灵活透明光网络中自适应传输机理和关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灵活透明光网络是传送网发展演进的重要方向,为网络的运营维护提供了诸多便利。比如,利用通用多协议标签交换(GMPLS)技术可以构造分布式的智能控制平面,实现对连接的快速建立与拆除,支持动态灵活的业务配置以及高效率的资源优化。另外随着各种具有全光处理能力的光器件(如光子交叉连接器、可调全光波长转换器等)技术的逐步成熟,为光信号在全网中透明传输提供了可能性,同时也减少了网络铺设中采用的昂贵光电光转换设备的数量,极大降低了网络建设和运营成本。
     但是光网络的灵活性和透明性也带来了很多问题,主要是由于缺乏光域3R再生功能,光信号在传输中的物理损伤会产生累积。随着向网状拓扑的演变,光网络的灵活性进一步增强,传输路径的改变将导致物理损伤的动态变化,这些损伤积累的影响有可能造成信号的传输质量劣化甚至不满足系统传输要求。尽管已经推出各种具有自适应补偿能力的器件来解决这一问题,但这些器件目前还都只是传送平面上的局部自适应调节,不了解相互之间的补偿状态,缺乏协同工作能力,从而造成不必要的运营维护开销。因此本论文在国家863项目的支持下,针对上述问题进行了深入研究,获得了若干具有创新性的成果,已经或将要发表在美国光学学会期刊Optics Express和Journal of Optical Networking上。主要的工作和创新点包括以下几个方面:
     第一,针对光网络中灵活透明性所带来的物理损伤动态变化问题,并且为了充分利用网络中各种可调节设备(如可调色散补偿器、变增益光放大器等)的物理损伤补偿能力,在灵活透明光网络领域首次提出了支持端到端动态传输质量优化的自适应传输思想,通过在现有ASON架构基础上加入对传送平面物理特性控制的能力,实现动态的从源端到目的端的整个光路传输质量的调节和改善。
     第二,基于现有ASON控制平面功能架构,设计出了支持自适应传输功能的自适应控制面结构,新增了“物理信息采集”、“传输性能评估”、“补偿预算计算”及“传输性能控制”等四个功能模块,从而实现了对链路中各可调节物理损伤补偿器件的动态端到端性能调节,同时也降低了系统调节开销。
     第三,针对自适应传输所面临的关键问题,提出了初步可行的解决方案,主要包括:1)扩展现有的GMPLS信令协议使其能够支持对物理器件参数的收集以及对性能优化参数的传递;2)参考ITU-T的G680标准以及其它的研究成果,给出了对通路残余色散、接收端光信噪比以及累积非线性效应的评估方法;3)创建了自适应传输所遵循的优化模型并初步设计了可行的启发式优化算法。
     第四,基于光子晶体光纤中光脉冲传输的物理模型自主开发了模拟超短脉冲在光子晶体光纤中传输的计算机仿真程序,并基于此工具首次开展了在具有双零色散波长的光子晶体光纤中初始脉冲频率啁啾对超连续谱产生的影响研究,分析了正啁啾和负啁啾在超连续谱产生中的不同作用,研究结果表明,正啁啾脉冲可以产生规则的频谱,而负啁啾脉冲则产生复杂不规则的频谱,很难在实际中应用。此外,正啁啾还极大增强了四波混频的效率,通过选择合适的正啁啾值,几乎所有的脉冲能量都可以从反常色散区完全转移到正常色散区。相关的研究成果可对灵活透明光网络中实现可调全光波长转换以及参量放大起到理论指导作用。
Agile and transparent optical network is the important evolution direction of optical transport network and the agility and transparency are convenient to operate and manage the network. For example, the distributed intelligent control plane can be constructed by generalized multi-protocol label switching (GMPLS), and the fast connection setup and remove can be realized. Then this can support dynamic service configuration and efficient resource optimization. Moreover, all kinks of transparent optical components, such as photonic cross connector and tunable all-optical wavelength converter, have been commercialized. This can support all-optical signal transmission and reduce the quantity of expensive optical-electrical-optical conversion devices and decrease CAPEX and OPEX.
     However, the agility and transparency also bring some problems because the physical impairments will be cumulated without optical 3R regeneration. The network agility will be enhanced as the topology evolves to mesh, and the lightpath change will result in dynamic change of the cumulative physical impairments. Then this may cause the signal degradation or even transmission requirements cannot be satisfied. Although some adaptive impairment compensators have been developed to resolve this problem, these components only realize local adaptive adjustment. They cannot understand the compensation states of each other and lack the team-working ability. Then this would result in unnecessary overhead. Therefore the above problems are investigated in depth with the support of the Hi-Tech Research and Development Program of China, and the research results have or will be published in Optics Express and Journal of Optical Networking. The main innovative results are listed as follows.
