人工耳软骨支架快速成形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小耳畸形是与生俱来的给患者带来重大身心伤害和功能障碍的外观畸形。目前的整形修复为手工切取患者自体肋软骨或采用标准构件组装支架等进行。二者均形态不逼真,欠美观,不能做到个性化服务,且前者需对患者做两处手术。本文提出并实现了根据患者健侧外耳CT数据重构其患侧外耳数字模型,以此驱动基于离散/堆积成形原理的熔融挤压快速成形设备,选择具有优良生物相容性和生物力学性能的高分子材料,加工出可植入人体内的耳软骨支架,替代肋软骨雕刻耳软骨支架,达到修复畸形小耳重建耳廓的治疗目的。鉴于患者颅骨发育的不对称性,本文提出基于不对称颅骨的耳软骨数据的反求与设计方法,获得的患侧数据模型既保证了外耳形状的真实性,又兼顾了与健侧耳廓的协调。
    对超高分子量聚乙烯、高密度聚乙烯和聚氨酯等材料分别和共混制丝,进行工艺试验和材料性能实验,从最终耳软骨支架性能和加工工艺过程需求的角度对材料进行遴选,选取具有良好生物相容性、加工安全性、最终制品具有良好强度、抗疲劳性以及柔韧性的聚氨酯作为耳软骨支架材料。
    针对熔融挤压快速成形(MEM)设备中摩擦送料机构对柔性材料送料的困难,提出并实现了颗粒料送进机构,并通过振动分析对其设计进行完善,解决了颗粒料稳定、均匀的送进,拓宽了该工艺的选料范围,缩短了材料制备与成形工艺链,提高了工效,减少了能耗和材料性能变化与引入污染的可能性。开发了一台桌面生物材料快速成形设备。配套设计了相应电路,开发了适合于复杂不规则表面反求数据模型的快速成形数据处理接口软件系统,实现了耳软骨支架的整体成形。改进了工作台设计,提高了成形的洁净度,避免了对工作台的粘损。通过对扫描过程的控制,实现对成形制品的孔隙率与连通性的控制,从工艺角度进一步提高了植入物的结构相容性和早期愈合水平。
    对聚氨酯弹性体人工耳软骨支架进行了临床前试验,包括细胞毒性、组织相容性和耳廓修复动物试验,检验了材料的适用性、工艺的可行性以及成形件的可使用性,达到了预期的目标,成功研制了生物相容材料客户化快速成形人工耳软骨支架。
Microtia is an inherent apparent malformation and disturbance which does serious harm to the patient's body and mind. Presently most of the microtias are treated by manually incising the patients' rib cartilages or with Medpor products. None of them can completely satisfy the requirement of orthopaedic operation, the former requires two operations which are more painful to the patients and the shape of the reconstructed auricle appears not lifelike, and the latter are made in standard dimensions and shapes which are not symmetrical to the normal auricles of the patients' and not customized service.
    In this dissertation, the bio-manufacturing technology is adopted, designing the digital model of the abnormal ear with the CT data of the normal side is brought forward and realized to drive the rapid forming machine based on the discrete/ deposit forming principle. The biocompatible polymer of adequate mechanical performance is chosen for making the implantable auricle scaffold to replace incising the ribs for the reconstruction of microtia.
    In consideration of the asymmetry of skull development, the reengineering and design method of auricle cartilage based on asymmetric skull is brought forward to insure the concerted relation between both auricles.
    Extra high molecular weight polyethylene, high density polyethylene and polyurethane are extruded apart and together, and the materials are used in technical tests and analyzed with instruments. Polymers are studied according to the requirements of the final auricle scaffolds and the process, and the polymer of perfect biocompatibility, safety in process and nice feel is selected as material for making auricle cartilage scaffolds.
