼠的淋巴结转移率。提取总蛋白的瘤细胞洗涤后,冷冻离心机离心,取沉淀加入细胞裂解液,并在冰浴下超声破碎。冷冻离心机离心后,提取上清。采用蛋白定量标准试剂盒,测定样品蛋白浓度。蛋白的荧光标记按照厂家介绍的步骤进行,Cy3(Cy5)染料分别交叉标记Hca-F(Hca-P)细胞提取的蛋白,Cy2染料标记总量相同,但Hca-F细胞和Hca-P细胞各1/2量蛋白。与缓冲液及IPG泡涨液混合,制成一向等电聚焦体系。在该体系中重泡涨IPG干胶条10个小时后,按照操作说明使用IPGphⅡ电泳仪,以50mA电流等电聚焦76KVh。等电聚焦结束的IPG胶条平衡后,进行12.5% SDS-PAGE电泳。双向凝胶电泳结束后,应用TyphoonTM9400成像系统扫描成像。采用DeCyder软件DIA和BVA模式,进行凝胶图像分析。不同凝胶内分析模式采用配对比较,以Cy2为内标计算比值,通过Cy3 /Cy2及Cy5 /Cy2的比率对应每个蛋白点含量,并对其进行标准化计算。重复4块胶用来计算每个蛋白点平均量的改变,并进行t检验,计算p值,设定p<0.05为有显著性差异。经DeCyder软件分析有统计学意义的蛋白质点,经自动蛋白质点切割机切取后,转移至96孔板中,进行胰蛋白酶胶内酶解,然后用于电喷雾电离串联质谱进行分析,通过Sequest软件检索NCBInr数据库鉴定蛋白质。以蛋白质印迹验证差异蛋白质Erp29和UCHL3的表达水平。对鉴定出的差异性蛋白质进行生物信息学的功能分析,所使用的分析系统为DAVID和PANTHER,分别从蛋白质表达的细胞内位置、分子功能、生物学过程以及代谢和信号转导通路上进行分析。
     结果:Hca-F细胞株和Hca-P细胞株的成瘤率100%,淋巴结转移率分别为75%和25%,两者相比的统计学检验有显著性意义(p<0.05=,符合本实验对细胞模型的要求。建立Hca-P和Hca-F细胞株的蛋白质荧光差异双向凝胶电泳蛋白表达图谱。经分析,Hca-F和Hca-P样品间有统计学意义的差异性蛋白质点共163个,其中比值改变2倍以上的差异性点23个;1.5倍~2倍的差异性点79个;1倍~1.5倍差异性点61个。在Hca-F细胞中上调的蛋白质点为86个,下调的蛋白质点为77个。将这些差异性蛋白质点进行质谱分析,获得MS/MS串联质谱图后应用Sequest软件在NCBInr数据库中检索,共得到168种蛋白质,其中2倍以上差异性蛋白质有缬酪肽蛋白(Vcp)、真核翻译延长因子2(Eef2)、转羟乙醛酶(Tkt)、M2型丙酮酸激酶(Pkm2)、预测的谷氨酰胺酶异构体5(Gls)、Ero1样蛋白(Ero1)、Aldh2蛋白(Aldh2)、假定蛋白LOC192169(1810047C23Rik)、RuvB样蛋白、(Ruvbl1)、真核翻译延长因子1α2(Eef1α2)、波形蛋白(Vim)、外周蛋白(Prph)、结蛋白(Des)、膜联蛋白7(Anxa7)、脑肌酸激酶(Ckb)、线粒体苹果酸脱氢酶2(Mdh2)、膜联蛋白5(Anxa5)、过氧化物酶体的烯酰辅酶A水解酶1(Ech1)、不均一核糖核酸A2/BI异构体1(Hnrpa2b1)、内酰胺酶β2(Lactb2)、谷胱甘肽S-转移酶ο1(GSTο1)、泛素C末端水解酶同工酶L3(UCHL3)、内质网蛋白29前体(ERp29)、溶血磷脂酶1(Lypla1)、Crk蛋白(Crk)、微管不稳定蛋白(Stmn1)。蛋白质印迹验证差异性蛋白,其结果表明Erp29和UCHL3在Hca-P细胞中均高表达,与鉴定结果一致。对全部168个差异性蛋白进行生物信息学分析,在细胞成分分析中,差异性蛋白质多位于细胞器,其中以线粒体、细胞骨架、内质网居多;分子功能分析显示,差异性蛋白质涉及分子伴侣、细胞骨架蛋白、水解酶、裂解酶、转运蛋白、核苷酸结合蛋白、氧化还原酶、蛋白酶、选择性钙离子结合、选择性调节分子、转录因子、转移酶等功能,其中具有核苷酸结合蛋白分子功能的蛋白质最多占19.4%,其次为氧化还原酶及细胞骨架蛋白各占12.1%;生物过程分析显示这些差异性蛋白参与到各种生物学过程中,其中主要参与到蛋白质代谢和修饰的蛋白质占29.1%,核酸及核苷酸代谢的蛋白质占16.4%,细胞结构和移动的蛋白质占12.7%,免疫和防御的蛋白质占12.1%;代谢和信号转导通路的分析显示上述差异性蛋白涉及精氨酸与脯氨酸代谢、糖酵解和糖异生、碳固定、细胞交流、肌动蛋白骨架调节、黏着斑、抗原的加工和提呈等代谢和信号转导通路。
     结论:以高低淋巴道转移力小鼠肝癌细胞株Hca-F和Hca-P为研究对象,采用定量蛋白质组学技术—荧光差异双向凝胶电泳,建立了高低淋巴道转移力小鼠肝癌细胞荧光差异蛋白表达图谱,高通量筛选与肿瘤淋巴道转移相关的蛋白。共得到163个有统计学差异的蛋白质点,在高淋巴道转移力细胞株Hca-F中表达上调的蛋白质点为86个,在低淋巴道转移力细胞株Hca-P中表达上调的蛋白质点为77个。以质谱技术分析及数据库搜索共鉴定出168种蛋白质,对这些蛋白质进行生物信息学的分析,分别从这些蛋白质表达的细胞内位置、分子功能、生物学过程以及代谢和信号转导途径上进行分析。分析结果显示差异性蛋白质多位于细胞器中,以线粒体居多;具有核苷酸结合蛋白分子功能的蛋白质最多,其次为氧化还原酶与细胞骨架蛋白;蛋白质代谢和修饰、核酸及核苷酸代谢、免疫和防御等生物学过程在肿瘤淋巴道转移中发挥了较为重要的作用;黏着斑、肌动蛋白骨架调节及抗原的加工和提呈等信号转导通路可能是肿瘤淋巴道转移中的关键性途径。
Background: Invision and metastasis are the fundamental characters in differentiating the malignant tumer from benign one,and are the major causes of refractoriness of tumer . High mortality ,poor prognosis and uncertain pathogenesis deriving from metastasis of malignant tumor are still one of tough problems in tumor research for prolonged time.Because majority of malignant tumors are carcinomas and lymph node metastases often represent the first step in the metastatic process,it is very important to make the molecular mechanisms of lymphatic metastasis clearly,and to construct a set of efficient repression methods.Hca-F and Hca-P are a pair of syngenetic mouse hepatocarcinoma ascites cell lines ,presenting a specific potential of lymphogenetic metastasis when inoculated subcutaneo- usly in 615 mice. Hca-F with a highly metastastic potential (>70%)and Hca-P with a low one( < 30%)are rare and available cell model as a reference each other in the research of the molecular mechanisms of lymphatic metastasis.We have investigated the gene expression of Hca-F and Hca-P in mRNA level using cDNA microarray,and have found the conspicuous differential gene expression. However,studying in mRNA level only represents