基于计算机符号计算的若干变系数非线性模型可积性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机符号计算的迅猛发展,在非线性科学中,基于符号计算的变系数模型的解析研究已逐渐成为孤子理论的重要研究方向之一,特别是关于变系数模型可积性质的研究备受关注。计算机符号计算具有易于操作和实现的特点,能够以算法化的形式处理繁复冗长的表达式,可为变系数非线性发展方程的研究工作提供功能强大的辅助工具。
     本文主要借助计算机符号计算将某些适用于常系数非线性发展方程的方法进行推广,并应用于若干变系数模型,解析地研究它们的可积性质,如变系数Korteweg-de Vries(KdV)模型、变系数高阶非线性Schr(?)dinger(NLS)模型、修正KdV-Sine-Gordon(mKdV-SG)模型、变系数Gardner模型、柱Kadomtsev-Petviashvili(KP)模型和谱可变修正KP(mKP)模型等等。这些变系数模型在物理学和工程技术领域的不同分支中都有着广泛的应用,如光纤通信、等离子体、超导体、流体力学和非线性晶格等,特别是可用于描述带有非均匀边界条件或非均匀介质的物理背景中的各种非线性波动现象的动力学机制。
     在本文中,作者主要针对变系数可积模型的研究提出便于计算机符号计算实现的算法,并将其应用于若干变系数模型可积性质的研究之中。此外,借助数学计算软件着重探讨所得解析结果的物理机制和潜在的物理应用。本文的内容主要包括如下几个方面:
     (一)基于符号计算的变系数Ablowitz-Kaup-Newell-Segur(AKNS)方法:本文对常系数AKNS方法进行适当推广,并结合符号计算提出适用于构建变系数可积系统Lax对的算法,这样,可在很大程度上扩展该方法的适用范围。同时以在等离子体物理、非线性晶格、玻色爱因斯坦凝聚和海洋动力机制等领域中有着广泛应用的变系数模型为例,阐述了变系数AKNS算法的有效性和适用性。利用该变系数算法,可以更直接更有效地研究变系数非线性模型的某些性质,不仅可以获得常系数模型的线性系统,而且还可以构建变系数可积模型的Lax对。
     (二)基于计算机符号计算的变系数非线性模型自-B(?)cklund变换和多孤子型解的研究:一方面,利用自-B(?)cklund变换与逆散射方法之间的等价关系,提出由变系数可积模型的Lax对推导自-B(?)cklund变换的系统算法,实现对变系数模型可积性质的直接有效的分析探讨,并获得相应的自-B(?)cklund变换和单孤子型解;另一方面,在一定的约束条件下,借助符号计算分别推出从变系数KdV模型和变系数Gardner模型到与它们相对应的常系数可积模型的坐标变换,进而基于此研究了变系数非线性发展方程的孤子解及某些可积性质,如自-B(?)cklund变换、非线性叠加公式和Lax对等。文中还以一类源于动脉机制和玻色爱因斯坦凝聚等物理领域的广义的变系数KdV模型为例,借助符号计算推出该模型的非线性叠加公式和无穷守恒律,并得到双孤波型解。借助Mathematica软件对解析解的潜在物理应用进行直观地分析讨论。
     (三)符号计算与变系数非线性模型的Darboux变换:与经典B(?)cklund变换相比,Darboux变换的一个显著优势就是既含有势函数变换又存在波函数变换,可反复利用同一个算法迭代推出非线性发展方程的一系列解析解。文中主要结合符号计算、Darboux变换、变系数非线性模型的某些特点,提出构造变系数可积模型Darboux变换的算法,并得到相应模型N次迭代的势函数变换公式及多孤子型解。特别地,将双奇异流形方法推广应用到具有双Painlevé分支的变系数谱可变mKP模型,借助符号计算得到该可积模型的自-B(?)cklund变换、Lax对、Darboux变换和Grammian形式的解析解。
     (四)基于符号计算的柱KP模型的Darboux变换和多孤子型解的研究:主要利用非线性化方法和符号计算研究柱KP模型所描述的尘埃等离子体和玻色爱因斯坦凝聚中的抛物线型尘埃声波孤子结构。首先,从柱KP模型的Lax对及其共轭Lax对着手,构造两者之间合适的对称约束并提出两种可积分解,即单个Lax对的非线性化和两个对称Lax对的非线性化;其次,从考察柱KP模型与(1+1)维可积方程之间关系的角度直接构造可积分解。这三种可积分解分别将柱KP模型分解为同一梯队中的两组(1+1)维变系数可积系统,从而可降低模型的维数,达到利用低维方程研究高维复杂方程的目的。借助符号计算获得分解后的(1+1)维可积系统的几种Darboux变换,进而得到柱KP模型一系列的孤子型解。借助Mathematica软件分析讨论了单抛物线型孤子、稀疏型和压缩型孤子的共振结构及离子声波孤子碰撞结构在尘埃等离子体和玻色爱因斯坦凝聚中的物理机制和潜在的物理应用。
     (五)利用计算机符号计算重点研究在非线性光纤光学中有着重要应用的变系数高阶NLS模型的可积性质:通过Painlevé分析方法得到该模型存在脉冲孤子解的两种系数约束条件,在其中一种条件下,该模型的一些可积性质已被广泛研究。本文着重探讨变系数高阶NLS模型在另外一种约束条件下具有的可积性质,包括3×3矩阵Lax对、Darboux变换和多孤子型解。通过对解析解中物理参数(如自陡峭效应和光纤增益/损耗效应)的合理取值,并借助单孤子型解和双孤子型解的几组图形,直观详细地讨论了飞秒光孤子脉冲在非均匀光纤系统中的某些特性及其潜在应用。
     综上所述,本论文针对变系数模型含有任意变系数函数的特点,基于符号计算提出了若干研究变系数模型可积性质的算法,并利用Mathematica计算软件对所得解析结果的潜在物理应用进行了深入分析。作者希望文中提出的用于研究变系数模型可积性质的方法,如变系数AKNS方法、推导自-B(?)cklund变换的方法、构造Darboux变换的方法及得到变系数模型多孤子型解的方法,能够为其它类型的变系数非线性模型的研究工作提供一定的帮助。同时也希望本文获得的解析结果及关于孤子型解的分析讨论,有可能在未来的空间和实验室环境中被观察到,并有助于解释光纤通信、超导体、非线性晶格、流体力学、尘埃等离子体和玻色爱因斯坦凝聚等领域中非线性现象的物理机制。
With the swift development of the computerized symbolic computation, the analytic investigation on variable-coefficient nonlinear models in nonlinear sciences has become one important research direction in soliton theory, especially for the integrable property issue. Due to the practicability of symbolic computation, it can drastically increase the ability of a researcher to algorithmically deal with the complicated and interminable analytic calculations, and then provide a wonderful tool for the study of variable-coefficient nonlinear evolution equations (NLEEs).
     Based on symbolic computation, the main work of this dissertation is to generalize some known methods that are used to treat constant-coefficient NLEEs to study the integrable properties of some variable-coefficient nonlinear models, including the variable-coefficient Korteweg-de Vries (KdV) model, variable-coefficient higher-order nonlinear Schrodinger (NLS) model, variable-coefficient modified KdV-Sine-Gordon (mKdV-SG) model, variable-coefficient Gardner model, cylindrical Kadomtsev-Petviashvili (KP) model and nonisospectral modified KP (mKP) model. Those models with variable coefficients have wide application prospects in various branches of physics and engineering technology such as optical fiber communications, plasmas, superconductors, hydrodynamics and nonlinear lattice, especially for describing the physical mechanism of nonlinear phenomena in physical situations with nonuniformities of boundaries and/or inhomogeneities of media.
     In this dissertation, the author emphasizes the proposal of some algorithms, which are convenient to be operated on computing system and can be used to explore the integrable properties of some variable-coefficient nonlinear models. Moreover, with the use of integrated software for mathematical computing, special attention is paid to some obtained analytic results as well as their physical mechanism and possible applications. The research work of the dissertation mainly includes the following aspects:
     (1) Variable-coefficient Ablowitz-Kaup-Newell-Segur (AKNS) method with symbolic computation. Owing to the limitation of the constant-coefficient AKNS method, a variable-coefficient AKNS algorithm is proposed for constructing the Lax pairs of variable-coefficient nonlinear models, which admits exact, algorithmic and exercisable traits and is applicable to large numbers of variable-coefficient NLEEs. In illustration, the algorithm is applied to some variable-coefficient nonlinear models arising from plasma physics, nonlinear lattice, Bose-Einstein condensates and ocean dynamics. Utilizing this effective variable-coefficient algorithm, one can directly investigate the integrable properties of variable-coefficient NLEEs, and simultaneously obtain the Lax pairs of both the constant-coefficient and variable-coefficient models.
     (2) Symbolic computation on the auto-Backlund transformations and multi-soliton-like solutions of variable-coefficient nonlinear models. From the viewpoint of the equivalent relationship between the auto-Backlund transformation and the inverse scattering system, a systematic algorithm is put forward to construct the corresponding auto-Backlund transformations and one-soliton-like solutions for some variable-coefficient NLEEs. Meanwhile, the nonlinear superposition formula, two-soliton-like solution and an infinite number of conservation laws of a generalized variable-coefficient KdV equation arising from arterial mechanism and Bose-Einstein condensates are also obtained. On the other hand, under certain constraint conditions, several transformations from the variable-coefficient KdV equation and the variable-coefficient Gardner equation to their constant-coefficient integrable counterparts are respectively derived with the help of symbolic computation. By virtue of the obtained transformations, some integrable properties of these two variable-coefficient models are investigated, such as the auto-Backlund transformations, nonlinear superposition formulas, soliton-like solutions and Lax pairs. Via Mathematica software, the explicit physical properties and latent applications of the obtained analytic solutions are graphically discussed.
     (3) Darboux transformations for the variable-coefficient nonlinear models with symbolic computation. Compared with the classical Backlund transformation, the Darboux transformation possesses an obvious advantage that there simultaneously exist the potential function transformation and wave function transformation. Thereby, one can derive a series of new analytic solutions of NLEEs from an initial solution in the purely algebraic manner via the computerized symbolic computation. By combining some characteristics of the symbolic computation, Darboux transformation and variable-coefficient integrable models, an algorithm is proposed and applied to construct the Darboux transformations for these models. Consequently, the Nth-iterated potential transformation formula and multi-soliton solutions are also obtained. Especially, with symbolic computation, the double singular manifold method is extended to the variable-coefficient nonisospectral mKP equation aiming to derive the auto-Backlund transformation, a couple of Lax pairs, binary Darboux transformation and the Nth-iterated potential transformation formula in the form of Grammian for such a model.