    In allusion to the difficulty in feeding flexible material with frictional conveying machine of MEM, directly granule feeding machine is brought forward and realized in the paper. By analyzing the vibration, the design of the machine is further improved to feed the particles steadily and equably. The realization of the feeding machine of granule greatly broadens the material scope of MEM process, shortens the processing chain of material preparation, fabricating and reduces the possibility of pollution.
    
    
    A desktop biomaterial rapid forming system is developed, also the circuits of NC, material feeding and extruding are designed systematically. A software system is developed for the rapid forming of reengineered complex anomalistic surface, the entire forming of auricle cartilage is realized. A new worktable is designed which greatly improves the cleanliness of forming, and avoids the conglutination wastage of foam table. The control of porosity and connectivity of the scaffold is realized by alternating the combination of contour, filling and control of the scanning direction which improves the structural biocompatibility of the implant and early concrescence through the technology.
    The auricle scaffolds made of TPU are tested for their cell toxicity, tissue compatibility and with the preclinical animal tests, also the applicability of the material and the feasibility of the technology are tested. The anticipant goal is attained for having developed the biocompatible customized auricle scaffold with rapid forming technology.
引文
[1] 李亨昭,邱敬之,戚法云.先进制造技术的发展趋势与战略设想. 电子机械工程,2000,(2):3~6
    [2] 张伯鹏,王劲松,郑力,等. 先进制造技术基础研究现状及发展趋势. 中国机械工程,1997.8(2):60~63
    [3] 宋天虎. 先进制造技术的发展与未来. 中国机械工程,1998.9(4):2~6
    [4] 卢清萍. 快速原型制造技术. 北京: 高等教育出版社,2001.1~2
    [5] 王运赣. 快速成形技术. 武汉:华中理工大学出版社,1999. 1~2
    [6] 颜永年,张人佶,崔福斋,等. 用于人工骨制造的喷射成形技术. 中国机械工程,2000,11(10): 1116~1119
    [7] 颜永年,崔福斋,张人佶,等. 人工骨的快速成形制造. 材料导报,2000, 14(2): 11~13.
    [8] 王笠,熊卓,颜永年,等. 骨组织工程材料快速成形的分析和实验. 材料导报,2001, 15(11): 49~51
    [9] Xiong Z., Yan Y., Zhang R., et al. Fabrication of porous poly(L-lactic acid) scaffolds for bone tissue engineering via rxtrusion, Scripta Materialia, 2001,45: 773~779.
    [10] Xiong Z., Yan Y., Wang S., et al. Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition, Scripta Materialia, 2002, 46: 771~776
    [11] 顾方舟,陈妙兰,赵知中,等. 科学技术前沿系列丛书. 医药科学和生物医学工程,济南:山东教育出版社,1988
    [12] 陈百万. 生物医学工程学. 北京:科学出版社,1997:29
    [13] 林元凯译. 人造器官. 世界科学,1996,6:22~23
    [14] 朱军. 1988~1992年全国先天性无耳和小耳畸形发病率的抽样调查. 中华耳鼻咽喉科杂志,2000,2,35(1):62~65
    [15] Brent B. The Role of Available Cartilage and the Operative Time Element in Auricular Reconstruction. Plastic Surgery Educational Foundation Symposium on Reconstruction of the Auricle, C. V. Mosby Co., St. Louis, 1973, 88~90
    [16] Brent B. The Acquired Auricular Deformity: A Systematic Approach to its Analysis and Reconstruction. Plastic & Reconstructive Surgery. 1977, 59:475
