近海海浪的仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海浪场景的仿真一直是计算机图形学研究领域的一个热点,它被广泛的应用于军事模拟、工程计算和艺术创作等领域。随着计算机硬件和软件技术的迅速发展,应用领域对海浪仿真的物理真实性、运行时效性和细节精致性提出了更高的要求。本文从海浪建模方法和GPU绘制技术入手,分析当前研究的现状,对近海海浪造型、表现海浪破碎的粒子系统、海面与海岸生成等内容展开研究,采用GPU技术提高仿真的实效性,实现真实感强、实时性好的近海海浪可视化场景。与以往远海无限海域研究相比,本文面向近海有限海域,考虑了更为复杂的影响和控制因素,使得海浪的仿真过程更加真实准确,渲染造型更加丰富多样。本文所做主要工作和创新点如下:
     1.针对近海海浪的形态特性,讨论了孤立波理论在计算机仿真中的造型方法,基于近海变形物理模型分析了近海海浪破碎的产生过程以及控制方法,为真实表现海浪破碎的形态,提出了基于孤立波波面检测并生成破碎曲面的构造方法,实现海浪在近海区域破碎的可视化仿真过程。
     2.充分利用粒子系统的高表现力实现对近海波浪破碎的模拟。分析了海浪的破碎形态并进行粒子造型的分类。为解决粒子数量对模拟波浪破碎实时性的影响,提出了一种基于密度检测的聚合细分粒子动态优化方案,该方案既能使计算和渲染的开销得到优化,又能实现粒子系统对波浪破碎特征的高细节渲染。利用GPU的并行处理能力计算和管理粒子在仿真中的运动状态,实现了卷波喷雾和激散流粒子系统在海浪破碎仿真中的应用。
     3.为实现海浪真实感的交互,着重分析了适合海浪仿真应用的SPH离散化数值方法,讨论了在SPH应用中最近相邻粒子搜索、边界条件处理以及加速度计算等细节问题,采用一种符合流体控制方程描述的流体运动状态SPH计算方法,实现了与障碍物交互的流体仿真场景实例。
     4.着重分析了Perlin噪声和FFT算法在生成海面高度场中的应用方法。采用以风为驱动力的FFT模型生成高度场,并提出了基于GPU纹理映射的计算方法。对海面的反射、折射和焦散等光学效果进行分析,提出了实时计算太阳位置的动态光照模型,并采用基于视点投影网格的LOD方法裁剪海面,降低网格计算量和渲染量,最后充分利用GPU可编程能力实现了近海海岸的仿真场景。
     5.为满足用户地形风格设计和地形建模控制的需求,提出了一种基于草图路径创建海岸地形的方法。设计了生成地形高度场过程中涉及的海岸边界弯曲策略、高度图样本匹配、置换与合成策略,采用以高度作为检索条件的纹理匹配和混合方法,实现了基于用户设计草图真实感较强的海岸地形场景。
The simulation of ocean scene is a hotpot of the computer graphic research field; it has been widely used in military simulation, engineering computing and arts. With the rapid development of computer hardware and software technology, the application field has required more for physical authenticity, real-time running and detail delicacy of ocean simulation. This thesis indicates with ocean modeling method and GPU rendering technology, analyses the current situation and research on the model of shallow water waves, the particle system which shows the breaking waves and the generation of ocean surface and coast. It uses the GPU technology to improve the efficiency, which implements a better real-time shallow water wave in visual scene. Comparing with previous research which the infinite deep waters, this thesis's goal is to the finite shallow waters, takes into account more complex factors that influence and control, makes the simulation of waves more realistic and accurate, and obtains rendering and modeling more diverse. The main contents of this thesis are as follows:
     1. Focusing on the morphological characteristics of shallow water, it discusses the theory of solitary waves' model method in computer simulation, and analyzes the procedure and control method of breaking wave in shallow water which based on shallow water transform physical model. It has proposed the construct method based on wave surface detection of solitary waves and generating breaking surface to display the form of breaking waves and implement the visual simulation procedure of wave breaking in shallow water field.
     2. This article has made the particle system to implement the simulation of breaking wave in shallow water. It analyzes the breaking form of ocean wave and classifies the particle form, In order to solve the influence of the particle's number to the real-time of simulate breaking wave, this article proposes a polymerization and splits particle dynamic optimized rendering based on density detective. This scheme can not only optimize the cost of computer and render, but also implement the high detail render of breaking wave character by particle system. This thesis has made the benefit of GPU to parallel process compute and manage the particle's movement in simulations, which implements the application of lip spray and whitewater particle system in ocean breaking wave simulation.