     Firstly, for the sake of solving the above problems and making the best of the compensation capability of various tunable devices, we proposed the thought of adaptive transmission in agile and transparent optical networks for the first time, which can support dynamic end-to-end optimization for quality of transmission. The global transmission quality from source to destination can be adjusted and improved dynamically through adding the capacity of controlling physical characteristics of transport plane into ASON.
     Secondly, based on the current control plane in ASON, we designed the architecture of adaptive control plane which can support adaptive transmission. And the new four function modules, namely information collection module, performance estimation module, compensation budget computing module, and performance control module, had been added. Then the dynamic end-to-end adjustment can be achieved and the system overhead will be decreased.
     Thirdly, we proposed the preliminary solutions to the key problems caused by adaptive transmission which mainly included 1) the extension of GMPLS signaling protocol to support the collection of physical parameters and the delivery of optimization parameters; 2) the fast estimation methods of transmission performance including the residual path dispersion, the received OSNR and the cumulative nonlinear phase shift; 3) the optimization model creation and the feasible heuristic algorithms design.
     Finally, based on the physical model of optical pulses propagation in photonic crystal fibers (PCFs), we had independently developed the computer program which can simulate the process of ultra-short pulses propagation in PCFs. Based on this tool, the effect of initial frequency chirp on supercontinuum generation (SCG) is investigated numerically in PCFs with two zero-dispersion wavelengths for the first time. The positive chirps, instead of zero or negative chirps, are recommended because self phase modulation and four-wave mixing can be facilitated by employing positive chirps. In contrast with the complicated and irregular spectrum generated by negative-chirped pulse, the spectrums generated by positive-chirped pulses are wider and much more regular. Moreover, the efficiency of frequency conversion is also improved because of initial positive chirps. Nearly all the energy between the zero-dispersion wavelengths can be transferred to the normal dispersion region provided that the initial positive chirp is large enough. This property has important potential applications in tunable all optical wavelength conversion and broadband parametric amplification.
引文
[1]Charlet G,Corbel E,Lazaro J,et al.WDM transmission at 6 Tbit/s capacity over transatlantic distance,using 42.7Gb/s differential phase-shift keying without pulse carver.Washington,DC,United States:Optical Society of America,Washington,DC 20036-1023,United States,2004.
    [2]Cai J.,Foursa D G,Davidson C R,et al.A DWDM Demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK Channels at 10 Gb/s.Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331,United States,2003.
    [3]Lavigne B,Balmefrezol E,Brindel P,et al.Low input power All-Optical 3R Regenerator based on SeA devices for 42.66Gbit/s ULH WDM RZ transmissions with 23dB span loss and all-EDFA amplification.Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331,United States,2003.
    [4]Bhandare S,Sandel D,Hidayat A,et al.1.6-Tb/s(40/spl times/40 Gb/s)transmission over 4494 km of SSMF with adaptive chromatic dispersion compensation.IEEE Photonics Technology Letters,2005,17(12):2748-2750.
    [5]Luther G G.New fibers for ultra-high-capacity transmission systems.Anaheim,CA,United States:Institute of Electrical and Electronics Engineers Inc.,2002.
    [6]Nouchi P,De M L,Sillard P,et al.Advance in Long-Haul Fibers.Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2003.
    [7] Jajszczyk A. Automatically switched optical networks: Benefits and requirements. IEEE Communications Magazine, 2005,43(2): 10-15.
    [8] Kylafas G E, Soldatos J K. Asons: An automatically switched optical networks simulator. Computer Communications, 2005,28(2): 224-235.
    [9] Manzalini A, Shimano K, Cavazzoni C, et al. Architecture and functional requirements of control planes for automatic switched optical networks: Experience of the 1ST project LION. IEEE Communications Magazine, 2002,40(11): 60-65.
    [10] Saha D, Rajagopalan B, Bernstein G. The optical network control plane: State of the standards and deployment. IEEE Communications Magazine, 2003,41(8): 29-34.
    [11] Simeonidou D, Nejabati R, Zervas G, et al. Dynamic optical-network architectures and technologies for existing and emerging grid services. Journal of Lightwave Technology, 2005, 23(10): 3347-3357.
    [12] Gauger C M, Kuhn P J, Breusegem E V, et al. Hybrid optical network architectures: bringing packets and circuits together. IEEE Communications Magazine, 2006,44(8): 36-42.
    [13] Malis A G. Converged services over MPLS. IEEE Communications Magazine, 2006,44(9): 150-156.
    [14] Yue W, Mocerino J V. Broadband access technologies for FTTx deployment. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [15] Koonen A M. Technologies and applications of FTTx. Montreal, QC, Canada: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2007.
    [16] Van V P, Stokes S, Mackie G. Flexible FTTX deployment using segmented ribbon and bend insensitive fiber. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2006.
    [17] Lee C H. Passive optical networks for FTTx applications. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2005.