    [17] Brent B. Ear Reconstruction with an Expansile Framework of Autogenous Rib Cartilage. Plastic & Reconstructive Surgery, 1974, 53:619
    [18] Brent B. Reconstruction of the Ear, Eyebrow, and Sideburn in the Burned Patient. Plastic &
    
    Reconstructive Surgery, 1975, 55:312
    [19] 夏万尧,曹谊林,商庆新,等. 壳聚糖作为组织工程软骨支架的研究. 中华显微外科杂志,2002,2,25(1):34~37
    [20] 夏万尧,曹谊林,商庆新,等. 应用可注射型生物材料再生自体组织工程化软骨组织的试验研究. 中华显微外科杂志,2001,9,17(5):302~305
    [21] Osorno G. Microtia reconstruction, Eur J Plast Surg, 2001, 24:107~113
    [22] Llano-Rivas I., Angel A., Castillo V., et al.,Microtia: A Clinical and Genetic Study at the National Institute of Pediatrics in Mexico City. Archives of Medical Research. 1999, 30:120~124
    [23] 潘宁,傅荣,高玉. 三种耳廓支架材料再造耳. 中国修复重建外科杂志,1997.11(4): 208~209
    [24] 邢新,李军辉,孙美庆,等. 高密度多孔聚乙烯修复颅骨缺损与凹陷畸形6例报告. 实用美容整形外科杂志2000.11(6):281~284
    [25] 河北新医大学《人体解剖学》编写组. 人体解剖学下册. 北京:人民卫生出版社出版,1978,7.1620
    [26] 邹昕,李强,王振常,等. 333例先天性外中耳畸形的CT分析. 中华放射学杂志,1997,6,31(6)
    [27] 武汉医学院第一附属医院耳鼻咽喉科学教研组. 耳鼻咽喉科学. 北京:人民卫生出版社,1978,6.45~456
    [28] 武汉医学院主编. 耳鼻咽喉科学. 北京:人民卫生出版社,1979,12.169~173
    [29] 顾方舟. 医药科学和生物医学工程. 山东:山东教育出版社,1998,296
    [30] 陈百万. 生物医学工程学. 北京:科学出版社,1997年10月北京,108~114
    [31] Kline J. 生物医学工程手册. 天津:天津科技翻译出版社,159
    [32] 周赫赫. 人体器官解剖学层面数据的三维重建研究. [硕士学位论文],北京:清华大学,2001
    [33] Meyers D. reconstruction of surfaces from planar contours. ACM trans. Graphics, 1992, 11(3):228~258
    [34] Bresler Y., Fessler J.A., Macovski A. A Bayesian approach to reconstruction from incomplete projections of a multiple object 3D domain. IEEE Trans. Pattern anal. Mach. Intell.,1989,11(8): 840~858
    [35] Wang Y.F., Aggarwal J.K. Surface reconstruction and representation of 3-D scenes. Pattern recognition, 1986, 19(3):197~207
    [36] Ekoule A.B., Peyrin F.C., Odet C.L. A triangulation algorithm from arbitrary shaped multiple planar contours. ACM trans. Graphics, 1991, 10(2):182~199
    
    
    [37] Goshtasby A., David A.T., Ackerman L.V. Matching of tomographic slices for interpolation. IEEE trans on medical imaging, 1992, 11(4):507~516
    [38] Keppel E. Approximating complex surfaces by triangulation of contour lines. IBM J. Res. Dev., 1975,19(1):2~11
    [39] boissonnat J.D. Shape reconstruction from planar cross sections. Comput. Vision Graphics Image Process, 1988, 44:10~29
    [40] Granapathy S., Dennehy T.G. A new general triangulation method for planar contours. Comput. Graphics, 1982, 16:67~75
    [41] Kirsch R.A. Computer determination of the constituent structure of biological images. Computers in Biomedical Research, 1971,4:315~318
    [42] Chang L., Chen H., Ho J. Reconstructioin of 3D medical images: a nonlinear interpolation techniques for reconstruction of 3D medical images. CVGIP, 1991, 4:382~391
    [43] 吴树增,李国光,王定国. 生物材料毒理学及应用. 成都:成都科技大学出版社,1988.
    [44] 俞耀庭,张兴栋. 生物医用材料. 天津:天津大学出版社,2000.