     3. In order to achieve the ocean wave real interaction, this thesis analyzes the SPH simulation applications for wave discretization method and discussed the details of the SPH for particles search in nearest neighbor, the treatment of boundary conditions and the acceleration calculation, using a Navier-Stokes equations describe the fluid movement SPH calculation methods, implementing the interaction with the barrier fluid simulation scenario instance.
     4. This article analysis the application method of Perlin noice and FFT method in generate height field of ocean surface. The thesis use FFT model motivated by wind to generate height field, and proposes the calculate method based on GPU texture mapping. The thesis analyzes the optical effect of ocean surface's reflection, refraction and caustics, proposes the dynamic sunshine model of calculating sun's position, and uses LOD method to clipping ocean surface based on perspective projection grid which results in lower grid calculating and rendering. At last, GPU programming ability is used to achieve the simulation scene of coast in shallow water.
     5. In order to meet the user needs of terrain style and modeling control, a sketch based on path way is proposed to create coastal landform. It designs a strategy during the generation of the terrain height field bending involved in the coastal border, using the sample matches the height map displacement and synthesis strategies, and search criteria to a high degree of texture as a combination of matching, and implements strong user-based design sketches realistic coastal topography scene.
引文
[1]Blinn J.F.. Simulation of Wrinkled Surfaces[J]. Computer Graphics,1978,12 (3):286-292.
    [2]Whitted T.. The Hacker's Guide to Making Pretty Pictures[M], SIGGRAPH'85 Course Notes: Image Rendering Tricks,1985.
    [3]Gary A., Peter A.. Fourier Synthsis of Ocean Scene[J]. IEEE Computer Graphics and Application,1987,7(3):16-22.
    [4]Fishman B., Schachter B.. Computer Display of Height Fields[J]. Computer and Graphics, 1980,5(2-4):53-60.
    [5]Max N.. Vectorized Procedural Models for Natural Terrain:Waves and Islands in The Sunset [J]. Computer and Graphics,1981,15 (3):317-324.
    [6]Peachey D R.. Modeling Waves and Surf [J].Computer and Graphics,1986,20(4):65-74.
    [7]童若锋,汪国昭.用于动画的水波造型[J].计算机学报.1996,19(8):594-599.
    [8]Ts 'o P., Barskey B.. Modeling and Rendering Waves:Wave-Tracking Using Beta-Splines and Reflective Texture Mapping[J]. ACM Transaction on Graphics,1987,16(3):191-214.
    [9]Thon S., Dischler J M., Ghazanfarpour D.. Ocean Waves Synthesis Using A Spectrum-Based Turbulence Function[C]. In Computer Graphics International Proceeding,2000,65-72.
    [10]Gerstner F.. Theory of Waves[M]. Abhandlungen der Koniglichen bohmischen Gesellschaft der Wis-senschaften zu Prag,1804.
    [11]Rankine J W.. On the Exact Form of Waves Near the Surfaces of Deep Water[J]. Phil Trans R Soc A,1863,153(4):127-138.
    [12]Fournier A., Reeves W T.. A Simple Model of Ocean Waves[J].Computer Graphics, 1986,20(4):75-84.
    [13]李苏军,宋汉辰,吴玲达.海浪实时建模与绘制技术研究[J].系统仿真学报,2006(增刊):255-257.
    [14]刘洁,邹北骥,周洁琼.基于海浪谱的Gerstner波浪模拟[J].计算机工程与科学,2006,28(2):41-44.
    [15]Stefan J., Hermann B.,Heidrun S.. A Procedural Model for Interactive Animation of Breaking Ocean Waves[C]. WSCG'2003,2003.
    [16]Perlin K.. An Image Synthesizer [C]. Proc of SIGGRAPH'85. San Francisco,1985:287-296.
    [17]Johanson C.. Real-time Water Rendering[D]. Master of Science thesis, Lund University, March,2004.
    [18]李广鑫,丁振国,詹海生.一种面向虚拟环境的真实感水波面建模算法[J].计算机研究与发展,2004,41(9):1580-1555.
    [19]Kass R., Rapid M G.. Stable Fluid Dynamics for Computer Graphics[J].Computer Graphics, 1990,24(4):49-57.
    [20]Chen J X., Lobo N V.. Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations[J]. Graphical Models and Image Processing,1995, 57:107-116.
    [21]O'Brien J., Hodgins J.. Dynamic Simulation of Splashing Fluids[C].Computer Animation 95, 1995,198-205.
