HSP60特异性调节性T细胞的诱导及其对小鼠动脉粥样硬化影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ApoE-/-小鼠CD4+CD25+ T细胞分离及功能检测
     目的探讨ApoE-/-小鼠CD4+CD25+T细胞的比例和功能及其与动脉粥样硬化的关系。方法从apoE-/-小鼠外周血流式细胞仪(FCA)检测CD4+CD25+T细胞的比例并分分选之;混合淋巴细胞反应(MLR)研究CD4+CD25+T细胞的免疫抑制功能;ELISA法测定上清液中细胞因子IL-10、TGF-β浓度;观察ApoE-/-小鼠动脉粥样斑块的形成状况。结果与正常小鼠相比,ApoE-/-小鼠外周血中CD4+CD25+T细胞数量无差异,但抑制naive T细胞增殖能力弱,分泌更少IL-10、TGF-β;ApoE-/-小鼠斑块面积较大。结论ApoE-/-小鼠CD4+CD25+T细胞抑制功能弱,可能因此免疫失稳而致动脉粥样硬化。
     HSP60特异性调节性T细胞的诱导及其对小鼠动脉粥样硬化影响
     目的探讨抗原特异性CD4+CD25+T细胞的体外诱导及其对动脉粥样硬化斑块形成的影响。方法从apoE-/-小鼠分离骨髓单个核细胞,经雷帕霉素(RPM)处理培养出未成熟树突状细胞(DC);体外诱导HSP60特异性调节性T细胞分化;流式细胞仪(FCA)检测及分选CD4+CD25+T细胞;混合淋巴细胞反应(MLR)研究CD4+CD25+T细胞的特异性抑制效应;ELISA法测定上清液中细胞因子IL-10、TGF-β和IFN-γ浓度。过继转移CD4+CD25+T细胞后,观察小鼠动脉粥样斑块的形成状况。结果雷帕霉素处理的DC共刺激分子CD80和CD86表达明显减少,形态学表现为未成熟树突状细胞;未成熟树突状细胞比成熟树突状细胞能诱导更多CD4+CD25+T细胞;培养体系中细胞因子IL-10、TGF-β水平明显升高;CD4+CD25+T细胞能抑制效应性T细胞的增殖及IFN-γ的分泌。过继HSP60特异性CD4+CD25+T细胞组小鼠斑块面积较小。结论未成熟树突状细胞可诱导出抑制功能强大的HSP60特异性CD4+CD25+T细胞,后者在体内能能明显抑制斑块的形成。
Isolation and functional characterization of CD4+ CD25+ Treg cells from apoE-/- mice
     Objective To explore the ratio and function of CD4+CD25+T cell in apoE-/- mice and its relation with atherosclerosis. Methods FCA were used to detect and select CD4+CD25+T cell from peripheral blood of apoE-/- mice. The CD4+CD25+T cells’inhibition were investigated through mixed lymphocyte reaction. Cytokines in the supernatant were analysed by ELISA assay. The state of atheromatous plaque were observed. Results Compare to normal mice, CD4+CD25+T cell in apoE-/- mice had similar ratios and activited weaker inhibition and secreted less IL-10 and TGF-β. The plaques of the apoE-/- mice were larger than normal mice. Conclusion CD4+CD25+ T cells in apoE-/- mice lose its suppressive characterization and thus break immunological homeostasis and then cause atherosclerosis.
     Generation of HSP60-Specific Regulatory T cell and Effect on Atherosclerosis in mice
     Objective To explore induction of antigen-specific-CD4+CD25+T cell in vitro and its effect on the formation of plaque. Methods Bone marrow monouclear cells were extracted from apoE-/- mouse and cultured into immature dendritic cells by RPM and then were used to induce heat shock protein 60-specific-CD4+CD25+T cells in vitro. FCA were used to detect and select CD4+CD25+T cell. The CD4+CD25+T cells’specific inhibition were investigated through mixed lymphocyte reaction. Cytokines in the supernatant were analysed by ELISA assay. After infusing the CD4+CD25+T cells into homogenous mice, we observed the state of the plaques. Results The expression of co-stimulating factor CD80, CD86 on RPM-treated-dendritic cells was down-regulated. Immature dendritic cells could be used to induce more antigen-specific-CD4+CD25+T cells than mature ones and IL-10 and TGF-βlevels in the culture medium were higher. These CD4+CD25+T cells could suppress the proliferation and the IFN-γproduction of effector T cells in vitro notablly. The plaques of the mice which were infused CD4+CD25+T cells were smaller than those uninfused. Conclusion Immature dendritic cells could be used to induce suppressive antigen-specific-CD4+CD25+T cells which could affect the formation of plaques.