    [45] 杨晓芳编译,奚廷斐校. 生物相容性评价的发展趋势. 国外医学生物医学工程分册1999. 22(4):237~242
    [46] 郝立新. 橡胶配合加工技术讲座第10讲. 聚氨酯橡胶(PU)(续完),橡胶工业,1999.46(6): 378~382
    [47] 孙延昌,陈永霞,张毓涛,等. Medpor耳支架在耳廓再造术中的应用. 黑龙江医学, 2001. 25 (8): 574
    [48] 王福坤编译. 世界橡胶工业,1999,26(5):40~47
    [49] 李再峰,李德和. FTIR在聚氨酯弹性体化学中的应用. 弹性体1997,4(7):28~33
    [50] 杜晨阳,李序梅,朱宝立,等. 二苯甲撑二异氰酸酯对男工性激素水平的影响.中国工业医学杂志,2001, 14(6): 345~347
    [51] 李余增. 热分析. 北京:清华大学出版社,1987.1
    [52] 刘振海. 热分析导论. 北京:化学工业出版社,1991.33
    [53] 史廷春,张人佶,颜永年,等. 快速成形外耳软骨支架. 机械科学与技术,2003.22(9): 477~479
    [54] 朱复华. 挤出理论及应用. 北京:中国轻工业出版社,2001.1.14
    [55] 朱君. 适应性快速RP-CAPP系统研究: [博士学位论文]. 北京: 清华大学, 1999
    [56] 冯伟. 快速成形工艺集成软件系统的研究与实现: [博士学位论文]. 北京: 清华大学,1996
    [57] Cillfford CJ. A comparative study of the use of colorimetric assays in the assessment of bio-
    
    compatibility. J Mater Sci Mater Medicine, 1996,7:647~643
    [58] Klein CL. Increased adhesion and activation of polymorphonuclear neutrophil granulocytes to endothelial cells under heavy metal exposure in vitro. Pathobiology, 1994,62:90~98
    [59] Albelda SM. Adhesion molecules and inflammatory injury. Fed Am Soc Expl Biol J, 1994, 8: 504~512
    [60] Chrzanowska-Wodnicka M. Rho-stimulated contractility drives the formation of stress fi-bresandfocaladhesions.J.Cell Biol,1996,133:1403~1415
    [61] 吴平,由少华,朱雪涛,等. 医疗器械生物学评价(第五部分). 北京:中国标准出版社,1997.
    [62] Grimm T., Wohlers T., Rapid prototyping & tooling state of the industry, 1999 worldwide progree report, Wohlers Associates, Inc., 2000.162~190
    [63] Sheridan M.H., Shea L.D., et al. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor deliver, Journal of controlled release, 2000,64:91~102
    [64] Kang H, Tabeta Y. Fabrication of porous gelatin scaffolds for tissue eigineering, Biomaterials, 1999,20:1339~1344
    [65] Bowyer A., Eisenthal DCR. Self-assmbly micrometer-scale polymer structures using biochemical recognition, Proc Instn Mech Engrs. Vol 214, Part B, 755~758
    [66] Morris D.P., Rothera M.P. The application of computer-enhanced imaging to improve preoperative counseling and informed consent in children considering bone anchored auricular prosthesis surgery, International Journal of Pediatric Otorhinolaryngoloty, 2000,55:181~186