    [18] Morioka T.. Recent Progress in Ultra High-Speed and Wideband OTDM/WDM Technologies. ECOC04,Th1.2., 2004.
    [19] Hansen P B, Stentz A, Nielsen T N, et al. Dense wavelength-division multiplexed transmission in 'zero-dispersion' DSF by means of hybrid Raman/erbium-doped fiber amplifiers. Conference on Optical Fiber Communication, Technical Digest Series, 1999, 3.
    [20] Okhrimchuk A, Onishchukov G, Lederer F. Long-haul soliton transmission in a standard fiber at 1.3 μm with distributed Raman amplification. Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 2000,: 343 - 344.
    [21] Morita I, Tanaka K, Edagawa N, et al. 40 Gbit/s single-channel transmission over standard singlemode fibre using distributed Raman amplification. Electronics Letters, 2000, 36(25): 2084-2085.
    [22] Takachio N, Suzuki H, Masuda H, et al. 32×10 Gb/s distributed Raman amplification transmission with 50-GHz channel spacing in the zero-dispersion region over 640 km of 1.55-μm dispersion-shifted fiber. 1999.
    [23] Nissov M, Davidson C R, Rottwitt K, et al. 100 Gb/s (10×10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification. Edinburgh, UK: IEE, Stevenage, Engl, 1997.
    [24] Maeda J, Fukuchi Y. Numerical study on high-speed optical RZ pulse transmission in fiber link with dispersion-slope management. IEEE Journal of Quantum Electronics, 2007,43(9): 743-750.
    [25] Serena P, Bononi A, Orlandini A. Fundamental laws of parametric gain in periodic dispersion-managed optical links. Journal of the Optical Society of America B: Optical Physics, 2007,24(4): 773-787.
    [26] Chen P Y, Malomed B A, Chu P L. A scheme for pre-shaping of dispersion-managed solitons. Optics Communications, 2007,270(2): 151 -160.
    [27] Miao H, Weiner A M, Mirkin L, et al. All-order polarization-mode dispersion (PMD) compensation via virtually imaged phased array (VIPA)-based pulse shaper. IEEE Photonics Technology Letters, 2008, 20(8): 545-547.
    [28] Zhao J, Chen L K, Chan C K. Maximum likelihood sequence estimation for chromatic dispersion and polarization mode dispersion compensation in 3-Chip DPSK modulation format. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [29] Gene J M, Winzer P J, Chandrasekhar S, et al. Simultaneous compensation of polarization mode dispersion and chromatic dispersion using electronic signal processing. Journal of Lightwave Technology, 2007, 25(7): 1735-1741.
    [30] Yan L, Yao X S, Hauer M C, et al. Practical solutions to polarization-mode-dispersion emulation and compensation. Journal of Lightwave Technology, 2006,24(11): 3992-4005.
    [31] Liu F, Su Y. DPSK/FSK hybrid modulation format and analysis of its nonlinear performance. Journal of Lightwave Technology, 2008,26(3): 357-364.
    [32] Mauro Y, Lobanov S, Raghavan S. Impact of modulation format on the performance of fiber optic communication systems with transmitter-based electronic dispersion compensation. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [33] Cai Y. Performance limits of FEC and modulation formats in optical fiber communications. Montreal, QC, Canada: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2007.
    [34] Xu W, Duan G Y, Fang G Q, et al. Study of polarization mode dispersion compensation using new modulation formats. Bandaoti Guangdian/Semiconductor Optoelectronics, 2007,28(5): 717-720.
    [35] Bohn M, Rosenkranz W, Krummrich P M, et al. Experimental verification of combined adaptive PMD and GVD compensation in a 40Gb/s transmission using integrated optical FIR-filters and spectrum monitoring. Washington, DC, United States: Optical Society of America, Washington, DC 20036-1023, United States, 2004.
    [36] Mizuochi T. Recent progress in forward error correction for optical communication systems. IEICE Transactions on Communications, 2005, E88-B(5): 1934- 1946.
    [37] Hamza H S, Deogun J S. Wavelength-exchanging cross connects (WEX) - A new class of photonic cross-connect architectures. Journal of Lightwave Technology, 2006, 24(3): 1101 - 1111.
    [38] Koike Y, Toide T, Sutoh A, et al. Intelligent photonic network system based on optical cross connect and overlay model. Perth, Western Australia, Australia: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005.
    [39] Koike Y, Toide T, Sutoh A, et al. Intelligent and reliable photonic cross-connect system based on overlay model. Journal of Lightwave Technology, 2007, 25(6): 1356-1371.
    [40] Bernhey R S, Kanaan M. ROADM deployment, challenges, and applications. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [41] Grobe K. Applications of ROADMs and control planes in metro and regional networks. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [42] Eldada L. ROADM architectures and technologies for agile optical networks. San Jose, CA, United States: SPIE -International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2007.