     (4) Symbolic computation on the integrable decompositions for the cylindrical KP equation. Via the decomposition method and symbolic computation, the author is devoted to working on the cylindrical KP model for investigating the significant parabola dust-acoustic wave soliton structures occurring in the dusty plasmas and Bose-Einstein condensates. Firstly, through considering suitable symmetry constraints between the Lax pair and adjoint Lax pair of the cylindrical KP model, two kinds of integrable decompositions are proposed, i.e., the nonlinearization of a single Lax pair and the nonlinearization of two symmetry Lax pairs. Secondly, another integrable decomposition is directly presented by taking into account the relationship between the cylindrical KP model and the (l+l)-dimensional integrable soliton systems. Through these three kinds of integrable decompositions, such a variable-coefficient (2+1)-dimensional model can be respectively decomposed into two variable-coefficient (1+1)-dimensional integrable soliton systems, which are the first two non-trivial equations of the same hierarchy. Therefore, the solutions for the higher dimensional complicated systems can be reduced to solve the lower dimensional simple integrable systems. This provides us with a way to investigate the properties of the former based on the latter. Based on the Lax representations for these (1+1)-dimensional integrable systems, several Darboux transformations are constructed to iteratively generate a rich class of analytic soliton-like solutions. In virtue of the powerful plot function of Mathematica software, the relevant physical mechanisms and possible applications are explicitly discussed through the figures for some sample solutions, which suggests that abundant and interesting dust-acoustic wave soliton structures can occur in the dusty plasmas and Bose-Einstein condensates, such as the one-parabola soliton structure, compressive and rarefactive oblique soliton resonance phenomena, and the dust-acoustic wave soliton elastic interactions.
     (5) Symbolic computation on the integrable properties for a generalized variable-coefficient higher order NLS model, which has important and wide applications in nonlinear optical fiber systems. Two kinds of general constraint conditions are symbolically derived by employing the Painleve analysis for this model to possess the soliton solutions. It is also found that one of these two constraint conditions is consistent with the result presented in the existing literature, under which some integrable properties have been widely investigated. Thus, the author focuses on studying some remarkable properties for the variable-coefficient higher order NLS model under another set of constraints, e.g., the3×3 matrix Lax pair, Darboux transformation and multi-soliton-like solutions. Furthermore, through controlling the corresponding physical parameters like the self-steepening and amplification/absorption effects in the femtosecond soliton control systems, some features of femtosecond solitons and potential applications in the inhomogeneous optical fiber systems are graphically discussed by the one-and two-soliton-like solutions.
     In conclusion, with the aid of symbolic computation, the particular processes of several algorithms suitable for investigating the integrable properties for some variable-coefficient nonlinear models are explicitly presented. Accordingly, the possible physical applications of the obtained analytic results are also graphically discussed. It is hoped that these algorithms presented in this dissertation, such as the variable-coefficient AKNS method, algorithm for deriving the atuo-Backlund transformations, methods for constructing Darboux transformations and multi-soliton-like solutions for variable-coefficient nonlinear models, might be valuable and helpful for investigating other variable-coefficient NLEEs. Meanwhile, it is also expected that the analytic results and relevant discussions on the soliton-like solutions in this dissertation will be observed in the future space and laboratory experiments, and can be used to explain some physical mechanisms of various phenomena occurring in optical fiber communications, superconductors, nonlinear lattice, hydrodynamics, dusty plasmas and Bose-Einstein condensates.
引文
[1]谷超豪.孤立子理论及其应用,浙江科技出版社,1990.
    [2]王明亮.非线性发展方程与孤立子,兰州大学出版社,1990.
    [3]Ablowitz M J,Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scattering.Cambridge University Press,1991.
    [4]Hirota R.The direct method in soliton theory,(translated from the Japanese and edited by Nagai A,Nimmo J,Gilson C).Cambridge University Press,2004.
    [5]Miura R M,Gardner C S,Kruskal M D.Korteweg-de Vries equation and generalizations Ⅱ.Existence of conservation laws and constants of motion.J.Math.Phys.,1968,9,1204-1209.
    [6]Gardner C S,Greene J M,Kruskal M D,et al.Korteweg-de Vries equation and generalizations Ⅵ.Methods for exact solution.Commun.Pure Appl.Math.,1974,27,97-133.
    [7]Ablowitz M J,Kaup D J,Newell A C,et al.Nonlinear evolution equations of physical significance.Phys.Rev.Lett.,1973,31,125-127.
    [8]Ablowitz M J,Kaup D J,Newell A C,et al.The inverse scattering transform-Fourier analysis for nonlinear problems.Stud.Appl.Math.,1974,53,249-315.
    [9]Wadati M,Sanuki H,Konno K.Relationships among inverse method,Backlund transformation and infinite number of conservation laws.Prog.Theor.Phys.,1975,53,419-436.
    [10]Konno K,Wadati M.Simple derivation of Backlund transformation from Riccati form of a inverse method.Prog.Theor.Phys.,1975,53,1652-1656.
    [11]Weiss J,Tabor M,Carnevale G.The Painlevé property of partial differential equations.J.Math.Phys.,1983,24,522-526.
    [12]Chowdhury A R.An extended Konno-Wadati formalism and some new Backlund transformations.Phys.Scr.,1984,29,289-292.
    [13]Zhena Y K,Chan W L.Backlund transformation for the non-isospectral and variable-coefficient nonlinear Schrodinger equation.J.Phys.A,1989,22,441-449.
    [14]郭柏灵.非线性演化方程,上海科技教育出版社,1995.
    [15]刘式达,刘式适.孤波和湍流,上海科技教育出版社,1995.
    [16]刘式适,刘式达,谭本.非线性大气动力学,国防工业出版社,1996.
    [17]郭柏灵,苏风秋.孤立子,辽宁教育出版社,1998.
    [18]倪皖荪,魏容爵.水槽中的孤波,上海科技教育出版社,1998.
    [19]谷超豪,胡和生,周子翔.孤立子中的Darboux变换及其几何应用,上海科技出版社,1999.
    [20]罗德海.大气中大尺度包络孤立子理论与阻塞环流,气象出版社,1999.
    [21]王德焴,吴德金,黄光力.空间等离子体中的孤波,上海科技教育出版社,2000.
    [22]潘祖梁.非线性问题的数学方法及其应用,浙江大学出版社,2002.
    [23]杨伯君,赵玉芳.高等数学物理方法,北京邮电大学出版社,2003.
    [24]庞小峰.孤子物理学,四川科学技术出版社,2003.
    [25]庞小峰.非线性量子力学理论,重庆出版社,1994.
    [26]黄景宁,徐济仲,熊吟涛.孤子、概念、原理和应用,高等教育出版社,2004.
    [27]范恩贵.可积系统与计算机代数,科学出版社,2004.
    [28]陈登远.孤子引论,科学出版社,2006.
    [29]楼森岳,唐晓艳.非线性数学物理方法,科学出版社,2006.
    [30]闫振亚.复杂非线性波的构造性理论及其应用,科学出版社,2007.
    [31]Joshi N.Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrodinger equations.Phys.Lett.A,1987,125,456-460.
    [32]Hlavaty L.Painlevé analysis of nonautonomous evolution equations.Phys.Lett.A,1988,128,335-338.
    [33]Clarkson P A.Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation.IMA J.Appl.Math.,1990,44,27-53.
    [34]Gazeau J P,Wintemitz P.Symmetries of variable coefficient Korteweg-de Vries equations.J.Math.Phys.,1992,33,4087-4102.
    [35]Khater A H,Ibrahim R S,El-Kalaawy O H,et al.Backlund transformation and exact soliton solutions for some nonlinear evolution equations of the zs/akns system.Chaos Solitons and Fractals,1998,9,1847-1855.
    [36]Khater A H,Abdallah A A,El-Kalaawy O H.Backlund transformations,a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions.Phys.Plasmas,1999,6,4542-4547.
    [37]Musette M,Verhoeven C.Nonlinear superposition formula for the Kaup-Kuper -shmidt partial differential equation.Physica D,2000,144,211-220.
    [38]Li Y S,Ma W X.Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints.Chaos Solitons and Fractals,2000,11,697-704.
    [39]Mahalingam A,Porsezian K.Propagation of dark soliton with higher-order effects in optical fibers.Phys.Rev.E,2001,64,046608:1-9.
    [40]Tian B,Gao Y T.Variables-coefficient balancing-act method and vafiables-coefficie nt KdV equation from fluid dynamics and plasma physics.Eur.Phys.J.B,2001,22,351-360.
    [41]Zhang D J,Chen D Y.The conservation laws of some discrete soliton systems.Chaos Solitons and Fractals,2002,14,573-579.
    [42]Zait R A.Backlund transformations,cnoidal wave and travelling wave solutions of the SK and KK equations.Chaos Solitons and Fractals,2003,15,673-678.
    [43]Wright O C.Homoclinic connections of unstable plane waves of the modified nonlinear Schrodinger equation.Chaos Solitons and Fractals,2004,20,735-749.
    [44]Zhou L J.Darboux transformation for the nonisospectral AKNS system.Phys.Lett. A,2005,345,314-322.
    [45]Konno K,Asai R,Kakuhata H.A new integrable equation and its hierarchy.J.Phys.Soc.Japan,2005,74,1881-1882.
    [46]Sirendaoreji.Exact solutions of the two-dimensional Burgers equation.J.Phys.A,1999,32,6897-6900.
    [47]Yan Z Y,Zhang H Q.Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup(BK)equations in(2+1)-dimensional spaces.J.Phys.A,2001 34,1785-1792.
    [48]Xie F D,Gao X S.Applications of computer algebra in solving nonlinear evolution equations.Commun.Theor.Phys.,2004,41,353-356.
    [49]Barnett M P,Capitani J F,Gathen J Von Zur,et al.Symbolic calculation in chemistry:selected examples.Int.J.Quantum Chem.,2004,100,80-104.
    [50]Tian B,Li H,Gao Y T.(2+1)-dimensional Broer-Kaup system of shallow water waves and similarity solutions with symbolic computation.Z.Angew.Math.Phys.,2005,56,783-790.
    [51]Gao Y T,Tian B,Zhang C Y.Macropterons,micropterons and similarity reductions for the regularized Ostrovsky-Grimshaw model for fluids and plasmas with symbolic computation.Acta Mech.,2006,182,17-29.
    [52]Tian B,Shan W R,Zhang C Y,et al.Transformations for a generalized variable-coefficient nonlinear Schrodinger model from plasma physics,arterial mechanics and optical fibers with symbolic computation.Eur.Phys.J.B(Rapid Not.),2005,47,329-332.