the transcriptive regulation,and can’t reflect the abundance ,the complicated post-translation modification,location and transition in subcellar and the interaction of proteins etc.Protein is a executant of physiological function and a direct performer of life.The mechanisms of physiology and pathology will be elucidated by investigating protein.Proteom is to study all the proteins in a cell or in a tissue.It is difficult to sepratate and to abtain all the expressed proteinsowing to the restriction of the modern technique.So developing high-through technical methods will facilitate proteomics.To get the destination, two-dimensional gel electrophoresis(2DE) and mass spetromery (MS)as the basic techniques of sepratation and identification have been developed.
     Object: In order to obtain lymphatic metastasis-associated proteins, the protein expressed profiles of mouse hepatocarcinoma ascites syngeneic cell lines Hca-F (highly metastatic)and Hca-P(low metastatic) were compared using fluorescent two-dimensional difference gel electrophor- esis(2D DIGE)-quantitative proteomics which has been developed recently,and then differential protein spots with statistical significant between Hca-F and Hca-P were identified by mass spetromery (MS).
     Method: The anabiosis cells of Hca-F and Hca-P were intraperiton- eally injected to culture 2 passage in 615 mice,and cultured in vitro for 24 hours.Collected tumor cell,which of half part for the animal experiment to detect the metastaic rate of lymphtic nodes,another half one for extracting total protein. Hca-F and Hca-P were injected subcutaneously in the hypoderma of right axillary line to observe 28 days ,and executed 20 mice. All draining lymphtic nodes were exsected to be stained with HE . The metastaic rate of lymphtic nodes were calculated.The tumor cells were washed and were centrifuged in a refrigerated centrifuge. The deposition was transfered into a reaction tube containing lysis buffer Lysates to be sonificated,and were centrifuged in a refrigerated centrifuge. Supernatant was total protein,and protein concentration of lysates were determined by Bradford assays. Labeling reactions using CyDyes were performed following the manufacturer’s instructions. For the preparation of the“internal pooled standard,”equal protein amounts of the two corresponding twins were pooled and labeled with Cy2. Equal protein amounts of Cy2, Cy3, andCy5 labeled samples were mixed and added to an equal volume sample buffer and rehydration buffer .DryStrips were rehydrated for 10 hours in rehydration buffer. IEF was performed using IPGphⅡ.After anodic cup loading, the IPG strips were focused for a total of 76 kVh at 50mA. Prior to electrophoresis each strip was equilibrated in equilibration buffer . 2-DE was performed using a stacking gel and a separation gel. The gels werescanned with a Typhoon 9400 using the parameters suggested by the manufacturer.Image analysis was performed with DeCyder. The differential protein spots with statistical significant were excised by an automated spot excitation robot, recovered the spots in a 96-well plate. Protein identification was performed by an in-gel digestion method. Mass spectrometric analysis of tryptic digests was performed usingLC- ESl- MS/MS. Sequest software researched NCBInr database to identify proteins. The identified proteins were verified by Western blotting.All the identified proteins were analized by DAVID and PANTHER at cell component, molecular function ,biological process and metabolism and pathway.