    [43] Cvijetic M, Nakamura S. ROADM expansion and its cross-layer applications. Boston, MA, United States: International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States, 2006.
    [44] Sharma M, Soulliere M, Boskovic A, et al. Value of agile transparent optical networks. Glasgow, United Kingdom: Institute of Electrical and Electronics Engineers Inc., 2002.
    [45] Sriram K, Griffith D, Borchert O, et al. Performance comparison of agile optical network architectures with static vs. dynamic regenerator assignment. Boston, MA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005.
    [46] Qiao C, Wei W, Liu X. Extending Generalized Multiprotocol Label Switching (GMPLS) for Polymorphous, Agile, and Transparent Optical Networks (PATON). IEEE Communications Magazine, 2006,44(12): 104-114.
    [47] Moench W, Larikova J. Measuring the optical signal-to-noise ratio in agile optical networks. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [48] Yang W, Hall T J. Distributed dynamic routing, wavelength and timeslot assignment for bandwidth on demand in agile all-optical networks. Ottawa, ON, Canada: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2007.
    [49] Johansson S, Manzalini A, Giannoccaro M, et al. Cost-effective approach to introduce an optical WDM network in the metropolitan environment. IEEE Journal on Selected Areas in Communications, 1998,16(7): 1109-1122.
    [50] Ramamurthy B, Datta D, Feng H, et al. Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks. Journal of Lightwave Technology, 1999, 17(10): 1713-1723.
    [51] Sabella R, Iannone E, Listanti M, et al. Impact of transmission performance on path routing in all-optical transport networks. Journal of Lightwave Technology, 1998, 16(11): 1965-1971.
    [52] Martinez R, Pinart C, Cugini F, et al. Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks. IEEE Communications Magazine, 2006,44(12): 76-85.
    [53] Huang Y, Heritage J P, Mukherjee B. Connection provisioning with transmission impairment consideration in optical WDM networks with high-speed channels. Journal of Lightwave Technology, 2005,23(3): 982-993.
    [54] Strand J, Chiu A L, Tkach R. Issues for routing in the optical layer. IEEE Communications Magazine, 2001,39(2): 81-87.
    [55] Politi C T, Haunstein H, Schupke D A, et al. Integrated design and operation of a transparent optical network: A systematic approach to include physical layer awareness and cost function. IEEE Communications Magazine, 2007,45(2): 40-47.
    [56] Politi C, Matrakidis C, Stavdas A, et al. Cross Layer Routing in Transparent Optical Networks. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [57] Willner A E. The optical network of the future: Can optical performance monitoring enable automated, intelligent and robust systems? Optics and Photonics News, 2006,17(3): 30-35.
    [58] Westlund M, Andrekson P A, Sunnerud H, et al. High-performance optical-fiber-nonlinearity-based optical waveform monitoring. Journal of Lightwave Technology, 2005,23(6): 2012-2022.
    [59] Dinu M, Kilper D C, Stuart H R. Optical performance monitoring using data stream intensity autocorrelation. Journal of Lightwave Technology, 2006, 24(3): 1194-1202.
    [60] Petersson M, Sunnerud H, Karlsson M, et al. Performance Monitoring in Optical Networks Using Stokes Parameters. IEEE Photonics Technology Letters, 2004,16(2): 686-688.
    [61] Yang W. Sensitivity issues of optical performance monitoring. IEEE Photonics Technology Letters, 2002,14(1): 107-109.
    [62] Kahn J M. Compensating multimode fiber dispersion using adaptive optics. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [63] Tanizawa K, Hirose A. Adaptive control of tunable dispersion compensator that minimizes time-domain waveform error by steepest descent method. IEEE Photonics Technology Letters, 2006,18(13): 1466-1468.
    [64] Sakurai Y, Matsutani A, Koyama F. Tunable stop-band hollow waveguide Bragg reflectors with tapered air core for adaptive dispersion-compensation. Applied Physics Letters, 2006, 88(12): 121103.
    [65]Kerbstadt F,Bunge C,Petermann K.Simulation of an AWG structure with thermal lens for adaptive dispersion compensation using a BPM algorithm.Berlin,Germany:Institute of Electrical and Electronics Engineers Computer Society,Piscataway,NJ 08855-1331,United States,2005.
    [66]Heffner B,Schmidt T,Saunders R,et al.43Gb/s adaptive polarization mode dispersion compensator field trial.Anaheim,CA,United States:Institute of Electrical and Electronics Engineers Computer Society,Piscataway,NJ 08855-1331,United States,2007.
    [67]Koc U,Chen Y.Adaptive opto-electronic compensator for excessive filtering,chromatic and polarization mode dispersion.Anaheim,CA,United States:Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331,United States,2005.