    [53]Tian B,Wei G M,Zhang C Y,et al.Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels,Bose-Einstein condensates,rods and positons with symbolic computation.Phys.Lett.A,2006,356,8-16.
    [54]Wei G M,Gao Y T,Hu W.Painlevé analysis,auto-Backlund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV)equation.Eur.Phys.J.B,2006,53,343-350.
    [55]Zhang C Y,Gao Y T,Meng X H,et al.Integrable properties of a variable-coefficient Korteweg-de Vries model from Bose-Einstein condensates and fluid dynamics.J.Phys.A,2006,39,14353-14362.
    [56]陶庆生.计算机代数及其应用,浙江大学出版社,1991.
    [57]衷仁保,马建.计算机代数学,科学出版社,北京,1996.
    [58]张树功,刘停战,冯果忱.计算机代数基础,吉林大学出版社,1997.
    [59]吴文俊.数学机械化,北京科学出版社,1999.
    [60]周梦.计算代数与应用,武汉大学出版社,2002.
    [61]田播.计算机符号计算在非线性研究中的若干应用,[学位论文]北京航空航天大学,2003.
    [62]赵东方.数学模型与计算,科学出版社,2007.
    [63]张韵华.符号计算系统Mathematica教程,科学出版社,2001.
    [64]吴剑,胡波.掌握和精通Mathematica4.0,机械工业出版社,2001.
    [65]徐安农.Mathematica数学实验,电子工业出版社,2004.
    [66]阳明盛,林建华.Mathematica基础及数学软件,大连理工大学出版社,2006.
    [67]张宝善.Mathematica符号运算与数学实验,南京大学出版社,2007.
    [68]沃尔夫雷姆.Mathematica全书(赫孝良,周义仓译),西安交通大学出版社,2002.
    [69]陈杰.MATLAB宝典,电子工业出版社,2007.
    [70]张德丰.Matlab数值分析与应用,国防工业出版社,2007.
    [71]钟益林,彭乐群,刘炳文.常微分方程及其Maple,MATLAB求解,清华大学出版社,2007.
    [72]刘辉.MAPLE符号处理及应用,国防工业出版社,2001.
    [73]何青,王丽芬.Maple教程,科学出版社,2006.
    [74]Buchberger B,Groebner B.An Algrorithmic Method in Polynomial Ideal Ttheory.Recent Trends in multidimensional systems theory.Ed Bose N K,Reidel Publishing Company,1985.
    [75]Parks E J,Duffy B R.An automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations.Comput.Phys.Commun.,1996,98,288-300.
    [76]Duffy B R,Parks E J.Travelling solitary wave solutions to a seventh-order generalized KdV equation.Phys.Lett.A,1996,214,271-272.
    [77]Ibrahim R S.Tanh-travelling wave solutions,truncated Painlevé expansion and reduction of Bullough-Dodd equation to a quadrature in magnetohy drodynamic equilibrium.Chaos Solitons and Fractals,2003,16,675-683.
    [78]Hong W P,Park S H.Extended tanh-methods and solitonic solutions of the general shallow water wave models.Int.J.Mod.Phys.C,2004,15,363-370.
    [79]Li Z B,Wang M L.Travelling wave solutions to the two-dimensional KdV-Burgers equation.J.Phys.A,1993,26,6027-6031.
    [80]Yang X D,Ruan H Y,Lou S Y.A Maple package on symbolic computation of conserved densities for(1+1)-dimensional nonlinear evolution systems.Commun.Theor.Phys.,2007,47,961-968.
    [81]Frantzeskakis D J,Proukakis N P,Kevrekidis P G.Dynamics of shallow dark solitons in a trapped gas of impenetrable bosons.Phys.Rev.A,2004,70,015601:1-4.
    [82]Hao R Y,Li L,Li Z H,et al.A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients.Opt.Commun.,2004,236,79-86.
    [83]Tian B,Gao Y T.Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers.Phys.Lett.A,2005,342,228-236.
    [84]Tian B,Gao Y T.Variable-coefficient higher-order nonlinear Schrodinger model in optical fibers:New transformation with burstons,brightons and symbolic computation.Phys.Lett.A,2006,359,241-248.
    [85]Coffey M W.Nonlinear dynamics of vortices in ultraclean type-Ⅱ superconductors:Integrable wave equations in cylindrical geometry.Phys.Lett.B,1996,54,1279-1285.
    [86]Tian B,Gao Y T.Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation.Phys.Lett.A,2005,340,243-250.
    [87]Tian B,Gao Y T.Spherical nebulons and Backlund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation.Eur.Phys.J.D,2005,33,59-65.
    [88]Tian B,Gao Y T.Cylindrical nebulons,symbolic computation and Backlund transformation for the cosmic dust acoustic waves.Phys.Plasmas(Lett.),2005,12,070703:1-4.
    [89]Demiray H.The effect of a bump on wave propagation in a fluid-filled elastic tube.Int.J.Eng.Sci.,2004,42,203-215.
    [90]Demiray H.Weakly nonlinear waves in a linearly tapered elastic tube filled with a fluid.Math.Comput.Mod.,2004,39,151-162.
    [91]Bakirtas I,Demiray H.Weakly non-linear waves in a tapered elastic tube filled with an inviscid fluid,lnt.J.Nonlinear Mech.,2005,40,785-793.
    [92]Gao Y T,Tian B.Cosmic dust-ion-acoustic waves,spherical modified Kadomtsev-P -etviashvili model,and symbolic computation.Phys.Plasmas,2006,13,112901:1-6.
    [93]Gao Y T,Tian B.(3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation.Phys.Plasmas,2006,13,120703:1-4.
    [94]Tian B,Gao Y T.Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas.Phys.Lett.A,2007,362,283-288.
    [95]Demiray H.Modulation of nonlinear waves in a viscous fluid contained in a tapered elastic tube.Int.J.Eng.Sci.,2002,40,1897-1918.
    [96]Demiray H.An analytical solution to the dissipative nonlinear Schrodinger equation.Appl.Math.Comput.,2003,145,179-184.
    [97]Kruglov V I,Peacock A C,Harvey J D.Exact self-similar solutions of the generalized nonlinear Schrrdinger equation with distributed coefficients.Phys.Rev.Lett.,2003,90,113902:1-4.
    [98]Russell J S.Report on Waves,14th Meeting of the British Association for Advancement of Science.London,John Murray,1844,311-390.
    [99]Korteweg D J,de Vriss G.On the change of form of long waves advancing in a rectangular canal,and on a new type of long stationary waves.Philos.Mag.Ser.,1895,39,422-443.
    [100]Fermi E,Pasta J,Ulam S.Studies of nonlinear problems I.Los Alamos Report LA-1940,1955.
    [101]Toda M.Wave propagating in anharmonic lattices.J.Phys.Soc.Japan,1967,23,501-506.
    [102]Perring J K,Skyrme T H R.A model unified field equation.Nucl.Phys.,1962,31,550-555.
    [103]Zabusky N J,Kruskal M D.Interaction of "solitons" in a collisionless plasma and the recurrence of initial states.Phys.Rev.Lett.,1965,15,240-243.
    [104]Gardner C S,Greene J G,Kruskal G D,et al.Method for solving the Korteweg-de Vries equation.Phys.Rev.Lett.,1967,19,1095-1097.
    [105]Lax P D.Intetrals of nonlinear equations of evolution and solitary waves.Commun.Pure Appl.Math.,1968,21,467-490.
    [106]Hirota R.Exact solution of the KdV equation for multiple collisions of solitons.Phys.Rev.Lett.1971,27,1192-1994.
    [107]Zakharov V E,Shabat A B.Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media.JEPT Soy.Phys.,1972,34,64-69.
    [108]Hasegawa A,Tappert E.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers.Appl.Phys.Lett.,1973,23,142-144.
    [109]Krumhansl J A,Schrieffer J R.Dynamics and statistical mechanics of a one-dimensional model Hamiltonian for structural phase transitions.Phys.Rev.B,1975,11,3535-3545.
    [110]Scott A C,Chu F Y F,McLaughlin D W.The soliton,a new concept in applied science.IEEE Proc.,1973,61,1443-1483.
    [111]Parkes E J,Dufy B R.A nautomated tauh-functionm method for finding solitary wave solutions to noulinear evolution equation,Comput.Phys.Com.,1996,98,288-295.
    [112]柳银萍.基于吴方法的孤波自动求解软件包及其应用,硕士学位论文,华东师范大学,2001.
    [113]Liu Y P,L I Z B.A Maple package for finding exact solitary wave solutions of coupled nonlinear revolution equations.Comput.Phys.Comet.,2002,155,65-70.
    [114]Burgers,J M.A mathematical theory illustrating the theory of turbulence.Adv.Appl.Mech.,1948,1,171-199.
    [115]Morris H C.A prolongation structure for the AKNS system and its generalization.J.Math.Phys.,1977,18,533-536.
    [116]Lueders E.Smoothing properties for systems of nonlinear Schrodinger equations.Nonlinear Anal.,2001,43,707-719.
    [117]Tsuchida T,Wadati M.New integrable systems of derivative nonlinear Schrodinger equations with multiple components.Phys.Lett.A,1999,257,53-64.
    [118]Khater A H,Callebaut D K,Malfliet W,et al.Biicklund transformations and exact solutions for some nonlinear evolution equations in solar magnetostatic models.J.Comput.Appl.Math.,2002,140,435-467.
    [119]Zhang Y F,Yan Q Y.Integrable couplings of the hierarchies of evolution equations.Chaos Solitons and Fractals,2003,16,263-269.
    [120]Li B,Chen Y,Zhang H Q.Auto-Backlund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order.Phys.Lett.A,2002,305,377-382.
    [121]Zhang J F.Homogeneous balance method and chaotic and fractal solutions for the Nizhnik-Novikov-Veselov equation.Phys.Lett.A,2003,313,401-407.
    [122]Elwakil S A,EI-labany S K,Zahran M A,et al.Exact travelling wave solutions for the generalized shallow water wave equation.Chaos Solitons and Fractals,2003,17,121-126.
    [123]Elwakil S A,EI-labany S K,Zahran M A et al.New exact solutions for a generalized variable coefficients 2D KdV equation.Chaos Solitons and Fractals,2004,19,1083-1086.
    [124]Tian L X,Yin J L.Stability of multi-compaction solutions and Backlund transformation in K(m,n,1).Chaos Solitons and Fractals,2005,23,159-169.
    [125]Yana Z Y.Painlevé analysis,auto-Backlund transformations and exact solutions for a simplified model for reacting mixtures.Physica A,2003,326,344-359.