引文
【1】Ross R. Atherosclerosis--an inflammatory disease [J]. N Engl J Med, 1999, 340(2): 115-126.
    【2】Wick G, Xu Q. Atherosclerosis--an autoimmunity disease [J]. Exp Gerontol, 1999,34(4):559-566.
    【3】Steffens S, Mach F. Inflammation and atherosclerosis [J]. Herz, 2004, 29:741-748.
    【4】Gething MJ, Sambrook J. Protein folding in the cell [J]. Nature, 1992, 355(1): 33-45.
    【5】Xu Q, Kiechl S, Mayr M, et al. Association of serum antibodies to heat2shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow up study [J]. Circulation, 1999, 100 (11): 1169-.1172.
    【6】George J, Shoenfeld Y, Afek A, et al. Enhanced Fatty Streak Formation in C57BL/6J Mice by Immunization with Heat Shock Protein-65[J]. ArteriosclerThromb Vasc Biol. 1999, 19(3):505-510.
    【7】Mahdi OS, Horne BD, Mullen K,et al . Serum immunoglobulin Gantibodies to chlamydial heat shock protein 60 but not to human and bacterial homologs are associated with coronary artery disease [J]. Circulation, 2002, 106(13):1659-1663.
    【8】Huittinen T, Leinonen M, Tenkanen L, et al. Autoimmunity to human heat shock protein 60, chlamydia pneumoniae infection, and inflammation in predicting coronary risk [J]. Arterioscler Thromb Vasc Biol, 2002, 22(3): 431-437.
    【9】Horvath L, Cervenak L, Oroszlan M, et al. Antibodies against different epitopes of heat2shock protein 60 in children with type 1 diabetes mellitus [J]. Immunol Lett, 2002, 80(3):155-162.
    【10】Singh B , Read S , Asseman C , et al . Control of intestinal inflammation by regulatory T cells [J ] . Immunol Rev , 2001 , 182 :190 - 200.
    【11】Pontoux C , Banz A , Papiernik M. Natural CD4+ CD25 + regulatory T cells control the burst of superantigen induced cytokine production : the role of IL-10 [ J ] . Int Immunol , 2002 , 14(2) :233 - 239.
    【12】Roncarolo MG,Levings MK . The role of different subsets of T regulatory cells in controlling autoimmunity [ J ] . Curr Opin Immunol , 2000 ,12( 6) : 676 - 683.
    【13】Kingsley CI , Karim M, Bushell AR , et al . CD25 + CD4 + regulatory T cells prevent graft rejection : CTLA-4 and IL-10 dependent immunoregulation of alloresponses[J ] . J Immunol , 2002 ,168 (3) :1 080 - 1 086.
    【14】Hara M, Kingsley CI , Niimi M, et al . IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo [J ] . J Immunol , 2001 ,166(6) :3789 - 3796.
    【15】Taylor PA , Noelle RJ , Blazar BR. CD4+ CD25 + immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade[J ] . J Exp Med , 2001 , 193 (11) : 1311 - 1318.
    【16】Takahashi,T. T. Tagami,S. Yamazaki,T. et al. Immunologic self-tolerancemaintained by CD4+CD25+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J.Exp.Med.2000, 192:303.
    
    【1】Plump AS , Smith JD , Hayek T, et al. Severe hypercholes terolemia and atherosclerosis in apolipoprotein E deficient mice created by homologous recombination in ES cells. Cell , 1992 , 71(3) : 343 - 353.
    【2】Zhang SH , Reddick RL , Piedrahita JA , et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science , 1992 , 258 (5081) : 468 -471.
    【3】de Boer OJ , Hirsch F , van der Wal AC , et al . Costimulatory molecules in human atherosclerotic plaques: an indication of antigen specific T lymphocyte activation. Atherosclerosis, 1997, 133 :227-234.
    【4】Hakkinen T.Karkola K, Yla-Herttuala S. Macrophages, smooth musle cells,endothelial cells.T cells express CD40 and CD40L in fatty streaks and more advanced humen atherosclerotic lesions. Vircinous Arch, 2000, 437: 9l6-405.