    [68]Zhang N,Yu Z,Zhang X.Adaptive polarization mode dispersion compensation system based on DOP as the feedback control signal in 40Gbit/s OTDM system.Beijing,United States:International Society for Optical Engineering,Bellingham,WA 98227-0010,United States,2005.
    [69]Zheng Y,Zhang X,Shen Y,et al.Automatic polarization-mode dispersion compensation by a particle-swarm optimization method and adaptive dithering algorithm.Journal of the Optical Society of America B:Optical Physics,2005,22(2):336-346.
    [70]NTT.D102.Physical characteristics of future adaptive transport system(Proposed draft new Recommendation G.ats).
    [71]ITU-T.G.667.Characteristics of Adaptive Chromatic Dispersion Compensators.
    [72]ITU-T.G.666.Characteristics of PMD compensators and PMD Compensating Receivers.
    [73]ITU-T.G.680.Physical Transfer functions of Optical Network Elements.
    [74]Acharya S,Chang Y J,Gupta B,et al.Architecting Self-Tuning Optical Networks.28th European Conference on Optical Communication,ECOC 2002.
    [75]王加莹,赵继军,刘赛.自适应光传送网.光通信技术,2005,29(7):4-7.
    [76]舒文琼.业务转型呼唤传送网转型弹性概念浮出水面.通信世界,2006,(22):7.
    [77]Pavel L.OSNR optimization in optical networks:Modeling and distributed algorithms via a central cost approach.IEEE Journal on Selected Areas in Communications,2006,24(4):54-65.
    [78]Pavel L.Power control for OSNR optimization in optical networks:A distributed algorithm via A central cost approach.Miami,FL,United States:Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331,United States,2005.
    [79]Pan Y,Pavel L.OSNR optimization in optical networks:Extension for capacity constraints.Portland,OR,United States:Institute of Electrical and Electronics Engineers Inc.,Piscataway,NJ 08855-1331, United States, 2005.
    [80] Pavel L. A noncooperative game approach to OSNR optimization in optical networks. IEEE Transactions on Automatic Control, 2006,51(5): 848-852.
    [81] Cugini F, Andriolli N, Valcarenghi L, et al. Physical impairment aware signalling for dynamic lightpath set up. ECOC 2005. 31st European Conference on Optical Communication, 2005.
    [82] Lee J. H., Tsuritani T., Guo H. X., et al. Field Trial of GMPLS-Controlled All-Optical Networking Assisted with Optical Performance Monitors. OFC2008, OTuA3.
    [83] Sambo N., Andriolli N., Giorgetti A., et al. Introducing Crosstalk-Awareness into GMPLS-controlled transparent optical networks. OFC2008, OTuA4.
    [84] Gagnaire M. Physical impairments in all-optical networks. OFC2008,OWA1.
    [85] Pachnicke S., Paschenda T., and Krummrich P. M. Physical Impairment Based Regenerator Placement and Routing in Translucent Optical Networks. OFC2008,OWA2.
    [86] Saradhi C. V., Carcagni M., Salvadori E., et al. Physical Layer Impairment (PLI) Aware Transponder Selection Policies for GMPLS/WDM Optical Networks. OFC2008,OWA5
    [87] Leplingard F., Zami T., Morea A., ea al. Determination of the impact of a quality of transmission estimator margin on the dimensioning of an optical network. OFC2008, OWA6
    [1]Clark J.Smart optical networks:Powered by intelligent optical switches.Lightwave,2001,18(13):102-104.
    [2]Jain A K.Intelligence in optical networks.IEEE Communications Magazine,2001,39(9):69-70.
    [3]Raptis L,Chatzilias G,Manzalini A,et al.Design and experiments of an automatic switched optical network(ASON).Amsterdam:Institute of Electrical and Electronics Engineers Inc.,2001.
    [4]Jajszezyk A.Automatically switched optical networks:Benefits and requirements.IEEE Communications Magazine,2005,43(2):10-15.
    [5]Manzalini A,Shimano K,Cavazzoni C,et al.Architecture and functional requirements of control planes for automatic switched optical networks:Experience of the IST project LION.IEEE Communications Magazine,2002,40(11):60-65.
    [6]Vasseur J P.GMPLS signalling:RSVP-TE extensions.Amsetrdam:Institute of Electrical and Electronics Engineers Inc.,2001.
    [7]Panjwani N,Mob M.A Study of DiffServ and Protection Switching in MPLS using RSVP-TE.Las Vegas,NV,United States:CSREA Press,Bogart,GA 30622,United States,2003.
    [8] Yin Y, Kuo G S. An improved OSPF-TE in GMPLS-based optical networks. Hong Kong, China: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2005.
    [9] Liu H, Bouillet E, Pendarakis D, et al. Analysis of GMPLS OSPF-TE protocol and its enhancement for routing in optical networks. Philadelphia, PA, United States: International Society for Optical Engineering, Bellingham, WA 98227-0010, United States, 2004.