    [22]David M., Yang Y H.. Modeling water for Computer Graphics[J]. Computer Graphies.1997, 21(6),801-814.
    [23]Foster N.. Realistic animation of liquids[J].Graphical Models and Image Processing,1996, 58(5):471-483.
    [24]徐迎庆,苏成,李华,等.基于物理模型的流水及波浪模拟[J].计算机学报,1999,19(增刊):153-160.
    [25]Stam J.. Stable Fluids[J]. In Proc. of ACM SIGGRPAH 1999,1999,121-128.
    [26]Foster N., Fedkiw R.. Practical Animation of Liquids[C]. In Proc. of ACM SIGGRPAH 2001, 2001,23-30.
    [27]Komen G J., Cavaleri L., Donelan M.. Dynamics and Modeling of Ocean Waves[J]. London: Cambridge University Press,1996,341-343.
    [28]Mihalef V., Metaxas D., Sussman M.. Animation and Control of Breaking Waves[C]. Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,2004:315-324.
    [29]Losasso F., Gibou F., Fedkiw R.. Simulating Water and Smoke with An Octree Data Structure[C]. In Proc. of SIGGRAPH'04,2004,3:457-462.
    [30]Houston B., Nielsen M B., Batty C., Nilsson O., Museth K.. Hierarchical RLE level set:A Compact and Versatile Deformable Surface Representation[C]. ACM Trans. Graph.2006, 25(1):151-175.
    [31]Nielsen M B.. Dynamic Tubular Grid:An Efficient Data Structure and Algorithms For High Resolution[J]. Journal of Scientific Computing,2006,26(3):261-299.
    [32]Feldman B E., O'Brien J F., Klingner B M.. Animating Gases with Hybrid Meshes[C]. In Proc. of ACM SIGGRAPH 05,2005,904-909.
    [33]Klingner B M., Feldman B E., Chentanez N., O'Brien J F.. Fluid Animation with Dynamic Meshes[C]. In Proc. of ACM SIGGRAPH 06,2006,820-825.
    [34]Elcott S., Tong Y., Kanso E., Desbrun M.. Stable,Circulation-Preserving,Simplicial Fluids[C]. ACM Trans. Graph,2007,120-125.
    [35]Treuille A., Lewis A.. Model Reduction for Real-time Fluids[C]. Proc. of ACM SIGGRAPH 06,2006,25(3):826-834.
    [36]Irving G., Guendelman E., Losasso F.. Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques[C]. In Proc. of ACM SIGGRAPH 06, 2006,805-811.
    [37]Stam J.. Flows on Surfaces of Arbitrary Topology[C]. In Proc. of SIGGRAPH'02,2002,22, 724-731.
    [38]Shi L., Yu Y.. Inviscid and Incompressible Fluid Simulation on Triangle Meshes [J]. Comput. Animat. Virtual Worlds,2004,15,173-181.
    [39]Elcott S., Tong Y., Kanso E.. Stable,Circulation-Preserving, Simplicial Fluids[C]. ACM Trans. Graph,2007,120-125.
    [40]Kim B., Liu Y.. Advections with Significantly Reduced Dissipation and Diffusion[C]. IEEE TVCG,2007,6-17.
    [41]黄师化,汪继文.基于物理模型的水波动画模拟[J].合肥学院学报,2005,1,43-47.
    [42]Fournier P., Habibi A., Poulin P.. Simulating the Flow of Liquid Droplets[J]. In Graphics Interface,1998,133-142.
    [43]Neyret F., Heiss R., Senegas F.. Realistic Rendering of An Organ Surface in Real-Time for Laparoscopic Surgery Simulation[J]. The Visual Computer,2002,18,135-149.
    [44]Hinsinger D.. Interactive Animation of Ocean Waves[C]. In Proc. of SCA'02,2002,161-166.
    [45]Hong J M., Kim C H. Animation of Bubbles in Liquid[C]. Comp. Graph. Forum,2003,22 (3):253-262.
    [46]Cohen J M., Molemaker M J.. Practical Simulation of Surface Tension Flows[C]. In SIGGRAPH Sketches,2004,70-78.
    [47]Song O Y, Shin H., Ko H S.. Stable But Nondissipative Water[C]. ACM Trans. Graph. 2005,24,87-91.
    [48]Wang H., Mucha P. J., Turk G.. Water Drops on Surfaces[C]. In Proc. of ACM SIGGRAPH 05,2005,921-929.