     Result: The rates of tumor formation of Hca-F and Hca-P cells were both 100%,and the metastatic rates of lymphtic nodes were 75% and 25% respectively,with statistical significance(p<0.05). Hca-F and Hca-P cell lines consistented with the requirement of the experiment.The differential expression of protein profile of Hca-F and Hca-P have been established.DIA mode of DeCyder may detect three overlapping images in one gel ,labeled with Cy2, Cy3 and Cy5 respectively ,and may abtain precise radio. BVA mode of DeCyder may match among the gels ,and may detect the diference which can be calculated level of confidence by statistic in all the gels . 163 differential protein spots with statistical significance between Hca-F and Hca-P were detected, including 23 differential spots of more than 2 fold; 79 of 1.5 fold to 2 fold; 61 of 1 fold to 1.5 fold. 86 protein sprots were up-regulated in Hca-F and 77 protein spots were down-regulated in Hca-F. All of the protein differential spots were digested and analyzed using MS,and 168 proteins were identified by NCBInr database using sequest software.The differential expression proteins more than 2 fold : Vcp, Eef2, Tkt, Pkm2 ,Gls,Ero1, Aldh2, 1810047C23Rik, Ruvbl1, Eef1α2, Vim, Prph, Des, Anxa7, Ckb, Mdh2, Anxa5, Ech1, Hnrpa2b1, Lactb2, GSTο1, UCHL3, ERp29,Crk, Lypla1, Stmn1. The identified proteins were verified by Western blotting. ERp29 and UCHL3 were down-regulated in Hca-F ,as same as the result of identification.The analysis of bioinformatics of 168 proteins revealed that the identified proteins were principally located in intracellular organelle,incluing mitochondrion, cytoskeleton, and endoplas- mic reticulum etc.The identified proteins are involved chaperone ,cytoskeletal protein , hydrolase , nucleic acid binding , oxidoreductase , protease , select calcium binding protein , select regulatory molecule , transcription factor , transfer/carrier protein ,transferase etc.The analysis of biology process revealed that the identified proteins mainly participate in protein metabolism and modification, nucleoside, nucleotide and nucleic acid metabolism, cell structure and motility, immunity and defense etc. The analysis of metabolism and pathway revealed that the identified proteins mainly participat in arginine and praline metabolism,proteasome, glycolysis/gluconeogenesis,carbon fixation,cell communication,regulation of actin cytoskeleton,focal adhension, antigen processing and presentation etc.
     Conclusions: In order to obtain lymphatic metastasis-associated proteins, the protein expressed profiles of mouse hepatocarcinoma ascites syngeneic cell lines Hca-F (highly metastatic)and Hca-P(low metastatic) were compared using 2D DIGE,followed by MS to identify the differential protein spots with statistical significant. High-through quantitative proteomics technique is a powerful tool to identify lymphtic metastasis- associated proteins. 163 differential protein spots in 2D DIGE were detected, including 86 protein spots up-regulated in Hca-F and 77 protein spots down-regulated in Hca-F. Followed by MS and researching in database,168 proteins were identified. The analysis of bioinformatics of the identified proteins revealed that they were principally located in intracellular organelle,especially in mitochondrion; nucleic acid binding , oxidoreduc- tase and cytoskeletal protein accounts majority of identified proteins in molecular function ; the identified proteins mainly participate in protein metabolism and modification, nucleoside, nucleotide and nucleic acid metabolism, cell structure and motility, immunity and defense etc.; regulation of actin cytoskeleton ,focal adhension and antigen processing and presentation etc. perhaps were the key pathways in lymphtic metastasis of tumor.