    [10] Sengupta S, Saha D, Chaudhuri S. Analysis of enhanced OSPF for routing lightpaths in optical mesh networks. New York, NY: Institute of Electrical and Electronics Engineers Inc., 2002.
    [11] Tanizawa K, Hirose A. Performance analysis of steepest descent-based feedback control of tunable-dispersion compensator for adaptive dispersion compensation in all-optical dynamic-routing networks. Journal of Lightwave Technology, 2007, 25(4): 1086- 1094.
    [12] Tanizawa K, Hirose A. Adaptive control of tunable dispersion compensator that minimizes time-domain waveform error by steepest descent method. IEEE Photonics Technology Letters, 2006,18(13): 1466-1468.
    [13] Kerbstadt F, Petermann K. Analysis of adaptive dispersion compensators with double-AWG structures. Journal of Lightwave Technology, 2005,23(3): 1468- 1477.
    [14] Zheng Y, Zhang X, Shen Y, et al. Automatic polarization-mode dispersion compensation by a particle-swarm optimization method and adaptive dithering algorithm. Journal of the Optical Society of America B: Optical Physics, 2005,22(2): 336-346.
    [15] Pua H Y, Peddanarappagari K, Zhu B, et al. Adaptive first-order polarization-mode dispersion compensation system aided by polarization scrambling: theory and demonstration. Journal of Lightwave Technology, 2000,18(6): 832-841.
    [16] Lolivier L, Grillet A, Roy F, et al. DGE-based variable gain EDFA improves both gain flatness and noise figure for a 70℃ temperature operating range. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2005.
    [17] Pan R P, Sheu C R, Lan Y P, et al. Liquid crystal enabled multi-channel power equalizer and stabilizer. Optics Communications, 2007,278(2): 329-333.
    [18] Li Y, Wu C, Fu S, et al. Power equalization for SOA-based dual-loop optical buffer by optical control pulse optimization. IEEE Journal of Quantum Electronics, 2007,43(6): 508-516.
    [19] Liu Y, Chow C W, Kwok C H, et al. Dynamic-channel-equalizer using in-line channel power monitor and electronic variable optical attenuator. Optics Communications, 2007, 272(1): 87-91.
    [20] Deng X, Zheng X, Cao Z, et al. Fast speed electro-optic polymer variable optical attenuator based on cascaded attenuated-total-reflection technique. Applied Physics Letters, 2007, 90(15): 151124.
    [21] Unamuno A, Uttamchandani D. MEMS variable optical attenuator with vernier latching mechanism. IEEE Photonics Technology Letters, 2006, 18(1): 88 - 90
    [1]Saleh A A,Simmons J M.Evolution toward the next-generation core optical network.Journal of Lightwave Technology,2006,24(9):3303-3321.
    [2] Mukherjee B. WDM optical communication networks: Progress and challenges. IEEE Journal on Selected Areas in Communications, 2000,18(10): 1810-1824.
    [3] Matrakidis C, Politi C, Stavdas A. Optical cross-connect architectures with the ability to tailor transmission properties. Journal of Optical Networking, 2007, 6(5): 550-558.
    [4] Sharma M, Soulliere M, Boskovic A, et al. Value of agile transparent optical networks. Glasgow, United Kingdom: Institute of Electrical and Electronics Engineers Inc., 2002.
    [5] Martinez R, Pinart C, Cugini F, et al. Challenges and requirements for introducing impairment-awareness into the management and control planes of ASON/GMPLS WDM networks. IEEE Communications Magazine, 2006,44(12): 76-85.
    [6] Huang Y, Heritage J P, Mukherjee B. Connection provisioning with transmission impairment consideration in optical WDM networks with high-speed channels. Journal of Lightwave Technology, 2005, 23(3): 982-993.
    [7] Cardillo R, Curri V, Mellia M. Considering transmission impairments in configuring wavelength routed optical networks. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2006.
    [8] Qiao C, Wei W, Liu X. Extending Generalized Multiprotocol Label Switching (GMPLS) for Polymorphous, Agile, and Transparent Optical Networks (PATON). IEEE Communications Magazine, 2006,44(12): 104-114.
    [9] Sambo N, Giorgett A, Andriolli N, et al. GMPLS signaling feedback for encompassing physical impairments in transparent optical networks. San Francisco, CA, United States: Institute of Electrical and Electronics Engineers Inc., New York, NY 10016-5997, United States, 2006.
    [10] Ramamurthy B, Datta D, Feng H, et al. Impact of transmission impairments on the teletraffic performance of wavelength-routed optical networks. Journal of Lightwave Technology, 1999, 17(10): 1713-1723.
    [11] Politi C T, Haunstein H, Schupke D A, et al. Integrated design and operation of a transparent optical network: A systematic approach to include physical layer awareness and cost function. IEEE Communications Magazine, 2007,45(2): 40-47.