    [126]Tian B,Gao Y T.(2+1)dimensional Haragus-Courcelle-Ilichev model for the liquid surface waves in the presence of sea ice or surface tension,Backlund transformation,exact solutions and possibly observable effects.Eur.Phys.J.B,2004,42,441-450.
    [127]Hong W P,Comment on "Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation"[Phys.Lett.A 340(2005)243].Phys.Lett.A,2007,361,520-522.
    [128]Gao Y T,Tian B.Reply to "Comment on 'Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation'"[Phys.Lett.A 361(2007)520].Phys.Lett.A,2007,361,523-528.
    [129]Gao Y T,Tian B.On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations.Europhys.Lett.,2007,77,15001:1-5.
    [130]Zait R A.Backlund transformations and solutions for some evolution equations.Phys.Scr.,1998,57,545-548.
    [131]Wahlquist H D,Estabrook F B.Backlund transformation for solutions of the Korteweg-de Vries equation.Phys.Rev.Lett.,1973,31,1386-1390.
    [132]Eisenhart L P.A Treatise on the Differential Geometry of Curves and Surfaces.New York,Ginn and company,1909.
    [133]Lou S Y,Hu X B.Broer-Kaup system from Darboux transformation related symmetry constrants of Kadomtsev-Petviashvili equation.Commun.Theor.Phys.,1998,29,145-148.
    [134]Cao C W,Wu Y T,Geng X G.Relation between the Kadometsev-Petviashvili equation and the confocal involutive system.J.Math.Phys.,1999,40,3948-3970.
    [135]Geng X G,Wu Y T,Cao C W.Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation.J.Phys.A,1999,32,3733-3742.
    [136]Cao C W,Geng X G,Wang H G.Algebro-geometric solution of the 2+1dimensional Burgers equation with a discrete variable.J.Math.Phys.,2002,43,621-643.
    [137]Cheng Y,Li Y S.The constraint of the Kadomtsev-Petviashvili equation and its special solutions.Phys.Lett.A,1991,157,22-26.
    [138]Dai H H,Geng X G.On the decomposition of the modified Kadomtsev-Petviashvili equation and explicit solutions.J.Math.Phys.2000,41,7501-7509.
    [139]Li Y S,Ma W X,Zhang J E.Darboux transformations of classical Boussinesq system and its new solutions.Phys.Lett.A,2000,275,60-66.
    [140]Li Y S,Zhang J E.Darboux transformations of classical Boussinesq system and its multi-soliton solutions.Phys.Lett.A,2001,284,253-258.
    [141]Ma W X,Strampp W.An explicit symmetry constraint for the Lax pairs and adjoint Lax pairs of AKNS systems.Phys.Lett.A,1994,185,277-286.
    [142]Lou S Y,Hu X B.Infinitely many Lax pairs and symmetry constraints of the KP equation.J.Math.Phys.,1997,38,6401-6427.
    [143]Lou S Y,Chen L L,Wu Q X.New symmetry constraints of the modified KP equation.Chin.Phys.Lett.,1997,14,1-4.
    [144]Geng X G,Dai H H.Nonlinearization of the 3×3 matrix eigenvalue problem related to coupled nonlinear Schrodinger equations.J.Math.Anal.Appl.,1999,233,26-55.
    [1]Ablowitz M J,Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scattering.Cambridge University Press,1991.
    [2]Konno K,Wadati M.Simple derivation of Backlund transformation from Riccati form of a inverse method.Prog.Theor.Phys.,1975,53,1652-1656.
    [3]Clarkson P A.Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation.IMA J.Appl.Math.,1990,44,27-53.
    [4]Gazeau J P,Winternitz P.Symmetries of variable coefficient Korteweg-de Vries equations.J.Math.Phys.,1992,33,4087-4102.
    [5]Khater A H,Ibrahim R S,El-Kalaawy O H,et al.Backlund transformation and exact soliton solutions for some nonlinear evolution equations of the zs/akns system.Chaos Solitons and Fractals,1998,9,1847-1855.
    [6]Mahalingam A,Porsezian K.Propagation of dark soliton with higher-order effects in optical fibers.Phys.Rev.E,2001,64,046608:1-8.
    [7]Ablowitz M J,Kaup D J,Newell A C,et al.Nonlinear evolution equations of physical significance.Phys.Rev.Lett.,1973,31,125-127.
    [8]Ablowitz M J,Kaup D J,Newell A C,et al.The inverse scattering transform-Fourier analysis for nonlinear problems.Stud.Appl.Math.,1974,53,249-315.
    [9]谷超豪,胡和生,周子翔.孤立子中的Darboux变换及其几何应用,上海科技出版社,1999.
    [10]杨伯君,赵玉芳.高等数学物理方法,北京邮电大学出版社,2003.
    [11]黄景宁,徐济仲,熊吟涛.孤子、概念、原理和应用,高等教育出版社,2004.
    [12]范恩贵.可积系统与计算机代数,科学出版社,2004.
    [13]陈登远.孤子引论,科学出版社,2006.
    [14]楼森岳,唐晓艳.非线性数学物理方法,科学出版社,2006.
    [15]闫振亚.复杂非线性波的构造性理论及其应用,科学出版社,2007.
    [16]Li J,Xu T,Meng X H,et al.Symbolic computation on integrable properties of a variable-coefficient Korteweg-de Vries equation from arterial mechanics and Bose-Einstein condensates.Phys.Scr.,2007,75,278-284.
    [17]Li J,Xu T,Meng X H,et al.Lax pair,Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice,plasma physics and ocean dynamics with symbolic computation.J.Math.Anal,Appl.,2007,336,1443-1455.
    [18]Frantzeskakis D J,Proukakis N P,Kevrekidis P G.Dynamics of shallow dark solitons in a trapped gas of impenetrable bosons.Phys.Rev.A,2004,70,015601:1-4.
    [19]Dai H H,Huo Y.Solitary waves in an inhomogeneous rod composed of a general hyperelastic material.Wave Motion,2002,35,55-69.
    [20]Demiray H.The effect of a bump on wave propagation in a fluid-filled elastic tube.Int.J.Eng.Sci.,2004,42,203-215.
    [21]Demiray H.Weakly nonlinear waves in a linearly tapered elastic tube filled with a fluid.Math.Comput.Mod.,2004,39,151-162.
    [22]Bakirtas I,Demiray H.Weakly non-linear waves in a tapered elastic tube filled with an inviscid fluid.Int.J.Nonlinear Mech.,2005,40,785-793.
    [23]Meng X H,Zhang C Y,Li J,et al.Analytic multi-solitonic solutions ofvariable-coef -ficient higher-order nonlinear Schrodinger models by modified Bilinear method with symbolic computation.Z.Naturforsch.A,2007,62,13-20.[24]Hao R Y,Li L,Li Z H,et al.Exact multisoliton solutions of the higher order nonlinear Schrodinger equation with variable coefficients.Phys.Rev.E,2004,70,066603:1-6.
    [25]Tian B,Gao Y T,Zhu H W.Variable-coefficient higher-order nonlinear Schroinger model in optical fibers:Variable-coefficient bilinear form,Baklund transformation,brightons and symbolic computation.Phys.Lett.A,2007,366,223-229.
    [26]Dai C Q,Zhang J F.New solitons for the Hirota equation and generalized higherorder nonlinear Schrodinger equation with variable coefficients.J.Phys.A,2006,39,723-737.
    [27]Yang R C,Li L,Hao R Y,et al.Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrodinger equation.Phys.Rev.E,2005,71,036616:1-8.
    [28]Johnson R S.On the development of a solitary wave over an uneven bottom.Proc.Camb.Phil.Soc.,1973,73,183-203.
    [29]Huang G X,Szeftel J,Zhu S H.Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates.Phys.Rev.A,2002.65,053605:1-12.
    [30]Tian B,Gao Y T.Variables-coefficient balancing-act method and variables-coefficie -nt KdV equation from fluid dynamics and plasma physics.Eur.Phys.J.B,2001,22,351-360.
    [31]Tian B,Shan W R,Zhang C Y,et al.Transformations for a generalized variable-coef -ficient nonlinear Schrodinger model from plasma physics,arterial mechanics and optical fibers with symbolic computation.Euro.Phys.J.B(Rapid Not.),2005,47,329-332.
    [32]Wei G M,Gao Y T,Hu W.Painlevé analysis,auto-Backlund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV)equation.Eur.Phys.J.B,2006,53,343-350.
    [33]Tian B,Wei G M,Zhang C Y,et al.Transformations for a generalized variable-coeff -icient Korteweg-de Vries model from blood vessels,Bose-Einstein condensates,rods and positons with symbolic computation.Phys.Lett.A,2006,356,8-16.
    [34]Zhang C Y,Gao Y T,Meng X H,et al.Integrable properties of a variable-coefficient Korteweg-de Vries model from Bose-Einstein condensates and fluid dynamics.J.Phys.A,2006,39,14353-14362.
    [35]Zhang C Y,Gao Y T,Xu T,et al.Various methods for constructing auto-Backlund transformations for a generalized variable-coefficient Korteweg-de Vries model from plasmas and fluid dynamics.Commun.Theor.Phys.,2008,49,673-678.
    [36]Khater A H,Abdallah A A,El-Kalaawy O H,et al.Backlund transformations,a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions.Phys.Plasmas,1999,6,4542-4547.
    [37]Nejoh Y.Double layers,spiky solitary waves,and explosive modes of relativistic ion-acoustic waves propagating in a plasma.Phys.Fluid B,1992,4,2830-2840.
    [38]Grimshaw R,Pelinovsky E,Talipova T.Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity.Physica D,1999,132,40-62.
    [39]Gao Y T,Tian B.(3+1)-dimensional generalized Johnson model for cosmic dustion-acoustic nebulons with symbolic computation.Phys.Plasmas(Lett.),2006,13,120703:1-4.
    [40]Chanteur G,Raadu M.Formation of shock like modified Korteweg-de Vries solitons:application to double layers.Phys.Fluids,1987,30,2708-2719.
    [41]Kalita B C,Das R.A comparative study of modified Korteweg-de Vries(MKdV)and korteweg-de Vries(KdV)solitons in plasmas with negative ions under the influence of electrons drift motion.Phys.Plasmas,1998,5,3588-3594.
    [42]Torven S.Modified Korteweg-de Vries equation for propagating double layers in plasmas.Phys.Rev.Lett.,1981,47,1053-1056.
    [43]Tajiri M,Nishihara K.Solitons and shock-waves in 2-electron-temperature plasmas.J.Phys.Soc.Japan,1985,54,572-578.