引文
1. Yokota J,Tumor progression and metastasis.Carcinogenesis.2000 Mar; 21(3): 497-503
    2. Nathanson D. Insights into the Mechanisms of Lymph Node Metastasis, Cancer,July 1, 2003,2( 98),413-422
    3. 凌茂英,刘希凤,关素琴,等 .小鼠肝癌不同转移力克隆的分离极其特性的研究,中华医学杂志,1990,70(6):315~318
    4. 陈桑,凌茂英,刘希凤,等。小鼠腹水肝癌高、低转移克隆稳定性的研究,大连医学院学报,1992,14:32
    5. 凌茂英,王明辉,郭伶伶,等 .Hca/16A3-F 及 Hca/16A2-P 两株小鼠淋巴道转移肝癌细胞系的特性研究,中华医学杂志,1995,75(3):170~171
    6. Hou L,Li Y,Jia YH ,et al.Molecular mechanism about lymphogenous metastasis of hepatocarcinoma cells in mice.World J Gastroenterol. 2001 Aug;7(4):532-536
    7. Song B, Tang JW, Wang B, et al.Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip.World J Gastroenterol. 2005 Mar 14;11(10):1463-1472
    8. Song B, Wang B, Tang JW ,et al. Comparative analysis of lymphatic metastasis-associated genes in mouse hepatocellular carcinoma cell lines with different metastatic potential. Chinese J Cancer Res. 2006,18(1): 26-31
    9. O’farrellPH.High resolution two-dimensional electrophoresis of proteins.J Biol Chem. 1975 May 25;250(10):4007-402
    10. Unlu M,Morgan ME, Minden JS.Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.Electrophoresis. 1997 Oct;18(11):2071-2077
    11. Poste G,Fidler IJ.The pathogenesis of cancer metastasis.Nature. 1980 Jan 10;283(5743):139-146
    12. Gygi SP,Corthals GL , Zhang YN, et al.Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology.Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9390-9395
    13. Humphery-Smith I , Co'weft S J , Blackstock W P1 . Pmteome research :complementarity and limitations with respect to the RNA and DNAWo- rlds.Electrophoresis,1997,18:1217 一 l242
    14. Brown LM, Helmke SM, Hunsucker SW ,et al.Quantitative and qualitativedifferences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol Carcinog. 2006 Aug;45(8):613-626
    15. Bi X, Lin Q, Foo TW, et al.Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics. 2006 Jun;5(6):1119-1130
    16. Nunez A, Madoz-Gurpide J, et al.Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics, 2005 Jul;5(10):2602-2611
    17. Fujii K, Kondo T, Yamada M ,et al.Toward a comprehensive quantitative proteome database: protein expression map of lymphoid neoplasms by 2-D DIGE and MS. Proteomics. 2006 Sep;6(17):4856-4876
    18. Fujii K, Kondo T, Yokoo H, et al.Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye. Proteomics, 2006 Mar;6(5):1640-1653
    19. Alban A, David SO, Bjorkesten L ,et al.A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics ,2003 Jan;3(1):36-44
    20. Marouga R, David S, Hawkins E, et al.The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem , 2005 382: 669–678
    1. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988 Oct 15;60(20):2299-2301
    2. Fenn JB, Mann M, Meng CK et al. Electrospray ionization for mass spectrometry of large biomolecules.Science. 1989 Oct 6;246(4926):64-71
    3. Biemann K. Sequencing of peptides by tandem mass spectrometry and high-energy collision-induced dissociation.Methods Enzymol. 1990;193:455-479
    4. Costello CE.Bioanalytic applications of mass spectrometry.Curr Opin Biotechnol. 1999 Feb;10(1):22-28
    5. McLafferty FW, Fridriksson EK, Horn DM et al.Techview: biochemistry. Biomolecule mass spectrometry.Science. 1999 May 21;284(5418):1289-1290
    6. Han X, Jin M,Breuker K, McLafferty FW. Extending top-down mass spectrometry to proteins with masses greater than 200 kilodaltons.Science. 2006 Oct 6;314(5796):109-112
    7. Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting.Curr Biol. 1993 Jun 1;3(6):327-332
    8. Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags.Anal Chem. 1994 Dec 15;66(24):4390-4399
    9. Yates JR 3rd, Eng JK, McCormack AL et al Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem. 1995 Apr 15;67(8):1426-1436
    10. Hirosawa M, Hoshida M, Ishikawa M etal. MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming.Comput Appl Biosci. 1993 Apr;9(2):161-167
    11. An J, Sun JY, Yuan Q et al.Proteomics analysis of differentially expressed metastasis-associated proteins in adenoid cystic carcinoma cell lines of human salivary gland. Oral Oncol, 2004 Apr;40(4):400-408
    12. Uluoglu O, Akyurek N, Uner A et al, Interdigitating dendritic cell tumor with breast and cervical lymph-node involvement: a case report and review of the literature. Virchows Arch,2005 May;446(5):546-554
    13. Hiraki A, Murakami T, Aoe K et al. Heterogeneous nuclear ribonucleoprotein B1 expression in malignant mesothelioma. Cancer Sci,2006 Nov;97(11):1175-1181
    14. Sheu CC, Chang MY, Chang HC et al .Combined detection of CEA, CK-19 and c-met mRNAs in peripheral blood: a highly sensitive panel for potential molecular diagnosis of non-small cell lung cancer. Oncology,2006;70(3):203-211
    15. Meffert G, Gellerich FN, Margreiter R et al. Elevated creatine kinase activity in primary hepatocellular carcinoma. BMC Gastroenterol,2005 Mar 5;5-9
    16. Balasubramani M, Day BW, Schoen RE et al. Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer. Cancer Res, 2006 Jan 15;66(2):763-769
    17. Corsten MF, Hofstra L, Narula J et al, Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res,2006 Feb 1;66(3):1255-1260
    18. Srivastava M, Montagna C, Leighton X et al. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse. Proc Natl Acad Sci U S A, 2003 Nov 25;100(24): 14287-14292
    19. Srivastava M, Bubendorf L, Raffeld M et al. Prognostic impact of ANX7-GTPase in metastatic and HER2-negative breast cancer patients. Clin Cancer Res,2004 Apr 1;10(7):2344-2350.