    [12] Strand J, Chiu A L, Tkach R. Issues for routing in the optical layer. IEEE Communications Magazine, 2001, 39(2): 81-87.
    [13] Stavdas A, Sygletos S, O M M, et al. IST-DAVID: Concept presentation and physical layer modeling of the metropolitan area network. Journal of Lightwave Technology, 2003, 21(2): 372- 383.
    [14] Martinez R, Pinart C, Cornelias J, et al. Routing issues in transparent optical networks. Nottingham, United Kingdom: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2006.
    [15] Politi C, Matrakidis C, Stavdas A, et al. Cross Layer Routing in Transparent Optical Networks. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Computer Society, Piscataway, NJ 08855-1331, United States, 2007.
    [16] Maru K, Chiba T, Tanaka K, et al. Dynamic gain equalizer using hybrid integrated silica-based planar lightwave circuits with LiNbO_3 Phase shifter array. Journal of Lightwave Technology, 2006, 24(1): 495-502.
    [17] Lee H H, Oh J M, Lee D, et al. A variable-gain optical amplifier for metro WDM networks with mixed span losses: A gain-clamped semiconductor optical amplifier combined with a Raman fiber amplifier. IEEE Photonics Technology Letters, 2005, 17(6): 1301-1303.
    [18] Lolivier L, Grillet A, Roy F, et al. DGE-based variable gain EDFA improves both gain flatness and noise figure for a 70°C temperature operating range. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States, 2005.
    [19] Fung R W, Cheung H K, Wong K K. Widely tunable wavelength exchange in anomalous-dispersion regime. IEEE Photonics Technology Letters, 2007, 19(22): 1846-1848.
    [20] Jones R, Doylend J, Ebrahimi P, et al. Silicon photonic tunable optical dispersion compensator. Optics Express, 2007,15(24): 15836-15841.
    [21] Tanizawa K, Hirose A. Performance analysis of steepest descent-based feedback control of tunable-dispersion compensator for adaptive dispersion compensation in all-optical dynamic-routing networks. Journal of Lightwave Technology, 2007,25(4): 1086-1094.
    [22] ITU-T. G8080/Y1304. Architecture for the automatically switched optical network (ASON).
    [23] Kozicki B, Maruta A, Kitayama K I. Experimental demonstration of optical performance monitoring for RZ-DPSK signals using delay-tap sampling method. Optics Express, 2008, 16(6): 3566-3576.
    [24] Llorente R, Clavero R, Marti J. Performance analysis of polarimetric PMD monitoring by real-time optical Fourier transformers. IEEE Photonics Technology Letters, 2006, 18(12): 1383-1385.
    [25] Vorreau P, Kilper D C, Leuthold J. Optical noise and dispersion monitoring with SOA-based optical 2R regenerator. IEEE Photonics Technology Letters, 2005,17(1): 244-246.
    [26] Pointurier Y, Brandt-pearce M. Analytical study of crosstalk propagation in all-optical networks using perturbation theory. Journal of Lightwave Technology, 2005, 23(12): 4074-4083.
    [27] Pachnicke S, Reichert J, Spalter S, et al. Fast analytical assessment of the signal quality in transparent optical networks. Journal of Lightwave Technology, 2006, 24(2): 815-824.
    [28] Pachnicke S, Hecker-denschlag N, Spalter S, et al. Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks. IEEE Photonics Technology Letters, 2004,16(5): 1400-1402.
    [29] Antona J C, Bigo S, Faure J P. Nonlinear cumulated phase as a criterion to assess performance of terrestrial WDM systems. Anaheim, CA, United States: Institute of Electrical and Electronics Engineers Inc., 2002.
    
    [30] ITU-T. G680. Physical Transfer functions of Optical Network Elements.
    [31] Penninckx D, Perret C. New physical analysis of 10-Gb/s transparent optical networks. IEEE Photonics Technology Letters, 2003,15(5): 778-780.
    [32] Frignac Y, Bigo S. Numerical optimization of residual dispersion in dispersion-managed systems at 40 Gbit/s. Baltimore, MD, USA: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, 2000.
    [33] Vorbeck S, Schneiders M. Cumulative nonlinear phase shift as Engineering rule for performance estimation in 160-Gb/s transmission systems. IEEE Photonics Technology Letters, 2004, 16(11): 2571-2573.
    [34] Corman T H, Leiserson C E, Rivest R L. Introduction to Algorithms, MIT Press, Cambridge, MA, 2001.
    [1]Knight J C.Photonic crystal fibres.Nature,2003,424(6950):847-851.
    [2]Knight J C,Russell P S.New Ways to Guide Light.Science,2002,296(5566):276-277.
    [3]Russell P.Applied physics:Photonic crystal fibers.Science,2003,299(5605):358-362.