    [44]El-Taibany W F,Moslem W M.Higher-order nonlinearity of electron-acoustic solitary waves with vortex-like electron distribution and electron beam.Phys.Plasmas,2005,12,032307:1-7.
    [45]El-Labany S K,Moslem W M,El-Shewy E K,et al.Higher order solution of the dust ion acoustic solitons in awarm dusty plasma with vortex-like electron distribution.Chaos Solitons and Fractals,2005,23,581-588.
    [46]Helfrich K R,Melville W K,Miles J W.On interfacial solitary waves over slowly varying topography.J.Fluid Mech.,1984,149,305-417.
    [47]Mamun A A,Shukla P K.Electron-acoustic solitary waves via vortex electron distribution.J.Geophys Res.,2002,107(A7),1135-1140.
    [48]Elwakil S A,El-Shewy E K,Zahran M A.Higher-order solution of an electron acoustic solitary waves via vortex electron distribution.Chaos Solitons and Fractals,2004,22,13-24.
    [49]Wadati M.Wave propagation in nonlinear lattice I.J.Phys.Soc.Japan.,1975,38,673-680.
    [50]Wadati M.Wave propagation in nonlinear lattice Ⅱ.J.Phys.Soc.Japan.,1975,38,681-686.
    [51]Mohamad M N B.Exact solutions to the combined KdV and mKdV equation.Math.Meth.Appl.Sci.,1992,15,73-78.
    [52]Grimshaw R,Pelinovsky D,Pelinovsky E,et al.Generation of large-amplitude solitons in the extended Kortewe-de Vries equation.Chaos,2002,12,1070-1076.
    [53]Yu G F,Tam H W.On the(2+1)-dimensional Gardner equation:Determinant solutions and pfaffanization.J.Math.Anal,Appl.,2007,330,989-1001.
    [54]Slyunyaev A V.Dynamics of localized waves with large amplitude in a weakly disper-sive medium with a quadratic and positive cubic nonlinearity.J.Exp.Theor.Phys.,2001,92,529-534.
    [55]Chow K W,Grimshaw R H J,Ding E.Interactions of breathers and solitons in the extended Korteweg-de Vries equation.Wave Motion,2005,43,158-166.
    [56]Grimshaw R,Pelinovsky D,Pelinovsky E,et al.Wave group dynamics in weakly nonlinear long-wave models.Physica D,2001,159,35-57.
    [57]Helfi-ich K R,Melville W K.On long nonlinear internal waves over slope-shelf Topography.J.Fluid Mech.,1986,167,285-308.
    [58]Han Q,Dai L M,Dong M Z.Solitary wave in a nonlinear elastic structural element of large deection.Commun.Nonlinear Sci.Numer Simul.,2005,10,607-616.
    [59]Djordjevic V,Redekopp L.The fission and disintegration of internal solitary waves moving over two-dimensional topography.J.Phys.Oceanog.,1978,8,1016-1024.
    [60]Kakutani T,Yamasaki N.Solitary waves on a two-layer fluid.J.Phys.Soc.Japan.,1978,45,674-679.
    [61]Miles J W.On internal solitary waves.Tellus,1979,31,456-462.
    [62]Miles J W.On internal solitary waves Ⅱ.Tellus,1981,33,397-401.
    [63]Holloway P E,Pelinovsky E,Talipova T,et al.A nonlinear model of internal tide transformation on the Australian North west shelf.J.Phys.Oceanog.,1997,27,871-896.
    [64]Talipova T,Pelinovsky E,Kouts T.Kinematic characteristics of an internal wave field in the Gotland deep in the Baltic Sea.Oceanology,1998,38,33-42.
    [65]Gear J,Grimshaw R.A second-order theory for solitary waves in shallow fluids.Phys.Fluids,1983,26,14-29.
    [66]Lamb K G,Yan L.The evolution of internal wave undular bores:comparisons of a fully nonlinear numerical model with weakly nonlinear theory.J.Phys.Oceanogr.,1996,26,2712-2734.
    [67]Malomed B A,Shrira V I.Soliton caustics.Physica D,1991,53,1-12.
    [68]Hong W P,Yoon M S.Analytic solitary-wave solutions for modified Korteweg-de Vries equation with t-dependent coefficients.Z.Naturforsch.A,2001,56,366-370.
    [69]Liu H L,Slemrod M,KdV dynamics in the plasma-sheath transition.Appl.Math.Lett.,2004,17,401-410.
    [70]Weiss J,Tabor M,Camevale G.The Painlevé property for partial differential equations.J.Math.Phys.,1983,24,522-526.
    [71]Li J,Zhang H Q,Xu T,et al.Soliton-like solutions of a generalized variable-coefficient higher-order nonlinear Schrodinger equation from inhomogeneous optical fibers with symbolic computation.J.Phys.A,2007,40,13299-13309.
    [72]Zait R A.Backlund transformations and solutions for some evolution equations.Phys.Scr.,1998,57,545-548.
    [73]Gu C H.On the Backlund transformations for the generalized hierarchies of compound mKdV-SG equation.Lett.Math.Phys.,1986,12,31-41.
    [74]Konno K,Kameyama W,Sanuki H.Effect of weak dislocation potential on nonlinear wave propagation in anharmonic crystal.J.Phys.Soc.Japan,1974,37,171-176.
    [75]Zhang D J,Deng S F,Chen D Y.Multi-soliton solutions of the mKdV-Sine Gordon equation.Acta Math.Sci.,2004,24,257-264.
    [1]Li J,Xu T,Meng X H,et al.Symbolic computation on integrable properties of a variable-coefficient Korteweg-de Vries equation from arterial mechanics and Bose-Einstein condensates.Phys.Scr.,2007,75,278-284.
    [2]Li J,Xu T,Meng X H,et al.Lax pair,Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice,plasma physics and ocean dynamics with symbolic computation.J.Math.Anal.Appl.,2007,336,1443-1455.
    [3]Li J,Meng X H,Xu T,et al.Variable-coefficient Miura transformations and integrable properties for a generalized variable-coefficient Korteweg-de Vries equation from Bose-Einstein condensates with symbolic computation.Int.J.Modern Phys.B,Accepted.
    [4]Wadati M,Sanuki H,Konno K.Relationships among inverse method,Backlund transformation and infinite number of conservation laws.Prog.Theor.Phys.,1975,53,419-436.
    [5]Konno K,Wadati M.Simple derivation of Backlund transformation from Riccati form of a inverse method.Prog.Theor.Phys.,1975,53,1652-1656.
    [6]Chowdhury A R.An extended Kormo-Wadati formalism and some new Backlund transformations.Phys.Scr.,1984,29,289-292.
    [7]Zait R A.Backlund transformations and solutions for some evolution equations.Phys.Scr.,1998,57,545-548.
    [8]Zait R A.Backlund transformations,cnoidal wave and travelling wave solutions of the SK and KK equations.Chaos Solitons and Fractals,2003,15,673-678.
    [9]Ablowitz M J,Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scattering.Cambridge University Press,1991.
    [10]杨伯君,赵玉芳.高等数学物理方法,北京邮电大学出版社,2003.
    [11]Li B,Chen Y,Zhang H Q.Auto-Backlund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order.Phys.Lett.A,2002,305,377-382.
    [12]Khater A H,Abdallah A A,El-Kalaawy O H.Backlund transformations,a simple transformation and exact solutions for dust-acoustic solitary waves in dusty plasma consisting of cold dust particles and two-temperature isothermal ions.Phys.Plasmas,1999,6,4542-4547.
    [13]Zhang J F.Homogeneous balance method and chaotic and fractal solutions for the Nizhnik-Novikov-Veselov equation.Phys.Lett.A,2003,313,401-407.
    [14]Elwakil S A,EI-labany S K,Zahran M A,et al.Exact WaveRing wave solutions for the generalized shallow water wave equation.Chaos Solitons and Fractals,2003,17,121-126.
    [15]Elwakil S A,EI-labany S K,Zahran M A et al.New exact solutions for a generalized variable coefficients 2D KdV equation.Chaos Solitons and Fractals,2004,19,1083-1086.
    [16]Tian L X,Yin J L.Stability of multi-compaction solutions and Backlund transformation in K(m,n,1).Chaos Solitons and Fractals,2005,23,159-169.
    [17]Yana Z Y.Painlevé analysis,auto-Backlund transformations and exact solutions for a simplified model for reacting mixtures.Physica A,2003,326,344-359.
    [18]Tian B,Gao Y T.(2+1)dimensional Haragus-Courcelle-Ilichev model for the liquid surface waves in the presence of sea ice or surface tension,Backlund transformation,exact solutions and possibly observable effects.Eur.Phys.J.B,2004,42,441-450.
    [19]Hong W P.Comment on "Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation"[Phys.Lett.A 340(2005)243].Phys.Lett.A,2007,361,520-522.
    [20]Gao Y T,Tian B.Reply to "Comment on 'Spherical Kadomtsev-Petvizshvili equation and nebulons for dust ion-acoustic waves with symbolic computation'"[Phys.Lett.A 361(2007)520].Phys.Lett.A,2007,361,523-528.
    [21]Gao Y T,Tian B.On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations.Europhys.Lett.,2007,77,15001-15006.
    [22]Wahlquist H D,Estabrook F B.Backlund transformation for solutions of the Korteweg-de Vries equation.Phys.Rev.Lett.,1973,31,1386-1390.
    [23]Eisenhart L P.A Treatise on the Differential Geometry of Curves and Surfaces[M].New York,Ginn and company,1909.
    [24]Miura R M,Gardner C S,Kruskal M D.Korteweg-de Vries equation and generalizations Ⅱ.Existence of conservation laws and constants of motion,J.Math.Phys.,1968,9,1204-1209.
    [25]Zhang D J,Chen D Y.The conservation laws of some discrete soliton systems.Chaos Solitons and Fractals,2002,14,573-579.
    [26]Zhang D J,Chen D Y.Negatons,positios,rational-like solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terms.J.Phys.A,2004,37,851-865.
    [27]Ning T K,Zhang D J,Chen D Y.Exact solutions and conservation laws for a nonisospectral SG equation.Chaos Solitons and Fractals,2005,25,611-620.
    [28]Clarkson P A.Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation.IMA J.Appl.Math.,1990,44,27-53.
    [29]Tian B,Shan W R,Zhang C Y,et al.Transformations for a generalized variable-coefficient nonlinear Schrodinger model from plasma physics,arterial mechanics and optical fibers with symbolic computation.Euro.Phys.J.B(Rapid Not.),2005,47,329-332.
    [30]Tian B,Wei G M,Zhang C Y,et al.Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels,Bose-Einstein condensates,rods and positons with symbolic computation.Phys.Lett.A,2006,356,8-16.