    20. Nishigaki R, Osaki M, Hiratsuka M et al. Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics,2005 Aug;5(12):3205-3213
    21. Hashibe M, Boffetta P, Zaridze Detal. Evidence for an important role of alcohol- and aldehyde-metabolizing genes in cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev,2006 Apr;15(4):696-703
    22. .Cheretis C, Dietrich F, Chatzistamou I et al. Expression of ERp29, an endoplasmic reticulum secretion factor in basal-cell carcinoma. Am J Dermatopathol.2006 Oct;28(5):410-412
    23. Myung JK, Afjehi-Sadat L, Felizardo-Cabatic M et al. Expressional patterns of chaperones in ten human tumor cell lines. Proteome Sci,2004 Dec 14;2(1):8
    24. Sano Y, Furuta A, Setsuie R et al. Photoreceptor cell apoptosis in the retinal degeneration of Uchl3-deficient mice. Am J Pathol,2006 Jul;169(1):132-141
    1. He YD.Genomic approach to biomarker identification and its recent applica- tions. Cancer Biomark. 2006;2(3-4):103-33
    2. Wheeler DL, Chappey C, Lash AE,et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2000,28:10-14
    3. Wu CH, Huang H, Arminski L, et al.The Protein information Resource: an integrated public resource of functional annotation of proteins. Nucleic Acids Res 2002, 30:35-37
    4. Rebhan M, Chalifa-Caspi V, Prilusky J, et al.a novel functional genomics compendium with automated data mining and query reformulation support. Bioinformatics.1998, 14:656-664
    5. Costanzo MC, Crawford ME, Hirschman JE, et al.YPD  , PombePD  , and WormPD   : model organism volumes of the BioKnowledge  library, an integrated resourcefor protein information. Nucleic Acids Res 2001, 29:75-79
    6. Kanehisa M, Goto S.KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28:27-30
    7. Hubbard T, Barker D, Birney E, et al. The Ensembl genome database project. Nucleic Acids Res 2002, 30:38-41
    8. Gasteiger E, Jung E, Bairoch A.SWISS-PROT: connecting biomolecular knowledge via a protein database. Curr Issues MolBiol 2001, 3:47-55
    9. Dennis G Jr, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):P3
    10. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.Nat Genet. 2000 May;25(1):25-29
    11. Yeh CS, Wang JY, Cheng TL, et al. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis.Cancer Lett. 2006 Feb 28;233(2):297-308
    12. Kaneko T, Watanabe T, Oishi M. Effect of mitochondrial protein synthesis inhibitors on erythroid differentiation of mouse erythroleukemia (Friend) cells. Mol Cell Biol 1988;8:3311–3315
    13. Vayssie`re JL, Cordeau-Lossouarn L, Larcher JC, et al.Participation of themitochondrial genome in the differentiation of the neuroblastoma cells. In Vitro Cell Dev Biol 1992;28A:763–772
    14. Newmeyer DD, Ferguson-Miller S. Mitochondria:releasing power for life and unleashing the machineries of death. Cell 2003;112:481–490
    15. Van Den Bogert C, Spelbrink JN, Dekker HL. Relationship between culture conditions and the dependency on mitochondrial function of mammalian cell proliferation.J Cell Physiol 1992;152:632–638
    16. Lou J, Anderson SL, Xing L, Rubin BY. Suppression of mitochondrial mRNA levels and mitochondrial function in cells responding to the anticellular action of interferon. J Interferon Res 1994;14:33–40
    17. van den Bogert C, Dontje BH, Holtrop M, et al. Arrest of the proliferation of renal and prostate carcinomas of human origin by inhibition of mitochondrial protein synthesis. Cancer Res 1986;46:3283–3289
    18. Cavalli LR, Varella-Garcia M, Liang BC. Diminished tumorigenic phenotype after depletion of mitochondrial DNA. Cell Growth Differ 1997;8:1189–98
    19. 杨光,许广沅,凌茂英,等 .小鼠腹水型肝癌高、低转移细胞系的超微结构定量分析.大连医学院学报,1994,16(4):241-244
    20. Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biol Cell. 2000 Oct;92(7):477-494
    21. Kawada K, Sonoshita M, Sakashita H, et al. Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res. 2004 Jun 1;64(11): 4010-4017
    22. Shintani S, Li C, Mihara M, et al. Gefitinib ('Iressa'), an epidermal growth factor receptor tyrosine kinase inhibitor, mediates the inhibition of lymph node metastasis in oral cancer cells. Cancer Lett. 2003 Nov 25;201(2):149-55
    23. Miyazaki T, Kato H, Nakajima M, et al. FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma. Br J Cancer. 2003 Jul 7;89(1):140-145
    24. Song B, Tang JW, Wang B, et al. Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip. World J Gastro- enterol. 2005,11(10). 1463-1472
    25. Rivoltini L, Carrabba M, Huber V, et al. Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev. 2002 Oct;188:97-113
    26. Mi H, Lazareva-Ulitsky B, Loo R, et al. he PANTHER database of protein families, subfamilies, functions and pathways.Nucleic Acids Res. 2005 Jan 1;33(Database issue):D284-288
    27. Venter JC, Adams MD, Myers EW,et al. The sequence of the human genome. Science,2001. 291: 1304–1351
    28. Futreal PA., Kasprzyk A., Birney E, et al. Cancer and genomics. Nature. 2001,409: 850–852