    [67] Christina P, Nikos K. Polyurethane/ olefinic ionomer blends. 1: compatibility characteriza- tion, Polyer, 1998, 39(26): 7015~7021
    [68] Christina P, Nikos K. Polyurethane/ HDPE blends: 2. Compatibilization with an olefinic ionomer, Polymer, 1999, 40: 905~911
    [69] Osorno G. Microtia reconstruction, Eur. J. Plast Surg. 2001, 24: 107~113
    [70] Llano-Rivas I., Angel A. Microtia: A clinical and genetic study at the national institute of pediatrics in Mexico City, Archives of medical research, 1999, 30: 120~124
    [71] 刘益军,王保志,聚氨酯弹性体在医疗制品上的应用,化工新型材料,2000. 9:7~9
    [72] 王福坤,医用弹性体,世界橡胶工业,1999,26(5):40~43
    [73] 王雷,杨兵,王新灵,等. 几种新型可降解聚氨酯材料的研究,上海交通大学学报,1999,33(10): 1304~1305
    [74] 宋谋道,朱吉亮,张邦华,等. 可生物降解的聚乳酸弹性体的性能研究. 高分子学报,1998,4: 393~398
    
    
    [75] 刘洪民,方少明,王天筠,等. 聚氨酯喷头的研制. 郑州轻工业学院学报,1997,12(4): 62~65
    [76] 高长有,李安,益小苏,等. 多孔聚合物材料的应用及其生物相容性. 生物医学工程学杂志,1999,16(4): 511~515
    [77] 许海燕,陆颂芳,王春仁,等. 聚醚型聚氨酯材料表面纤维蛋白原的吸附性研究. 中国生物医学工程学报,1998,17(4):326~331
    [78] 魏青,刘力,杨杏芬,等. 聚氨酯海绵细胞毒性和溶血毒性研究. 职业医学,1998,25(5): 13~14
    [79] 薛平,蒋启柏,何亚东等. 超高分子量聚乙烯复合阻燃改性及挤出工艺研究. 工程塑料应用,2001,29(8): 1~3
    [80] 冯钠,项素云,王益龙,等. 工艺条件对HDPE/PA-6共混体系形态结构影响的研究. 中国塑料,2000,14(4): 44~47
    [81] 毕国华,薛宏宇. 高密度多孔聚乙烯在耳廓再造中的应用. 黑龙江医学,2000,10: 21~22
    [82] 谭军,熊泽华. 35例耳廓畸形整复的临床体会. 湖南医学,1999,16(3): 210~211
    [83] 徐坚方,林洁,陈华庆. 先天性小耳的耳廓再造. 实用美容整形外科杂志,1999,10(1): 12~14
    [84] 王梅,组织工程用超结构骨架. 国外医学生物医学工程分册. 1997,20(4): 233~240
    [85] 郭守学,辛振祥. 橡胶配合加工技术讲座第9讲硅橡胶. 橡胶工业,1999,46:183~255
    [86] 刘永灵. 凝胶色谱法测定聚氨酯的分子量及分布. 浙江化工,1998,29(4): 41~43
    [87] 陈静,余学海. 端羟基芳香酯二醇扩链的聚氨酯-酯的DSC研究. 高分子学报,1996,1(2): 106~109
    [88] 翁汉元. 1999年亚洲聚氨脂技术国际会议(Utech Asia'99)综述. 聚氨酯工业,1999,14(4): 1~6
    [89] 谢兴益,钟银屏,刘昉,等. 生物稳定聚氨酯材料研究进展. 高分子材料科学工程,2000,16(4): 22~25
    [90] 李仙会,庞坤玮,韩雪岗. 聚氨酯弹性体的降解及其稳定剂. 聚氨酯工业,2000,15(2): 1~4
    [91] 黄怿,卜乐玮,张德震,等. 多检测GPC技术在高分子表征中的应用. 功能高分子学报,1999,12(3): 325~331
    [92] 苏诚伟,张德震,徐种德,等. 聚甲醛的热重分析研究. 功能高分子学报,1994,7(2):165~167
    [93] 刘策励,成海平. 人体股前区皮肤生物力学特性的初步研究. 生物医学工程学杂志,1997,14(4): 380~382
    
    
    [94] 席庆,程晓兵. 软骨替代材料膨体聚四氟乙烯修复家兔耳软骨. 现代康复,2001,5(11): 42~43
    [95] 祁吉,戴建平. 大型影像学装备的技术进展. 世界医疗器械,2002,8(3): 40~48
    [96] 顾汉卿. 生物体内可降解吸收材料. 第一讲降解吸收机制,世界医疗器械,2002,8(9): 62~68
    [97] 刘维义,刘红. 弹性体挤出流量的确定. 弹性体,1994,4(2): 50~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700