    [31]Lonngren K E.Ion acoustic soliton experiments in a plasma.Opt.Quantum Electron.1998,30,615-630.
    [32]Khater A H,EI-Kalaawy O H,Callebaut D K.Backlund transformations and exact solutions for Alfvén solitons in a relativistic electron-positron plasma.Phys.Scr.,1998,58,545-548.
    [33]Komatsu T S,Sasa S I.Kink soliton characterizing traffic congestion.Phys.Rev.E,1995,52,5574-5582.
    [34]Kakutani T,Yamasaki N,Solitary waves on a two-layer fluid.J.Phys.Soc.Japan.,1978,45,674-679.
    [35]Torven S.Modified Korteweg-de Vries equation for propagating double layers in plasmas.Phys.Rev.Lett.,1981,47,1053-1056.
    [36]Tajiri M,Nishihara K.Solitons and shock-waves in 2-electron-temperature plasmas.J.Phys.Soc.Japan,1985,54,572-578.
    [37]Miura R M.Korteweg-de Vries equation and generalizations I.A remarkable explicit nonlinear transformation.J.Math.Phys.1968,9,1202-1204.
    [38]Miura R M,Gardner C S,Kruskal M D.Korteweg-de Vries equation and generalizations Ⅱ.Existence of conservation laws and constants of motion.J.Math.Phys.,1968,9,1204-1209.
    [39]Demiray H.The effect of a bump on wave propagation in a fluid-filled elastic tube.Int.J.Eng.Sci.,2004,42,203-215.
    [40]Demiray H.Weakly nonlinear waves in a linearly tapered elastic tube filled with a fluid.Math.Comput.Mod.,2004,39,151-162.
    [41]Cascaval R C.In Evolution Equations.G.R.Goldstein,R.Nagel and S.Romanelli (Eds.)Lecture Notes Pure Appl.Math.234,Marcel Dekker,2003.
    [42]Huang G X,Szeftel J,Zhu S H.Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates.Phys.Rev.A,2002,65,053605:1-12.
    [43]Frantzeskakis D J,Proukakis N P,Kevrekidis P G.Dynamics of shallow dark solitons in a trapped gas of impenetrable bosons.Phys.Rev.A,2004,70,015601:1-4.
    [44]Wei G M,Gao Y T,Hu W.Painlevé analysis,auto-Backlund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV)equation.Eur.Phys.J.B,2006,53,343-350.
    [45]Slyunyaev A V.Dynamics of localized waves with large amplitude in a weakly dispersive medium with a quadratic and positive cubic nonlinearity.J.Exp.Theor.Phys.,2001,92,529-534.
    [46]Chow K W,Grimshaw R H J,Ding E.Interactions of breathers and solitons in the extended Korteweg-de Vries equation.Wave Motion,2005,43,158-166.
    [47]Yu J.Exact solitary wave solutions to a combined KdV and mKdV equation.Math.Meth.Appl.Sci.,2000,23,1667-1670.
    [48]Fu Z T,Liu S D,Liu S K.New kinds of solutions to Gardner equation.Chaos Solitons and Fractals,2004,20,301-309.
    [49]Yomba E.The extended Fan's sub-equation method and its application to KdV-MKdV,BKK and variant Boussinesq equations.Phys.Lett.A,2005,336,463-476.
    [50]Zhao X Q,Zhi H Y,Yu Y X,et al.A new Riccati equation expansion method with symbolic computation to construct new travelling wave solution of nonlinear direrential equations.Appl.Math.Comput.,2006,172,24-39.
    [51]Li Y S,Zhang J E.Bidirectional soliton solutions of the classical Boussinesq system and AKNS system.Chaos Soliton and Fractals,2003,16,271-277.
    [52]Zhang J E,Li Y S.Bidirectional solitons on water.Phys.Rev.E,2003,67,016306:1-8.
    [53]Li Y S,Ma W X,Zhang J E.Darboux transformations of classical Boussinesq system and its new solutions.Phys.Lett.A,2000,275,60-66.
    [54]Dye J M,Parker A.On bidirectional fifth-order nonlinear evolution equations,Lax pairs,and directionally dependent solitary waves.J.Math.Phys.,2001,42,2567-2589.
    [55]Li Y S,Zhang J E.Darboux transformations of classical Boussinesq system and its multi-soliton solutions.Phys.Lett.A,2001,284,253-258.
    [1]谷超豪,胡和生,周子翔.孤立子中的Darboux变换及其几何应用,上海科技出版社,1999.
    [2]范恩贵.可积系统与计算机代数,科学出版社,2004.
    [3]陈登远.孤子引论,科学出版社,2006.
    [4]楼森岳,唐晓艳.非线性数学物理方法,科学出版社,2006.
    [5]Li J,Zhang H Q,Xu T,et al.Darboux transformation and Grammian solutions for a nonisospectral modified Kadomtsev-Petviashvili equation with symbolic computation.Commun.Theor.Phys.,Accepted.
    [6]Hu H C,Liu Q P.New Darboux transformation for Hirota-Satsuma coupled KdV system.Chaos Solitons and Fractals,2003,17,921-928.
    [7]Li Y S,Ma W X,Zhang J E.Darboux transformations of classical Boussinesq system and its new solutions.Phys.Lett.A,2000,275,60-66.
    [8]Li Y S,Zhang J E.Darboux transformations of classical Boussinesq system and its multi-soliton solutions.Phys.Lett.A,2001,284,253-258.
    [9]Dai H H,Geng X G.On the decomposition of the modified Kadomtsev-Petviashvili equation and explicit solutions.J.Math.Phys.,2000,41,7501-7509.
    [10]Deng S F.Darboux transformations for the isospectral and nonisospectral MKP equation.Physica A,2007,382,487-493.
    [11]Deng S F.The multisoliton solutions for the nonisospectral mKP equation.Phys.Lett.A,2007,362,198-204.
    [12]Weiss J,Tabor M,Carnevale G.The Painlevé property of partial differential equations.J.Math.Phys.,1983,24,522-526.
    [13]Weiss J.The Painlevé property for the partial differential equations:Backlund transformation,Lax pairs and the Schwarzian derivative.J.Math.Phys.,1983,24,1405-1413.
    [14]Weiss J.On classes of integrable systems and the Painlevé property.J.Math.Phys.,1984,25,13-24.
    [15]Weiss J.The Painlevé property and Backlund transformations for the sequence of Boussinesq equations.J.Math.Phys.,1985,26,258-269.
    [16]Weiss J.Modified equations,rational solutions,and the Painlevé property for the Kadomtsev-Petviashvili and Hirota-Satsuma equations.J.Math.Phys.,1985,26,2174-2180.
    [17]Joshi N.Painlevé property of general variable-coefficient versions of the Korteweg-de Vries and non-linear Schr6dinger equations.Phys.Lett.A,1987,125,456-460.
    [18]Hlavaty L.Painlevé analysis of nonautonomous evolution equations.Phys.Lett.A,1988,128,335-338.
    [19]Clarkson P A.Painlevé analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation.IMA J.Appl.Math.,1990,44,27-53.
    [20]Gazeau J P,Winternitz P.Symmetries of variable coefficient Korteweg-de Vries equations.J.Math.Phys.,1992,33,4087-4102.
    [21]Estévez P G.The direct method and the singular manifold method for the Fitzhugh-Nagumo equation.Phys.Lett.A,1992,171,259-261.
    [22]Estévez P G.Non-classical symmetries and the singular manifold method:the Burgers and the Burgers-Huxley equations.J.Phys.A,1994,27,2113-2127.
    [23]Estévez P G,Gordoa P R.Symmetries and the singular manifold method,theory and examples.Stud.Appl.Math.,1995,95,73-113.
    [24]Barnett M P,Capitani J F,Von Zur Gathen J,et al.Symbolic calculation in chemistry:selected examples.Int.J.Quantum Chem.,2004.100,80-104.
    [25]Tian B,Gao Y T.Cylindrical nebulons,symbolic computation and Backlund transformation for the cosmic dust acoustic waves.Phys.Plasmas(Lett.),2005,12,070703:1-4.
    [26]Tian B,Gao Y T.Spherical nebulons and Backlund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation.Eur.Phys.J.D,2005,33,59-65.
    [27]Gao Y T,Tian B.Reply to "Comment on 'Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation'"[Phys.Lett.A 361(2007)520].Phys.Lett.A,2007,361,523-528.
    [28]Gao Y T,Tian B.On the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations.Europhys.Lett.,2007,77,15001:1-5.
    [29]Estévez P G,Gordoa P R,Martinez-Alonso L,et al.Modified singular manifold expansion:application to the Boussinesq and Mikhailov-Shabat systems.J.Phys.A,1993,26,1915-1925.
    [30]Estévez P G,Gordoa P R.Double singular manifold method for the MKDV equation.Teor.Matem.Fizika,1994,99,370-376.
    [31]Estévez P G,Gordoa P R.Darboux transformations via Painlevé analysis.Inverse Problems,1997,13,939-957.
    [32]Estévez P G.Darboux transformation and solutions for an equation in 2+1dimensions.J.Math.Phys.,1999,40,1406-1419.
    [33]Estévez P G.A nonisospectral problem in(2+1)dimensions derived from KP.Inverse Problems,2001,17,1043-1052.
    [34]Hu H C,Lou S Y.New interaction property of(2+1)-dimensional localized excitations from Darboux transformation.Chaos Solitons and Fractals,2005,24,1207-1216.
    [35]Hong W P.Comment on "Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation"[Phys.Lett.A 340(2005)243].Phys.Lett.A,2007,361,520-522.
    [36]Gao Y T,Tian B.Cosmic dust-ion-acoustic waves,spherical modified Kadomtsev-Petviashvili model,and symbolic computation.Phys.Plasmas,2006,13,112901:1-6.
    [37]Gao Y T,Tian B.(3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation.Phys.Plasmas,2006,13,120703:1-4.
    [38]Das G,Sarma J.Comment on "a new mathematical approach for finding the solitary waves in dusty plasma".Phys.Plasmas,1999,6,4394-4397.
    [39]Tian B,Gao Y T.Comment on "Exact solutions of cylindrical and spherical dust ion acoustic waves"[Phys.Plasmas 10,4162(2003)].Phys.Plasmas,2005,12,054701:1-4.
    [40]Tian B,Gao Y T.Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation.Phys.Lett.A,2005,340,243-250.
    [41]Xie F D,Gao X S.Applications of computer algebra in solving nonlinear evolution equations.Commun.Theor.Phys.,2004,41,353-356.