    【5】Neri Semeri GG,Prism D,M artini F et a1.Acute T cel1 activation is detectable in unstable angina.Circulation. 1997, 95(7): 1806-1812.
    【6】Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. Immunol 2003; 170(8): 3939-3943.
    【7】van Maurik A, Herber M, Wood KJ, et al. Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J Immunol 2002; 169(10): 5401-5404.
    【8】Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibit graft-versus-host disease lethality. Blood. 2002; 99(10): 3493-3499.
    【9】Baecher Allan C, Brown JA, Freeman GJ, et al. CD4 + CD25high regulatory cells in human peripheral blood. J Imm unol, 2001, 167:1245 - 1253.
    【10】Dieckmann D, Plottner H, Berchtold S, et al. Ex vivo isolation and characterization of CD4 ( + ) CD25 ( + ) T cells with regulatory properties from human blood. J Exp Med, 2001, 193 ( 11) : 1303 -1310.
    【11】Asseman C, von HerrathM. About CD4+ CD25+ regulatory cells. Autoimmun Rev, 2002, 1: 190 - 197.
    【1】朱建健,王宪。慢性炎症、自身免疫和动脉粥样硬化。生理科学进展,2002,33(4):327-331。
    【2】Levings, M.K., R. Sangregorio, and M. G. Roncarolo. Human CD4+CD25+ T regulatory cells suppress naive and memory T cell proliferation and can be expanded in vitro without loss of function. J. Exp. Med. 2001,193:1295.
    【3】Shevach, E.M. Certified professionals: CD4+CD25+suppressor T cells. J. Exp. Med. 2001,193:F41-6.
    【4】Sakaguchi, S. Policing the regulators. Nat. Immunol. 2001,2:283.
    【5】Shevach, E. M. CD4+CD25+suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2002, 2:389.
    【6】Moser M. Dendritic cells in immunity and tolerance-do they display opposite functions? Immunity , 2003 ,19(1) :5-8.
    【7】Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392: 245-252.
    【8】Fu F, Li Y, Qian S, et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC class II+, CD80dim, CD86–) prolong cardiac allograft survival in nonimmunosuppressed recipients. Transplantation. 1996;62: 659-665.
    【9】Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med. 2001;193: 233-238.
    【10】Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, non-proliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000;192: 1213-1222.
    【11】Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol. 2001;22: 437-442.
    【12】Holger Hackstein, Timucin Taner, Alan F. Zahorchak, et al. Rapamycin inhibits IL-4-induced dendritic cell maturation in vitro and dendritic cell mobilization and function in vivo. Blood. 2003; 101: 4457-4463.
    【13】周军,汪建平,兰平等。结肠抗原特异性T细胞克隆回输治疗大鼠溃疡性结肠炎的研究。中华实验外科杂志,2004,21(10):1206-1208。
    【14】Mandal K, Jahangiri M, Xu Q. Autoimmunity to heat shock proteins in atherosclerosis[J]. Autoimmun Rev. 2004;3(2):31-37.
    【15】Hansson GK, Libby P, Schonbeck U, et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis[J]. Circ Res, 2002, 91:281-91.
    【16】Frostegard J. Autoimmunity, oxidized LDL and cardiovascular disease[J]. Autoimmun Rev. 2002 Aug; 1:233-2337.
    【17】Erkkila L, Laitinen K, Haasio K, et al. Heat shock protein 60 autoimmunity and early lipid lesions in cholesterol-fed C57BL/6JBom mice during Chlamydia pneumoniae infection[J]. Atherosclerosis. 2004 Dec; 177(2):321-328.
    【18】Xu Q ,Kiechl S, Mayr M ,et al. Association of serum antibodies to heat shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow up study. Circulation 1999,100 (11) : 1169-1174.
    【19】Zal B, Kaski JC, Arno G, et al. Heat-Shock Protein 60-Reactive CD4+CD28 null T Cells in Patients With Acute Coronary Syndromes. Circulation 2004; 109: 1230-235.
    【20】Pauline Ford, Erica Gemmell, Philip Walker, et al. Characterization of Heat Shock Protein-Specific T Cells in Atherosclerosis. Clinical and diagnostic laboratory immunology, 2005, 12(2): 259-267.
    [1] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155:1151–1164.
    [2] Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev.2001; 182:18–32.
    [3] Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol. 2001; 167:1137–1140.
    [4] Dieckmann D, Plottner H, Berchtold S, Berger T, Schuler G. Ex vivo isolation and characterization of CD4+CD25+ T cells with regulatory properties from human blood. J Exp Med.2001; 193:1303–1310.