    29. Afjehi-Sadat L, Engidawork E, Slavc I, et al. Comparative proteomic analysis of nucleic acid-binding proteins in ten human tumor cell lines. Int J Oncol. 2006 Jan;28(1):173-190
    30. 黄嘉,陈献华,徐平 . 核内不均一核糖核蛋白在前体 mRNA加工中的功能 .细胞生物学杂志.2004,26(4):377-380
    31. Rauch J, Ahlemann M, Schaffrik M, et al. Allogenic antibody-mediated identification of head and neck cancer antigens. Biochem Biophys Res Commun. 2004 Oct 8;323(1):156-162
    32. Liu WM, Guerra-Vladusic FK, KurakataS , et al. HMG-I(Y) recognizes base-unpairing regions of matrix attachment sequences and its increased expression is directly linked to metastatic breast cancer phenotype. Cancer Res. 1999 Nov 15;59(22):5695-5703
    33. Tani H, Ohshima K, Haraoka S, et al. Reduced expression of heterogeneous nuclear ribonucleoprotein B1 in adult T-cell lymphoma/leukemia. Int J Oncol. 2003 Mar;22(3):529-534
    34. Yaniv I, Cohen IJ, Stein J, et al. Tumor cells are present in stem cell harvests of Ewings sarcoma patients and their persistence following transplantation is associated with relapse. Pediatr Blood Cancer. 2004 May;42(5):404-409
    35. Kerekatte V, Smiley K, Hu B, et al. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 1995,64:27-31
    36. Bauer C, Brass N, Diesinger I, et al. Overexpression of the eukaryotic translation initiation factor 4G-1 (eIF4G-1) in squamous cell lung carcinoma. Int J Cancer . 2002,98: 181-185
    37. Joseph P, O'Kernick CM, Othumpangat S, et al. Expression profile of eukaryotic translation factors in human cancer tissues and cell lines. Mol Carcinog.2004 ,40:171-179
    38. Arora S, Yang JM, Kinzy TG, et al. Identification and characterizationof an inhibitor of eukaryotic elongation factor 2 kinase against human cancer cell lines. Cancer Res.2003,63: 6894-6899
    39. Tao L, Zhou L, Zheng L, Gao Y. Study on the expression of proto-oncogene eIF4E in laryngeal squamous carcinoma.Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2002 Feb;16(2):62-64
    40. McClusky DR, Chu Q, Yu H, Debenedetti A, et al. A prospective trial on initiation factor 4E (eIF4E) overexpression and cancer recurrence in node-positive breast cancer.Ann Surg. 2005 Oct;242(4):584-90; discussion 590-592
    41. Harvey S, Zhang Y, Landry F, et al. Insights into a plasma membrane signature. Physiol Genomics. 2001 Apr 2;5(3):129-136
    42. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003 Sep 11;22(39):8031-41
    43. Yoon SY, Kim JM, Oh JH, et al. Gene expression profiling of human HBV- and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. Int J Oncol. 2006 Aug;29(2):315-27
    44. Yu L, Wu G, Wang L, et al. Transient reduction of PTI-1 expression by short interfering RNAs inhibits the growth of human prostate cancer cell lines. Tohoku J Exp Med. 2006 Jun;209(2):141-148
    45. Li R, Wang H, Bekele BN, et al. Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene. 2006 Apr 27;25(18):2628-2635
    46. Tomlinson VA, Newbery HJ, Wray NR, et al. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumo. BMC Cancer. 2005 Sep 12;5:113
    47. Lee JM. The role of protein elongation factor eEF1A2 in ovarian cancer. Reprod Biol Endocrinol. 2003 Oct 7;1:69
    48. Anand N, Murthy S, Amann G, et al.Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet. 2002 Jul;31(3):301-305
    49. Connolly E, Braunstein S, Formenti S, et al. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol. 2006 May;26(10): 3955- 3965
    50. Ren H, Tai SK, Khuri F, et al. Farnesyltransferase inhibitor SCH66336 induces rapid phosphorylation of eukaryotic translation elongation factor 2 in head andneck squamous cell carcinoma cells. Cancer Res. 2005 Jul 1;65(13):5841-5847
    51. Grandemange S, Seyer P, Carazo A, et al. Stimulation of mitochondrial activity by p43 overexpression induces human dermal fibroblast transformation. Cancer Res. 2005 May 15;65(10):4282-4291
    52. Bottoni A, Piccin D, Tagliati F, et al. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol. 2005 Jul;204(1):280-285
    1. Humphery-Smith I,Co'weft S J,Blackstock W P1.Pmteome research: complem- entarity and limitations with respect to the RNA and DNAWorlds. Electro- phoresis,1997,18:1217-l242
    2. Unlu M,Morgan ME, Minden JS.Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.Electrophoresis. 1997 Oct; 18(11):2071-2077
    3. Kondo T, Seike M, Mori Y, et al.Application of sensitive fluorescent dyes in linkageof laser microdissection and two-dimensional gelelectrophoresis as a cancer proteomic study tool. Proteomics , 2003, 3, 1758–1766
    4. Friedman DB, Hill S, Keller JW ,et al .Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Coffey RJ, Proteomics ,2004 Mar;4(3):793-811
    5. Natasha A. Karp and Kathryn S. Lilley. Maximising sensitivity for detecting changes in protein expression: Experimental design using minimal CyDyes. Proteomics ,2005 Aug;5(12):3105-15