    [42]Tian B,Gao Y T.On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation.Phys.Lett.A,2005,340,449-455.
    [43]Tian B,Gao Y T.Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers.Phys.Lett.A,2005,342,228-236.
    [44]Li B,Chen Y,Xuan H N,et al.Generalized Riccati equation expansion method and its application to the(3+1)-dimensional Jumbo-Miwa equation.Appl.Math.Comput.,2004,152,581-595.
    [45]Gao Y T,Tian B.Cylindrical Kadomtsev-Petviashvili model,nebulons and symbolic computation for cosmic dust ion-acoustic.Phys.Lett.A,2006,349,314-319.
    [46]Tian B,Gao Y T.Variable-coefficient higher-order nonlinear Schrodinger model in optical fibers:New transformation with burstons,brightons and symbolic computation.Phys.Lett.A,2006,359,241-248.
    [47]Tian B,Gao Y T.Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas.Phys.Lett.A,2007,362,283-288.
    [48]Tian B,Gao Y T,Zhu H W.Variable-coefficient higher-order nonlinear Schrodinger model in optical fibers:Variable-coefficient bilinear form,Backlund transformation,brightons and symbolic computation.Phys.Lett.A,2007,366,223-229.
    [1]Cheng Y,Li Y S.The constraint of the Kadomtsev-Petviashvili equation and its special solutions.Phys.Lett.A,1991,157,22-26.
    [2]Ma W X,Strampp W.An explicit symmetry constraint for the Lax pairs and adjoint Lax pairs of AKNS systems.Phys.Lett.A,1994,185,277-286.
    [3]Lou S Y,Hu X B.Infinitely many Lax pairs and symmetry constraints of the KP equation.J.Math.Phys.,1997,38,6401-6427.
    [4]Lou S Y,Chen L L,Wu Q X.New symmetry constraints of the modified KP equation.Chin.Phys.Lett.,1997,14,1-4.
    [5]Geng X G,Dai H H.Nonlinearization of the 3×3 matrix eigenvalue problem related to coupled nonlinear Schrodinger equations.J.Math.Anal,Appl.,1999,233,26-55.
    [6]Li J,Zhang H Q,Xu T,et al.Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas.J. Phys.A,2007,40,7643-7657.
    [7]Li J,Xu T,Zhang H Q,et al.Symbolic computation on integrable decompositions for the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas and Bose-Einstein condensates.Phys.Scr.,2008,77,015001:1-9.
    [8]Dai H H,Geng X G.On the decomposition of the modified Kadomtsev-Petviashvili equation and explicit solutions.J.Math.Phys.,2000,41,7501-7509.
    [9]Zhang J S.The explicit solution of the(2+1)-dimensional modified Broer-Kaup-Kupershmidt soliton equation.Phys.Lett.A,2005,343,359-371.
    [10]Zhang J S,Wu Y T,Li X M.Quasi-periodic solution of the(2+1)-dimensional Boussinesq-Burgers soliton equation.Physica A,2003,319,213-232.
    [11]谷超豪,胡和生,周子翔.孤立子中的Darboux变换及其几何应用,上海科技出版社,1999.
    [12]范恩贵.可积系统与计算机代数,科学出版社,2004.
    [13]王德焴,吴德金,黄光力.空间等离子体中的孤波,上海科技教育出版社,2000.
    [14]Xue J K.The nonlinear evolution of ring dark solitons in Bose-Einstein condensates.J.Phys.A,2004,37,11223-11228.
    [15]Tian B,Gao Y T.Cylindrical nebulons,symbolic computation and Backlund transformation for the cosmic dust acoustic waves.Phys.Plasmas(Lett.),2005,12,070703:1-4.
    [16]Tian B,Gao Y T.Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation.Phys.Lett.A,2005,340,243-250.
    [17]Franz J R,Kintner P M,Pickett J S.POLAR observations of coherent electric field structures.Geophys.Res.Lett.,1998,25,2041-2044.
    [18]Tian B,Gao Y T.On the solitonie structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation.Phys.Lett.A,2005,340,449-455.
    [19]Gao Y T,Tian B.(3+1)-dimensional generalized Johnson model for cosmic dust-ion-acoustic nebulons with symbolic computation.Phys.Plasmas(Lett.),2006,13,120703:1-4.
    [20]Hong W P.Comment on "Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation"[Phys.Lett.A 340(2005)243].Phys.Lett.A,2007,361,520-522.
    [21]Gao Y T,Tian B.Reply to "Comment on:'Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation'"[Phys.Lett.A 361(2007)520].Phys.Lett.A,2007,361,523-528.
    [22]Clarkson P A.Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation.IMA J.Appl.Math.1990,44,27-53.
    [23]Gao Y T,Tian B.on the non-planar dust-ion-acoustic waves in cosmic dusty plasmas with transverse perturbations.Europhys.Lett.,2007,77,15001:1-6.
    [24]Tian B,Gao Y T.Spherical nebulons and Backlund transformation for a space or laboratory un-magnetized dusty plasma with symbolic computation.Eur.Phys.J.D,2005,33,59-65.
    [25]Gao Y T,Tian B.Cylindrical Kadomtsev-Petviashvili model,nebulons and symbolic computation for cosmic dust ion-acoustic.Phys.Lett.A,2006,349,315-319.
    [26]Wang Y Y,Zhang J F.Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma.Phys.Lett.A,2006,352,155-162.
    [27]Wang Y L,Zhou Z X,Jiang X Q,et al.Cylindrical Kadomtsev-Petviashvili equation for relativistically magnetosonic solitary wave in the collisionless plasma.Phys.Lett.A,2006,355,386-389.
    [28]郭柏灵.非线性演化方程,上海科技教育出版社,1995.
    [29]Kadomtsev B B,Petviashvili V I.On the stability of solitary waves in weakly dispersive media.Sov.Phys,Dokl.,1970,15,539-541.
    [30]Santini P M.On the evolution of two-dimensional packets of water waves over an uneven bottom.Lett.Nuovo Cim.,1981,30,236-240.
    [31]David D,Levi D,Wintemitz P.Integrable nonlinear equations for water waves in straits of varying width and depth.Stud.Appl.Math.,1987,76,133-168.
    [32]David D,Levi D,Wintemitz P.Solitons in shallow seas of variable depth and in marine starits.Stud.Appl.Math.,1989,80,1-23.
    [33]Duan W S.Acoustic mode in a two-ion-temperature warm dusty plasma under the weakly transverse perturbations.Chaos Solitons and Fractals,2002,14,1315-1318.
    [34]Lin M M,Duan W S.The Kadomtsev-Petviashvili(KP),MKP,and coupled K.P equations for two-ion-temperature dusty plasmas.Chaos Solitons and Fractals,2005,23,929-937.
    [35]Xue J K.Nonplanar dust-ion acoustic shock waves with transverse perturbation.Phys.Plasmas,2005,12,012314:1-5.
    [36]Belashov V Y,Vladimirov S V.Solitary waves in dispersive complex media.Springer Verlag,2005.
    [37]马锦秀.尘埃等离子体.物理,2006,35,244-250.
    [38]王红艳,段文山.对含有非热力学平衡离子的尘埃等离子体中孤波特性的理论研究.物理学报,2007,56,3977-3983.
    [39]Langrnuir I,Found C G,Dittmer A F.A new type of electric discharge:the streamer discharge.Science,1924,60,392-394.
    [40]Winter J.Dust:A new challenge in nuclear fusion research.Phys.Plasmas,2000,7,3862-3866.
    [41]Roth R M,Spears K G,Stein G O,et al.Spatial dependence of particle light scattering in an rf silane discharge.Appl.Phys.Lett.,1985,46,253-255.
    [42]Bingham R,Angelis U de,Tsytovich V N,et al.Electromagnetic wave scattering in dusty plasmas.Phys.Fluids B,1991,3,811-817.
    [43]Verheest F.Waves and instabilities in dusty space plasmas.Space Science Reviews,1996,77,267-302.
    [44]Spitzer J L.Physical Processes in the Interstellar Medium.New York,1978.
    [45]Hou L J,Wang Y N,Miskovie Z L.Iteraction potential among dust grains in a plasma with ion flow.Phys.Rev.E,2001,64,046406:1-7.
    [46]Chen Y H,Liu W.Nonlinear coupling of langrnuir wave and dust-acoustic wave in plasmas with the variable-charge grains.Chin.Phys.Lett.,1999,16,577-579.
    [47]Merlino R L,Goree J A.Dusty plasmas in the laboratory,industry and space.Physics Today,2004,57,32-38.
    [48]Rao N N,Shukla P K,Yu M Y.Dust-acoustic waves in dusty plasmas.Planet.Space Sci.,1990,38,543-546.
    [49]Shukla P K,Silin V P.Dust ion-acoustic wave.Phys.Scr.,1992,45,508-510.
    [50]Li K P,Dou F Q,Sun J A,et al.The adiabatic approximation solutions of cylindrical and spherical dust ion-acoustic solitary waves.Chin.Phys.,2005,14,33-36.
    [51]Shulda P K,Rahrnan H U.Instability of electrostatic dustcyclotron waves and associated wake potential.Planet.Space Sci.,1998,46,541-543.
    [52]Shukla P K,Yu M Y,Bharuthram R.Linear and non-linear dust drift waves.J.Geophys.Res.,1991,96,21343-21346.
    [53]Moslem W M.Obliquely propagating dust-acoustic solitary waves in cosmic dust-laden plasmas.Chaos Solitons andFractals,2005,23,939-947.
    [54]Zhang J F,Wang Y Y.Nonplanar dust-acoustic shock waves for two-temperature ions in dusty plasma with dissipative effects and transverse perturbations.Phys.Plasmas,2006,13,022303:1-8.
    [55]Tagare S G.Dust-acoustic solitary waves and double layers in dusty plasma consisting of cold dust particles and two-temperature isothermal ions.Phys.Plasmas,1997,4,3167-3172.
    [56]Xie B,He K,Huang Z.Dust-acoustic solitary waves and double layers in dusty plasma with variable dust charge and two-temperature ions.Phys.Plasmas,1999,6,3808-3816.
    [57]Barkan A,Angelo N D,Merlino R L.Charging of dust grains in plasma.Phys.Rev.Lett.,1994,73,3093-3096.
    [58]Gill T S,Saini N S,Kanr H.The Kadomstev-Petviashvili equation in dusty plasma with variable dust charge and two temperature ions.Chaos Solitons and Fractals,2006,28,1106-1111.
    [59]Xue J K.Propagation of nonplanar dust-acoustic envelope solitary waves in a two-ion-temperature dusty plasma.Phys.Plasmas,2004,11,1860-1865.