    [5] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299:1057-1061.
    [6] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4:330-336.
    [7] Khattri R, Cox T, Yasayko SA, Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol. 2003;4:337-342.
    [8] Cosmi L, Liotta F, Lazzeri E, et al. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+ CD25+ regulatory thymocytes. Blood. 2003;102:4107-4114.
    [9] Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. J Clin Invest. 2003;112:1437-1443.
    [10] Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004;16:1643-1656.
    [11] Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J. Foxp3+CD25-CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion. Proc Natl Acad Sci U SA. 2005;102:4091-4096.
    [12] Foussat A, Cottrez F, Brun V, Fournier N, Breittmayer JP, Groux H. A comparative study between T regulatory type 1 and CD4+CD25+ T cells in the control of inflammation. J Immunol. 2003;171:5018-5026.
    [13] Apoil PA, Puissant B, Roubinet F, Abbal M, Massip P, Blancher A. FOXP3 mRNA levels are decreased in peripheral blood CD4+ lymphocytes from HIV-positive patients. J Acquir Immune Defic Syndr. 2005;39:381-385.
    [14] Huan J, Culbertson N, Spencer L, et al. Decreased Foxp3 levels in multiple sclerosis patients. J Neurosci Res. 2005;81:45-52.
    [15] Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- na?ve T cells to CD4+CD25+ regulatory T cells by TGF-βinduction of transcription factor Foxp3. J Exp Med. 2003;198:1875-1886.
    [16] Polanczyk MJ, Hopke C, Huan J, Vandenbark AA, Offner H. Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol. 2005;170:85-92.
    [17] Nocentini G, Giunchi L, Ronchetti S, et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci US A. 1997;94:6216-6221.
    [18] Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002;3:135-142.
    [19] Tone M, Tone Y, Adams E, et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci U S A. 2003;100:15059-15064.
    [20] Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol.2004;173:5008-5020.
    [21] Morris GP, Kong YC. Interference with CD4+CD25+ T-cellmediated tolerance to experimental autoimmune thyroiditis by glucocorticoid-induced tumor necrosis factor receptor monoclonal antibody. J Autoimmun. 2005
    [22] Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431-440.
    [23] Sempowski GD, Cross SJ, Heinly CS, Scearce RM, Haynes BF. CD7 and CD28 are required for murine CD4+CD25+ regulatory T cell homeostasis and prevention of thyroiditis. J Immunol. 2004;172:787-794.
    [24] Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol. 2003;171:3348-3352.
    [25] Beyersdorf N, Gaupp S, Balbach K, et al. Selective targeting of regulatory T cells with CD28 superagonists allows effective therapy of experimental autoimmune encephalomyelitis. J Exp Med. 2005;202:445-455.
    [26] Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyteassociated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295-302.
    [27] Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factorβ. J Exp Med. 2001;194:629-644.
    [28] Boden E, Tang Q, Bour-Jordan H, Bluestone JA. The role of CD28 and CTLA4 in the function and homeostasis of CD4+CD25+ regulatory T cells. Novartis Found Symp. 2003; 252:55-63.
    [29] Tang Q, Boden EK, Henriksen KJ, Bour-Jordan H, Bi M, Bluestone JA. Distinct roles of CTLA-4 and TGF-βin CD4+ CD25+ regulatory T cell function. Eur J Immunol. 2004;34: 2996-3005.
    [30] Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β-TGF-βreceptor interactions in type 1 diabetes. Proc Natl Acad Sci U S A. 2003;100:10878-10883.
    [31] Piccirillo CA, Letterio JJ, Thornton AM, et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factorβ1 production and responsiveness. J Exp Med. 2002;196:237-246.
    [32] Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A. CD25+CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol. 2001;166:3008-3018.
    [33] Shimizu J, Moriizumi E. CD4+CD25- T cells in aged mice are hyporesponsive and exhibit suppressive activity. J Immunol. 2003;170:1675-1682.
    [34] Paust, S., Lu, L., McCarty, N. & Cantor, H. Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease. Proc. Natl. Acad. Sci. 2004;101:10398–10403.
    [35] Bachmann, M.F., Kohler, G., Ecabert, B., Mak, T.W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 1999; 163:1128–1131.
    [36] Bachmann, M.F. et al. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. Eur. J. Immunol. 2001; 31: 450–458.