    [49]Treuille A., Mcnamara A., Stam J.. Key Frame Control of Smoke Simulations[C]. In Proc. of SIGGRAPH 03,2003,716-723.
    [50]Mcnamara A., Treuille A., Stam J.. Fluid Control Using the Adjoint Method[C]. In Proc. of SIGGRAPH 04,2004,449-456.
    [51]Fattal R., Lischinski D.. Target-driven Smoke Animation[C]. In Proc. of SIGGRAPH 04, 2004,441-445.
    [52]Shi L., Yu Y. Controllable Smoke Animation with Guiding Objects[C]. ACM Trans. Graph, 2005,24,140-164.
    [53]Pierson W., Moskowitz L.. A Proposed Spectral Form for Fully Developed Wind Seas Based on The Similarity Theory of S.A[J]. Geophysical Research,1964,69,5181-5190.
    [54]徐利明,姜星明.基于谱分析的实时波浪模拟[J].系统仿真学报,2005,17(9):2092-2095.
    [55]马杰,田金文.海浪的数值模拟及其仿真[J].华中理工大学学报,2000,28:63-65..
    [56]马杰.三维海浪场的数值模拟及动态仿真[J].系统仿真学报,2001,13:39-41.
    [57]杨怀平.基于海浪谱的波浪模拟[J].系统仿真学报,2002,14(9):1175-1178.
    [58]李相迎.一种随机海洋波模型及其数字仿真[J].国防科学技术大学学报,1999,21(2):116-118.
    [59]杨惠珍,康凤举,褚彦军.基于海浪谱的随机海浪仿真及验证[J].系统仿真学报,2005,17(10):2324-2326.
    [60]Yin Y, Jin Y C.. Wave Simulation of Visual System in Marine Simulator Based on Wave Spectrums[C],2003.
    [61]Reeves W T.. Particle Systems-A Technique for Modeling a Class of Fuzzy Objects [J]. In SIGGRAPH Proceedings,1983.
    [62]Sims K... Particle Animation and Rendering Using Data Parallel Computation[C]. In SIGGRAPH Proceedings,1990,405-413.
    [63]Nishlkawa N., Abe T.. Artificial Nature in Splash of Droplets[J]. Computer Graphics,1991, 457-466.
    [64]Patriek F., Aiash H., Pierre P.. Simulating the Flow of Liquid Droplets[J]. Graphics Interface, 1998,133-142.
    [65]Kazufumi K., Yassuhiko Z., Hideo Y., Tomoyuki N.. Animation of Water Droplet Flow on Curved Surfaces[C]. Pacifie Graphies' 1996,50-65.
    [66]Young J Y., Ho Y J.. A New Water Droplet Model Using Metaball in the Gravitational Field[J]. Computer Graphics,1999,23,213-222.
    [67]童若锋,汪国昭.瀑布的真实感模拟[J].计算机学报(增刊),1998.31-33.
    [68]刘宏芳,李思昆,焉来斌.基于水波动力学和粒子系统的浪花生成算法研[J].计算机学报(增刊),1998,117-122.
    [69]Alan M., James M L.. Modeling and Rendering Liquids in Motion[J]. WSCG1999,194-201.
    [70]陈前华,邓建松,陈发来.滴水涟漪的计算机动画模拟[J].计算机研究与发展,2001,38(5):524-528.
    [71]Wang C B., Wang ZY.. Real-time Simulation of Ocean Wave Based on Cellular Automata[C], 2003,26-31.
    [72]鄢来斌.虚拟海战场景建模与实时绘制技术的研究与实现[D].国防科学技术大学,2000.
    [73]邹耀斌.风浪的行为特征建模[D].武汉理工大学,2007.
    [74]姚海,鲍劲松,金烨.虚拟战场环境中海浪实时模拟方法的研究[J].兵工学报,2008,29:697-702.
    [75]姚继欢.动态海面的分形模拟及其电磁散射[J].西安电子科技大学学报,1999,26(6):763-766.
    [76]褚彦军,康凤举.一种基于分形的海浪视景仿真方法[J].系统仿真学报,2006,18(增刊):390-392.
    [77]龚琳,顾大权.基于分形的三维动态自然场景仿真[J].测绘科学,2008,04:79-81.
    [78]Macedonia M.. The GPU Enters Computing's Mainstream[C].IEEE Computer Society,2003, 36(10):106-108.
    [79]GPGPU Website.http://www.gpgpu.org
    [80]吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,(05).