    [4]Russell P S.Photonic-crystal fibers.Journal of Lightwave Technology,2006,24(12):4729-4749.
    [5]Birks T A,Knight J C,Russell P S.Endlessly single-mode photonic crystal fiber.Opt.Lett.,1997,22(13):961-963.
    [6]Silvestre E,Russell P S,Birks T A,et al.Analysis and design of an endlessly single-mode finned dielectric waveguide.J.Opt.Soc.Am.A,1998,15(12):3067-3075.
    [7]Mogilevtsev D,Birks T A,Russell P S.Group-velocity dispersion in photonic crystal fibers.Opt.Lett.,1998,23(21):1662-1664.
    [8]Knight J C,Et.Anomalous Dispersion in Photonic Crystal Fiber.IEEE Photon.Technol.Lett.,2000,12(7):807-809.
    [9]Mortensen N A.Effective area ofphotonic crystal fibers.Opt.Express,2002,10(7):341-348.
    [10]Siahlo A I,Oxenlowe L K,Berg K S,et al.A high-speed demultiplexer based on a nonlinear optical loop mirror with a photonic crystal fiber.IEEE Photonics Technology Letters,2003,15(8):1147-1149.
    [11]Alfano R R,Shapiro S L.Emission in the region 4000 to 7000 A via four- photon coupling in glass.Physical Review Letters,1970,24(11):584-587.
    [12]Baldeck P,Alfano R.Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers.Journal of Lightwave Technology,1987,5(12):1712-1715.
    [13] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25-27.
    [14] Yamamoto T, Kubota H, Kawanishi S, et al. Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540.
    [15] Genty G, Ludvigsen H, Kaivola M, et al. Measurement of anomalous dispersion in microstructured fibers using spectral modulation. Optics Express, 2004,12(5): 929-934.
    [16] Boyraz O, Kim J, Islam M N, et al. 10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers. Journal of Lightwave Technology, 2000,18(12): 2167-2175.
    [17] Takara H, Ohara T, Sato K. Over 1000 km DWDM transmission with supercontinuum multi-carrier source. Electronics Letters, 2003, 39(14): 1078-1079.
    [18] Abedin K S, Miyazaki T, Kubota F. Wavelength-conversion of pseudorandom pulses at 10 Gb/s by using soliton self-frequency shift in a photonic crystal fiber. IEEE Photonics Technology Letters, 2004,16(4): 1119-1121.
    [19] Coen S, Chau A H, Leonhardt R, et al. Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Am. B, 2002, 19(4): 753-764.
    [20] Herrmann J, Griebner U, Zhavoronkov N, et al. Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. Physical Review Letters, 2002, 88(17): 173901-173901.
    [21] Husakou A V, Herrmann J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Physical Review Letters, 2001, 87(20): 203901.
    [22] Husakou A V, Herrmann J. Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers. Journal of the Optical Society of America B: Optical Physics, 2002,19(9): 2171-2182.
    [23] Washburn B R, Ralph S E, Windeler R S. Ultrashort pulse propagation in air-silica microstructure fiber. Optics Express, 2002,10(13): 575-580.
    [24] Genty G, Lehtonen M, Ludvigsen H, et al. Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers. Optics Express, 2002,10(20): 1083-1098.
    [25] Genty G, Lehtonen M, Ludvigsen H, et al. Enhanced bandwidth of supercontinuum generated in microstructured fibers. Optics Express, 2004,12(15): 3471 - 3480.
    [26] Hilligsoe K M, Andersen T V, Paulsen H N, et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Optics Express, 2004,12(6): 1045 - 1054.
    [27] Frosz M H, Falk P, Bang O. The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength. Optics Express, 2005,13(16): 6181-6192.
    [28] Andersen T V, Hilligsoe K M, Nielsen C K, et al. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths. Optics Express, 2004, 12(17): 4113-4122.
    [29] Falk P, Frosz M H, Bang O. Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths. Optics Express, 2005, 13(19): 7535-7540.
    [30] Zhu Z, Brown T G. Effect of frequency chirping on supercontinuum generation in photonic crystal fibers. Optics Express, 2004,12(4): 689-694.
    [31] Fu X, Qian L, Wen S, et al. Nonlinear chirped pulse propagation and supercontinuum generation in microstructured optical fibre. Journal of Optics A: Pure and Applied Optics, 2004, 6(11): 1012-1016.
    
    [32] Agrawal G P. Nonlinear fiber optics, Springer, 2001.
    [33] Benabid F, Knight J C, Antonopoulos G, et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 2002,298(5592): 399-402.
    [34] Chang G, Norris T B, Winful H G. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression. Optics Letters, 2003,28(7): 546-548.
    [35] Wabnitz S. Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths. Journal of Lightwave Technology, 2006,24(4): 1732-1738

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700