    6. Alban A, David SO, Bjorkesten L , et al.A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics ,2003 Jan; 3(1):36-44
    7. Swatton JE, Prabakaran S, Karp NA ,et al.Protein profiling of human postmortem brain using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE).Mol Psychiatry , 2004 Feb;9(2):128-43
    8. Brown LM, Helmke SM, Hunsucker SW, et al.Quantitative and qualitative differences in protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol Carcinog. 2006 Aug;45(8):613-626
    9. Gade D, Thiermann J, Markowsky D,et al. Evaluation of two-dimensional difference gel electrophoresis for protein profiling. Soluble proteins of the marine bacterium Pirellula sp. strain 1.J Mol Microbiol Biotechnol. 2003;5(4):240-251
    10. Hu Y, Wang G, Chen GY ,et al. Proteome analysis of Saccharomyces cerevisiae under metal stress by two-dimensional differential gel electrophoresis. Electrop- horesis. 2003 May;24(9):1458-1470
    11. Maeda K, Finnie C, Svensson B. Identification of thioredoxin h-reducibledisulphides in proteomes by differential labelling of cysteines: insight into recognition and regulation of proteins in barley seeds by thioredoxin h.Proteomics. 2005 Apr;5(6):1634-1644
    12. Vierstraete E, Verleyen P, Baggerman G, et al .A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph.Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):470-475
    13. Hoffert JD, van Balkom BW, Chou CL, et al . Application of difference gel electrophoresis to the identification of inner medullary collecting duct proteins.Am J Physiol Renal Physiol. 2004 Jan;286(1):F170-179
    14. Heinemann FS, Korza G, Ozols J. A plasminogen-like protein selectively degrades stearoyl-CoA desaturase in liver microsomes.J Biol Chem. 2003 Oct 31;278(44): 42966-42975
    15. Guest PC, Knowles MR, Molon-Noblot S, , et al. Mechanisms of action of the antidepressants fluoxetine and the substance P antagonist L-000760735 are associated with altered neurofilaments and synaptic remodeling.Brain Res. 2004 Mar 26;1002(1-2):1-10
    16. Cristea IM, Gaskell SJ, Whetton AD. Proteomics techniques and their application to hematology.Blood. 2004 May 15;103(10):3624-3634
    17. Somiari RI, Sullivan A, Russell S, et al . High-throughput proteomic analysis of human infiltrating ductal carcinoma of the breast.Proteomics. 2003 Oct;3(10): 1863-1873
    18. Seike M, Kondo T, Mori Y, et al . Proteomic analysis of intestinal epithelial cells expressing stabilized beta-catenin.Cancer Res. 2003 Aug 1;63(15):4641-4647
    19. Bi X, Lin Q, Foo TW ,et al.Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Prote- omics. 2006 Jun;5(6):1119-1130.
    20. Alfonso P, Nunez A, Madoz-Gurpide J ,et al.Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics, 2005 Jul;5(10):2602-2611.
    21. Fujii K, Kondo T, Yamada M , et al.Toward a comprehensive quantitative proteome database: protein expression map of lymphoid neoplasms by 2-D DIGE and MS. Proteomics. 2006 Sep;6(17):4856-4876
    22. Fujii K, Kondo T, Yokoo H ,et al.Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye.Proteomics, 2006 Mar;6(5):1640-1653.
    23. Seike M, Kondo T, Fujii K ,et al. Proteomic signatures for histological types of lung cancer. Proteomics,2005 Jul;5(11):2939-2948..
    24. Huang HL, Stasyk T, Morandell S ,et al.Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/ MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis. 2006 Apr;27(8):1641-1650
    25. Yu KH, Rustgi AK, Blair IA.Characterization of proteins in human pancreatic cancer serum using differential gel electrophoresis and tandem mass spectrometry. J Proteome Res. 2005 Sep-Oct;4(5):1742-1751
    26. Qin S, Ferdinand AS, Richie JP , et al.Chromatofocusing fractionation and two-dimensional difference gel electrophoresis for low abundance serum proteins. Proteomics. 2005 Aug;5(12):3183-3192
    27. Nishimori T, Tomonaga T, Matsushita K, et al. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics. 2006 Feb;6(3):1011-1008.
    28. Greengauz-Roberts O, Stoppler H, Nomura S ,et al. Saturation labeling with cysteine-reactive cyanine fluorescent dyes provides increased sensitivity for protein expression profiling of laser-microdissected clinical specimens, Prote- omics.2005 May;5(7):1746-1757
    29. Sitek B, Apostolov O, Stuhler K ,et al. Identification of dynamic proteome changes upon ligand activation of Trk-receptors using two-dimensional fluores- cence difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics. 2005 Mar;4(3):291-299
    30. Nakashima D, Uzawa K, Kasamatsu A, et al. Protein expression profiling identifies maspin and stathmin as potential biomarkers of adenoid cystic carcin- oma of the salivary glands. Int J Cancer. 2006 Feb 1;118(3):704-713
    31. Verrills NM, Liem NL, Liaw TY, Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia--an in vivo study.Proteomics. 2006 Mar;6(5):1681-1694.