    [81]Harris M J.,Coombe G.,Scheuermann T., Lastra A.. Physically-Based Visual Simulation on Graphics Hardware[C]. Proc.of the Graphics Hardware. Eurographics Association,2002, 109-118.
    [82]Li W.,Wei X M., Kaufman A.. Implementing Lattice Boltzmann Computation on Graphics Hardware[J]. The Visual Computer,2003,19,444-456.
    [83]Kruger J.,Westermann R.. Linear Algebra Operators for GPU Implementation of Numerical Algorithms[C]. ACM Trans on Graphics,2003,22(3):908-916.
    [84]Bolz J., Farmer I.,Grinspun E.. Sparse Matrix Solvers on The GPU:Conjugate Gradients and Multigrid[C]. ACM Trans on Graphics,2003,22(3):917-924.
    [85]Goodnight N.,Woolley C.,Luebke D.,Humphreys G.. A Multigrid Solver for Boundary Value Problems Using Programmable Graphics Hardware[C]. Proc.of the Graphics Hardware. Aire-la-Ville:Eurographics Association,2003.102-111.
    [86]Harris M J.,Coombe G.,Scheuermann T.,Lastra A.. Simulation of Cloud Dynamics on Graphics Hardware[C]. Proc.of the Graphics Hardware.Aire-la-Ville:Eurographics Association,2003.92-101.
    [87]柳有权,刘学慧,吴恩华.基于GPU带有复杂边界的三维实时流体模拟[J].软件学报,2006,17(3):568-576.
    [88]杨兵,李凤霞,战守义.基于GPU的真实感海洋效果实时绘制方法[J].计算机研究与发展,2005.42(增刊):150-153.
    [89]杜莹,武玉国,王晓明.基于图形处理器的海浪仿真研究[J].海洋测绘,2005,25(3):12-16.
    [90]Jason L.. Real-Time Synthesis and Rendering of Ocean Water [R]. ATI Technical Report, 2005.
    [91]Robine M., Frechot J.. Fast Additive Sound Synthesis for Real-time Simulation of Ocean Surface[C]. Proceedings of the International Conference on Systems, Signals and Image Processing,2006,223-226.
    [92]Yang Xud-ong, Pi Xue-xian. GPU-Based Real-time Simulation and Rendering of Unbounded Ocean Surface[C].Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics,2005,428-433.
    [93]Lawrence M L..An Open Programming Architecture for Modeling Ocean Waves[C]. IMAGE 2007 Conference Scottsdale,2007.
    [94]Galin E., Chiba N.. Realistic Water Volumes in Real-Time[C]. Eurographics Workshop on Natural Phenomena,2006,1-8.
    [95]Kass R., Rapid M G.. Stable Fluid Dynamics for Computer Graphics[J].Computer Graphics, 1990,24(4):49-57.
    [96]鄢来斌,李思昆,张秀山.虚拟海战场景中的海浪实时建模与绘制技术研究[J].计算机研究与发展,2001,38(5):568-573.
    [97]Pozzer C T., Pellegrino S R M.. Procedural Solid-Space Techniques for Modeling and Animating Waves[J]. Computer Graphics,2002,26(6):877-885.
    [98]谢薇.海浪的实时视景仿真[J].计算机工程与应用,2001,(20):123-125.
    [99]施伟.三维随机海浪模拟研究[J].浙江海洋学院学报(自然科学版),2006,25(4):410-413.
    [100]Manuel N G., Kenton F.. An Accurate Model of Wave Refraction Over Shallow Water[J], Computers Graphics,2002,26(2):291-307.
    [101]Hagen T R., Hjelmervik J M., Lie K A., Natvig J R.. Visual Simulation of Shallow-Water Waves[J]. Simulation Modelling Practice and Theory,13,2005,33-39.
    [102]陈勇,陈戈,张淑军.近岸海浪实时仿真[J].系统仿真学报,2008(3):741-745.
    [103]Madsen P A., Warren I R.. Performance of A Numerical Short-wave Model[J]. Coastal Eng,1984(8):73-93.
    [104]李玉成,董国海,滕斌.浅水区波浪的破碎指标[J].水动力学研究与进展,1991(2):99-109.
    [105]Karambas T., Koutitas C.. A Breaking Wave Propogation Model Based on The Boussinesq Equations[J]. Coastal Eng,1992,8:1-19.
    [106]NVIDIA Corporation. NVIDIA SDK[R]. http://developer.nvidia.com/,2001-2004.