    [37] Mellor, A.L. & Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 2004; 4: 762–774.
    [38] Taylor, P.A. et al. B7 expression on T cells down-regulates immune responses through CTLA-4 ligation via T-T interactions. J. Immunol. 2004; 172: 34–39.
    [39] Buer, J. et al. Interleukin 10 secretion and impaired effector function of major histocompatibility complex class II-restricted T cells anergized in vivo. J. Exp. Med. 1998; 187:177–183.
    [40] Bacchetta, R. et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J. Exp. Med. 1994; 179: 493–502.
    [41] Sundstedt, A., O’Neill, E.J., Nicolson, K.S. & Wraith, D.C. Role for IL-10 in suppression mediated by peptide-induced regulatory T cells in vivo. J. Immunol. 2003; 170: 1240–1248.
    [42] Vieira, P.L. et al. IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells. J. Immunol. 2004; 172: 5986–5993.
    [43] O’Garra, A. & Vieira, P. Regulatory T cells and mechanisms of immune system control. Nat. Med. 2004; 10: 801–805.
    [44] Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci.2003; 100: 8886–8891.
    [45] Annacker, O. et al. CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J. Immunol.2001; 166: 3008–3018.
    [46] Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 1999; 190: 995–1004.
    [47] Suri-Payer, E. & Cantor, H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4+CD25+ T cells. J. Autoimmun. 2001; 16: 115–123.
    [48] Green, E.A., Gorelik, L., McGregor, C.M., Tran, E.H. & Flavell, R.A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β-TGF-βr?eceptor interactions in type 1 diabetes. Proc. Natl. Acad. Sci. 2003; 100:10878–10883.
    [49] Chen, M.L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β. s?ignals in vivo. Proc. Natl. Acad. Sci. 2005; 102: 419–424.
    [50] Thorstenson KM, Khoruts A. Generation of anergic and potentially immunoregulatory CD25+ CD4 T cells in vivo after induction of peripheral tolerance with intravenous or oral antigen. J Immunol. 2001;167:188–195.
    [51] Zhang X, Izikson L, Liu L, Weiner HL. Activation of CD25+CD4+ regulatory T cells by oral antigen administration. J Immunol. 2001;167:4245–4253.
    [52] Hara M, Kingsley CI, Niimi M, et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol. 2001;166:3789–3796.
    [53] Taylor PA, Noelle RJ, Blazar BR. CD4+CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J Exp Med. 2001;193:1311–1318.
    [54] van Maurik A, Herber M, Wood KJ, Jones ND. Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J Immunol. 2002;169:5401–5404.
    [55] Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood. 2003;101:4862–4869.
    [56] McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: a novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J Exp Med. 2002;195:221–231.
    [57] Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med. 2000;192:1213–1222.
    [58] Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389:737–742.
    [59] Chen ZM, O'Shaughnessy MJ, Gramaglia I, Panoskaltsis-Mortari A, Murphy WJ, Narula S, Roncarolo MG, Blazar BR. IL-10 and TGF-beta induce alloreactive CD4+CD25- T cells to acquire regulatory cell function. Blood. 2003;101:5076–5083.
    [60] Sundstedt A, O'Neill EJ, Nicolson KS, Wraith DC. Role for IL-10 in suppressionmediated by peptide-induced regulatory T cells in vivo. J Immunol. 2003;170:1240–1248.
    [61] Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+) CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192:295–302.
    [62] Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance maintained by CD25(+) CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192:303–310.
    [63] Urashihara K, Kanai T, Ko K, Totsuka T, Makita S, Iiyama R, Nakamura T, Watanabe M. Regulation of murine inflammatory bowel disease by CD25+ and CD25- CD4+ glucocorticoid-induced TNF receptor family-related gene+ regulatory T cells. J Immunol. 2003;171:708–716.
    [64] Schwarz A, Maeda A, Wild MK, Kernebeck K, Gross N, Aragane Y et al. Ultraviolet radiationinduced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. J Immunol 2004; 172:1036–1043.
    [65] Maeda A, Schwarz A, Kernebeck K, Gross N, Aragane Y, Peritt D, et al. Intravenous infusion of syngeneic apoptotic cells by photopheresis induces antigen-specific regulatory T cells. J Immunol 2005; 174:5968-5976.
    [66] Tarbell, K. V., Yamazaki, S., Olson, K., Toy, P. & Steinman, R. M. J. Exp. Med. 2004; 199: 1467-1477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700