    32. Wang D, Jensen R, Gendeh G ,et al.Proteome and transcriptome analysis of retinoic acid-induced differentiation of human acute promyelocytic leukemia cells, NB4. J Proteome Res. 2004 May-Jun;3(3):627-635.
    1. Service RF.High-speed search for gold in protein.Science,2001,294:2074~20772
    2. Marte B.Proteomics.Nature,2003,422;191
    3. Tyers M,Mann M.From genomics to proteomics.Nature,2003,422:193~197
    4. Aebersoldr,MannM.Massspectrometry-basedproteomics.Nature,2003,422:198~207
    5. Phizicky E,Bastiaens PI,Zhu H , et al. Protein analysis on a proteomic scale. Nature,2003,422:208~215
    6. Hanash S.Disease proteomics.Nature,2003,422;226~232
    7. BoguskiMS,McIntoshMW.Biomedicalinformaticsforproteomics.Nature,2003,422: 233~237
    8. Sali A,Glaeser R,Earnest T , et al.From words to literature in structural proteomics.Nature,2003,422:2e16~225
    9. Velculescu VE,Zhang L,Voglstein B , et al. Serial analysis of gene expression . Science,1995,270:484~487
    10. Schena N,Shalon D,DavisRW, et al .Quantitative monitoring of gene expression pattern with a complementary DNAmicroarray .Science ,1995,270:467~470
    11. Iyer VR ,Eisen MB,Ross DT, et al.The transcriptional program in the response of human fibroblast to serum. Science,1999,283:83~87
    12. Anderson NL,Anderson NG..Proteome and proteomics:new technologies,new concepts,and new words.Electrophoresis,1998,19:1853~1861
    13. Aebersold R,Mann Mass spectromery-based proteomics.Nature,2003,422~198
    14. Fenn JB, Mann M, Meng CK,et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989 ;246(4926):64-71
    15. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons.Anal Chem. 1988;60(20):2299-301
    16. Biemann K. Sequencing of peptides by tandem mass spectrometry and high- energy collision-induced dissociation.Methods Enzymol. 1990;193:455-479
    17. Hardman M, Makarov AA. Interfacing the orbitrap mass analyzer to an electrospray ion source.Anal Chem. 2003;75(7):1699-705
    18. Hu Q, Noll RJ, Li H,et al. The Orbitrap: a new mass spectrometer.J Mass Spectrom. 2005 ;40(4):430-43
    19. Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide- mass fingerprinting.Curr Biol. 1993;3(6):327-332
    20. Olsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues.Mol Cell Proteomics. 2004;3(6):608-14
    21. Graves PR, Haystead TA. Molecular biologist's guide to proteomics.Microbiol Mol Biol Rev. 2002 ;66(1):39-63
    22. Liska AJ, Shevchenko A. Expanding the organismal scope of proteomics: cross-species protein identification by mass spectrometry and its implic- ations.Proteomics. 2003 ;3(1):19-28
    23. Zhang Z. Prediction of low-energy collision-induced dissociation spectra of peptides with three or more charges.Anal Chem. 2005;77(19):6364-73
    24. Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags.Anal Chem. 1994 ;66(24):4390-4399
    25. Montfort BA,Canas B,Duurkens R ,et al .Improved in-gel approaches to generate peptide maps of integral memberane protein with matrix-assisted laser desorption/ionization time–of-flight mass spectrometry.J Mass Spectrom, 2002,37:322-330
    26. Jensen ON. Modification-specific proteomics: characterization of post-transl- ational modifications by mass spectrometry. Curr Opin Chem Biol. 2004;8(1): 33-41
    27. Kalume DE, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies.Curr Opin Chem Biol. 2003 ;7(1):64-9
    28. Steen H, Jebanathirajah JA, Rush J, et al. Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements.Mol Cell Proteomics. 2006;5(1):172-81
    29. Kaji H, Saito H, Yamauchi Y, et al. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol. 2003;21(6):667-72
    30. Jebanathirajah J, Steen H, Roepstorff P. Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning.J Am Soc Mass Spectrom. 2003;14(7):777-84
    31. Peng J, Schwartz D, Elias JE,et al. A proteomics approach to understanding protein ubiquitination.Nat Biotechnol. 2003 ;21(8):921-6
    32. Unlu M,Morgan ME, Minden JS.Difference gel electrophoresis: a single gel method for detecting changes in protein extracts.Electrophoresis. 1997;18(11): 2071-2077
    33. Gygi SP, Rist B, Griffin TJ,et al. Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags.J Proteome Res. 2002 ;1(1):47-54
    34. Yan W, Chen SS. Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic. 2005 May;4(1):27-38
    35. Semmes OJ , Feng ZD , Adam BL , et al . Evaluation of serum protein profiling by surface-enhanced laser desorption/ ionization time-of-flightmass spect romet ry for the detection of prostate cancer I. Assessment of Platform Reproducibility. Clin Chem , 2005 , 51 : 102-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700