    [60]Vladimirov S V,Ostrikov K,Samarian A A.Physics and applications of complex plasmas.Imperial College Press,2005.
    [61]Ostrikov K N,Vladimirov S V,Yu M Y,et al.Dust-acoustic wave instabilities in collisional plasmas.Phys.Rev.E,2000,61,4315-4321.
    [62]Vladimirov S V,Ostrikov K N,Yu M Y,et al.Ion-acoustic waves in a complex plasma with negative ions.Phys.Rev.E,2003,67,036406:1-10.
    [63]Tsytovich V N,Vladimirov $ V,Morrill G E.Theory of dust and dust-void structures in the presence of the ion diffusion.Phys.Rev.E,2004,70,066408:1-15.
    [64]Vladimirov S V,Ostrikov K.Dynamic self-organization phenomena in complex ionized gas systems:new paradigms and technological aspects.Phys.Rep.,2004,393,175-380.
    [65]Li Y S,Zhang J E.Darboux transformations of classical Boussinesq system and its multi-soliton solutions.Phys.Lett.A,2001,284,253-258.
    [66]Golub L,Bookbinder J,DeLuca E,et al.A new view of the solar corona from the transition region and coronal explorer(TRACE).Phys.Plasmas,1999,5,2205-2215.
    [1]Li J,Zhang H Q,Xu T,et al.Soliton-like solutions of a generalized variable-coeffic -ient higher-order nonlinear Schrodinger equation from inhomogeneous optical fibers with symbolic computation.J.Phys.A,2007,40,13299-13309.
    [2]黄景宁,徐济仲,熊吟涛.孤子、概念、原理和应用,高等教育出版社,2004.
    [3]贾东方,余震虹,谈斌等译.非线性光纤光学原理及应用,电子工业出版社,2002.
    [4]Hasegawa A,Tappert F.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅰ:Anomalous dispersion.Appl.Phys.Lett.,1973,23,144-146.
    [5]Hasegawa A,Tappert F.Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅱ:Normal dispersion.Appl.Phys.Lett.,1973,23,171-173.
    [6]Mollenauer L F,Stolen R H,Gordon J P.Experimental observation of picosecond pulse narrowing and solitons in optical fibers.Phys.Rev.Lett.,1980,45,1095-1098.
    [7]Hasegawa A,Kodama Y.Signal transmission by optical solitons in monomode fiber.IEEE,Prec.,1981,69,1145-1150.
    [8]Hasegawa A,Kodama Y.Solitons in Optical Communications.Oxford University Press,1995.
    [9]Porsezian K,Kuriakose V C.Optical Solitons:Theoretical and Experimental Challenges.Springer Press,2003.
    [10]Kanna T,Lakshmanan M,Dinda P T,et al.Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schr6dinger equations.Phys.Rev.E,2006,73,026604:1-15.
    [11]Nakazawa M,Kubota H,Suzuki K,et al.Recent progress in soliton transmission technology.Chaos,2000,10,486-514.
    [12]Hasegawa A.Quasi-soliton for ultra-high speed communications.Physica D,1998,123,267-270.
    [13]Lakoba T I,Kaup D J.Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers.Phys.Rev.E.,1998,58,6728-6741.
    [14]Serkin V N,Belyaeva T L.Optimal control of optical soliton parameters:Part 1.The Lax representation in the problem of soliton management.Quantum Electron.,2001,31,1007-1015.
    [15]Kruglov V I,Peacock A C,Harvey J D.Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients.Phys.Rev.Lett.,2003,90,113902:1-4.
    [16]Wai P K A,Chen H H,Lee Y C.Radiations by "solitons" at the zero group dispersion wavelength of single-mode optical fibers.Phys.Rev.A,1990,41,426-439.
    [17]Elgin J N.Soliton propagation in an optical fiber with third-order dispersion.Opt.Lett.,1992,17,1409-1410.
    [18]Tian B,Gao Y T.Computer algebra,Painleve analysis and the time-dependent coefficient nonlinear Schrodinger equation.Comput.Math.Appl.,1996,31, 115-119.
    [19]Nakkeeran K.Optical solitons in erbium-doped fibres with higher-order effects and pumping.J.Phys.A,2000,33,4377-4381.
    [20]Hao R Y,Li L,Li Z H,et al.Exact multisoliton solutions of the higher order nonlinear Schrrdinger equation with variable coefficients.Phys.Rev.E,2004,70,066603:1-6.
    [21]Yang R C,Hao R Y,Li L,et al.Dark soliton solution for higher-order nonlinear Schrodinger equation with variable coefficients.Opt.Commun.,2004,242,285-293.
    [22]Tian B,Gao Y T.Symbolic-computation study of the perturbed nonlinear Schroinger model in inhomogeneous optical fibers.Phys.Lett.A,2005,342,228-236.
    [23]Yang R C,Li L,Hao R Y,et al.Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrodinger equation.Phys.Rev.E,2005,71,036616:1-8.
    [24]Tian B,Gao Y T.Variable-coefficient higher-order nonlinear Schrringer model in optical fibers:New transformation with burstons,brightons and symbolic computation.Phys.Lett.A,2006,359,241-248.
    [25]Zong F D,Dai C Q,Yang Q,et al.Soliton solutions for variable coefficient nonlinear Schrrdinger equation for optical fiber and their application.Acta Physica Sinica-Chinese Edition.2006,55,3805-3812.
    [26]Dai C Q,Zhang J F.New solitons for the Hirota equation and generalized higher order nonlinear Schrrdinger equation with variable coefficients.J..Phys.A,2006,39,723-737.
    [27]Meng X H,Zhang C Y,Li J,et al.Analytic multi-solitonic solutions of variable-coefficient higher-order nonlinear Schrrdinger models by modified Bilinear method with symbolic computation.Z.Naturforsch.A,2007,62,13-20.
    [28]Tian B,Gao Y T,Zhu H W.Variable-coefficient higher-order nonlinear Schrringer model in optical fibers:Variable-coefficient bilinear form,B/iklund transformation,brightons and symbolic computation.Phys.Lett.A,2007,366,223-229.
    [29]Xuan H N,Wang C J,Zhang D F.New soliton-like solutions of variable coefficient nonlinear Schrrdinger equations.Z.Naturforsch.A,2004,59,196-202.
    [30]Satsuma J,Yajima N.Initial value problem of one-dimensional selfmodulation of nonlinear waves in dispersive media.Prog.Theor.Phys.Suppl.,1974,55,284-306.
    [31]Blow K J,Doran N J.Multiple dark soliton solutions of the nonlinear Schrodinger equation.Phys.Lett.A,1985,107,55-58.
    [32]Emplit P,Hamaide J P,Reynaud F,et al.Picosecond steps and dark pulses through nonlinear single mode fibers.Opt.Commun.1987,62,374-379.
    [33]Kodama Y.Optical soliton in a monomode fiber.J.Stat.Phys.,1985,39,597-614.
    [34]Kodama Y,Hasegawa A.Nonlinear pulse-propagation in a monomode dielectric guide.IEEE J.Quantum Electron.,1987,23,510-524.
    [35]Papaioannou E,Frantzeskakis D J,Hizanidis K.An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point.IEEE J.Quantum Electron.,1996,32,145-154.
    [36]Bogatyrev V A,Bubnov M M,Dianov E M,et al.A single-mode fiber with chromatic dispersion varying along the length.J.Lightwave Technol.,1991,9,561-566.
    [37]Serkin V N,Hasegawa A.Soliton management in the nonlinear Schrodinger equation model with varying dispersion,nonlinearity,and gain.JETP Lett.,2000,72,89-92.
    [38]Serkin V N,Belyaeva T L.High-energy optical Schrodinger solitons.JETP Lett.,2001,74,573-577.
    [39]Chow K W,Yip L P,Grimshaw R.Novel solitary pulses for a variable-coefficient derivative nonlinear Schrodinger equation.J..Phys.Soc.Japan.,2007,76,074006:1-5.
    [40]Joshi N.Painleve property of general variable-coefficient versions of the Korteweg-de Vries and non-linear Schrodinger equations.Phys.Lett.A,1987,125,456-464.
    [41]Hlavaty L.Painleve analysis of nonautonomous evolution equations.Phys.Lett.A,1988,128,335-338.
    [42]Clarkson P A.Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation.IMA J.Appl.Math.,1990,44,27-53.
    [43]Gazeau J P,Winternitz P.Symmetries of variable coefficient KdV equations.J.Math.Phys.,1992,33,4087-4102.
    [44]Tian B,Shan W R,Zhang C Y,et al.Transformations for a generalized variable-coefficient nonlinear Schrodinger model from plasma physics,arterial mechanics and optical fibers with symbolic computation.Euro.Phys.J.B(Rapid Not.),2005,47,329-332.
    [45]Tian B,Wei G M,Zhang C Y,et al.Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels,Bose-Einstein condensates,rods and positons with symbolic computation.Phys.Lett.A,2006,356,8-16.
    [46]Weiss J,Tabor M,Camevale G.The Painleve property for partial differential equations.J.Math.Phys.,1983,24,522-526.
    [47]Clarkson P A.Painleve analysis of the damped,driven nonlinear Schrodinger equation.Proc.Roy.Soc.Edin.,1988,109A,109-126.
    [48]沃尔夫雷姆.Mathematica全书(赫孝良,周义仓译),西安交通大学出版社,2002.
    [49]Das G,Sarma J.Comment on "a new mathematical approach for finding the solitary waves in dusty plasma".Phys.Plasmas,1999,6,4394-4397.
    [50]Barnett M P,Capitani J F,Zur Gathen J,et al.Calculation in chemistry selected examples,Int.J.Quant.Chem.,2004,100,80-104.
    [51]Yah Z Y,Zhang H Q.Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup(BK)equations in(2+l)-dimensional spaces.J.Phys.A,2001,34,1785-1792.
    [52]Xie F D,Gao X S.Applications of computer algebra in solving nonlinear evolution equations.Comm.Theor.Phys.,2004,41,353-356.
    [53]Li B,Chen Y,Xuan H N,et al.Generalized Riecati equation expansion method and its application to the(3+1)-dimensional Jumbo-Miwa equation.Appl.Math.Comput.,2004,152,581-595.
    [54]Porsezian K,Nakkeeran K.Optical solitons in presence of Kerr dispersion and self-frequency shiit.Phys.Rev.Lett.,1996,76,3955-3958.
    [55]谷超豪,胡和生,周子翔.孤立子中的Darboux变换及其几何应用,上海科技出版社,1999.
    [56]Wright O C,Forest M G.On the Backlund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrodinger system.Physica D,2000,141,106-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700