    [107]Wang Q., Zheng Y., Chen C., Fujimoto T.. Efficient Rendering of Breaking Waves Using Mps Method[J]. Zhejiang Univ SCIENCE,2006,7(6):1018-1025.
    [108]Iwasaki K., Yoshimoto F., Dobashi Y., Nishita T.. Real-time Rendering of Point-based Water Surfaces[J]. Lecture Notes in Computer Science,2006,3,102-114.
    [109]McAllister D K..The Design of an API for Particle Systems[R]. Department of Computer Science, University of North Carolina at Chapel Hill,2000.
    [110]Kolb. Hardware-based Simulation and Collision Detection for Large Particle Systems. Graphics Hardware Proceednigs 2004.
    [111]Jakobsen,Thomas. Advanced Character Physics[C].2001 GDC Proceedings 2001.
    [112]Monaghan J J.. Smoothed Particle Hydrodynamics [J]. Annual Review of Astronomy and Astrophysics,1992,30:543-574.
    [113]Miiller, M., Charypar, D.. Particle-Based Fluid Simulation for Interactive Applications: Proc. of Siggraph Symposium on Computer Animation[C].2003:154-159.
    [114]Thiirey N., Muller F M., Schirm S.. Real-time Breaking Waves for Shallow Water Simulations[C]. Proceedings of the 15th Pacific Conference on Computer Graphics and Applications,2007:39-46.
    [115]Losasso F., Talton J O., Kwatra N.. Two-Way Coupled SPH and Particle Level Set Fluid Simulation [J]. IEEE Transactions on Visualization and Computer Graphics,2008,14(4): 797-804.
    [116]Desbrun M., Cani M P.. Smoothed Particles:A New Paradigm For Animating Highly Deformable Bodies [J]. Computer Animation and Simulation.1996:61-76.
    [117]Monaghan J J.. Simulating Free Surface Flows With Sph[J]. Journal of Computer Physics, 1994,110(2):399-406.
    [118]Libersky L D., Petschek A G.. High Strain Lagrangian Hydrodynamics[J]. Journal of Computer Physics,1993(109):67-71.
    [119]Liu G R., Gu Y T., A Local Radial Point Interpolation Method for Free Vibration Analyses of 2-D Solids[J]. Journal of Sound and Vibration,2001,246(1):29-46.
    [120]Takashi A.. Real-Time Animation of Water[D]. Department of Information Processing, Graduate School of Information Science, Nara Institute of Science and Technology,2005.
    [121]王磊,丁友东.基于Perlin噪声绘制水面的方法[J].计算机研究与发展,2005,42(增刊):207-210.
    [122]陆志慧,鄢来斌,皮学贤.基于噪声分形面的海面建模与绘制[J].计算机研究与发展,2005,42(增刊):74-78.
    [123]Tessendorf J.. Simulating Ocean Waters[C]. In SIGGRAPH course notes (course 47), ACM SIGGRAPH,2001.
    [124]Jensen L S., Golias R... Deep-Water Animation and Rendering[C]. In Game Developer's Conference,2001,46-52.
    [125]Chiu Y F., Chang C F.. GPU-based Ocean Rendering[C]. Proceedings of the 2006 ICME, 2006,2125-2128.
    [126]Perlin K.. Implementing Improved Perlin Noise. Http://http.developer.nvidia.com/ GPUGems/gpugems_ch05.html
    [127]Paul S.. How to compute planetary positions. Http://www.stjarnhimlen.se/comp/ ppcomp.html
    [128]李胜,冀俊峰,刘学慧,吴恩华.超大规模地形场景的高性能漫游[J].软件学报,2006,17(3):535-545.
    [129]谭兵,徐青,周杨.大区域地形可视化技术的研究[J].中国图像图形学报,2003,8(5):578-584.
    [130]李庆忠,高秀荣.三维可控真实感地形生成方法研究[J].系统仿真学报,2008,20(11):2938-2941.
    [131]Fares B.. Terrain Modeling:A Constrained Fractal Model[C].Proceedings of the5th international conference on Computer graphics,virtual reality, visualisation and interaction, 2007,197-204.
    [132]Brosz J., Samavati F. F..Terrain Synthesis by Example[C].1st International Conference on Computer Graphics Theory and Applications,2006.
    [133]Perez P., Gangnet M., Blake A.. Poisson Image Editing[C]. ACM Transactions on Graphics (SIGGRAPH'03),2003,22(3):313-318.
    [134]Farbman Z., Hoffer G., Lipman Y.. Coordinates for Instant Image Cloning[C]. ACM Trans. Graph.,2009,28(3):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700