纳米弥散强化铜合金短流程制备方法及其相关基础问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了双束熔体原位反应-快速凝固法和简化内氧化法两种纳米弥散强化铜合金短流程制备技术,制备了Cu-TiB_2与Cu-Al_2O_3两个系列的纳米弥散强化铜合金,并对两种合金的力学性能、电学性能、加工性能以及组织结构演变规律进行了研究,主要研究结果如下:
     1、Cu-Ti和Cu-B双束熔体原位反应热力学研究表明,原位反应产物TiB_2相与TiB相均具有负的吉布斯自由能,但TiB_2相能量最低,TiB_2相是双束熔体原位反应中生成的主要强化相。单向扩散双束熔体原位反应动力学研究表明,反应前锋迁移速率方程可表达为(?),单位体积内TiB_2粒子形核数量方程可表达为(?),TiB_2粒子半径方程可表达
     2、扁型喷嘴反应器出射熔体的流动特性定常紊流边界理论研究表明,紊动射流熔体横向流速满足方程(?),平行于轴线的流速满足方程(?),射流熔体轴线流速u_m沿程变化满足(?),出射熔体卷吸量满足(?),射流熔体初始长度满足L_0=5.2(2b_0)。利用上述研究结果对双束熔体原位反应器进行了理论设计,确定了反应器实验室原型扁型喷嘴厚度2bo的合理取值范围(0.5mm<2b_0<3.0mm)、喷射角度θ取值范围(40-60°)以及反应腔体相关尺寸范围。对Shangguan模型进行外推,研究了凝固界面与前端粒子间相互作用以及熔体中粒子间的相互作用,发现冷却速率V只有在满足C_(CI)     3、依据理论分析与实验研究,确定了实验室研究条件下最佳原位反应参数,即:喷嘴厚度2b_0=1.0~2.5mm,θ=50°;熔炼温度:Cu-Ti合金1400~1500℃,Cu-B合金1300~1400℃;送气压力:0.2~0.35MPa。在上述研究的基础上,成功制备了三种浓度Cu-TiB_2合金,其综合性能分别为:Cu-0.45wt%TiB_2合金:HV=102,σ_b=389MPa,σ_(0.2)=330MPa,δ=21%,相对电导率=92%IACS;Cu-1.6wt%TiB_2合金:HV=142,σ_b=456MPa,σ_(0.2)=415MPa,δ=14%,相对电导率=81%IACS;Cu-2.5wt%TiB_2合金:HV=169,σ_b=542MPa,σ_(0.2)=511MPa,δ=12%,相对电导率=70%IACS。三种浓度合金基体内均弥散分布有大量纳米TiB_2粒子。
     4、利用TEM对Cu-TiB_2合金的TiB_2粒子尺寸和晶粒尺寸的分布进行了统计,发现合金基体内尺寸在50~75nm的TiB_2粒子频率最高。随着合金浓度增加,原位合成的纳米粒子体积分数不断增加,晶粒尺寸则不断减小。利用上述统计结果对Cu-TiB_2合金强化机制和导电机制进行了研究。结果表明,弥散强化和细晶强化是Cu-TiB_2合金的两种主要强化机制,其中弥散强化的贡献大于细晶强化的。低浓度Cu-0.45wt%TiB_2合金电导率计算值与实测值相差较小,随着所制备合金浓度的增加,材料的电导率的计算值与实测值相差也逐渐增加。影响Cu-TiB_2合金强度及电导率的主要因素是残余的溶质元素Ti、B以及原位反应合成的TiB_2粒子的含量和尺寸等。
     5、针对Cu-Al_2O_3合金传统内氧化工艺复杂,过程难以控制,产品质量不稳定,生产成本高等问题,进行了简化内氧化工艺研究。简化的工艺流程如下:Cu-Al母合金熔炼→雾化制粉→与适量氧化剂混合→在预先控制气氛条件下内氧化并在线进行真空热压→热挤压成棒材。省去了传统工艺中内氧化→破碎筛分→还原→破碎筛分→冷等静压制坯→真空烧结→包套、抽真空、封口等诸多繁杂工序,大大缩短了生产周期,避免了中间环节造成的氧污染,提高了产品质量。利用该简化工艺制备的两种典型浓度的Cu-Al_2O_3弥散强化铜合金在热挤压态性能分别为:Cu-0.23vol%Al_2O_3合金:HV=85,σ_b=260MPa,σ_(0.2)=195MPa,δ=30%,相对电导率=96.5%IACS;Cu-2.7vol%Al_2O_3合金:HV=145,σ_b=580MPa,σ_(0.2)=521MPa,δ=13%,相对电导率=82%IACS。
     6、Cu-Al_2O_3弥散强化铜合金冷轧过程中会出现加工软化现象,随着Al_2O_3浓度的增加,加工软化特性不断减弱。通过TEM观察建立了位错与弥散粒子间相互作用模型,认为加工软化的原因是:在大变形量冷轧过程中异号位错间发生湮灭,它使得相邻位错胞合并和长大,从而导致合金硬度下降,最终出现加工软化现象。单向轧制的弥散强化铜合金各向异性显著,横向强度均远低于纵向的,且沿横向拉伸过程中会出现独特的应力波动或陡降现象。金相和拉伸断口研究表明,单向轧制会使弥散强化铜合形成结合界面较弱的纤维组织,它使得横向拉伸时出现沿纤维界面劈裂现象。纤维组织和沿纤维界面劈裂是Cu-Al_2O_3合金产生各向异性的根本原因。交叉轧制可有效避免Cu-Al_2O_3合金各向异性。
     7、Cu-Al_2O_3弥散强化铜合金在室温沿纵横两个不同方向进行压缩时,随着应变速率的增加,流变应力均不断增加,但纵向压缩流变应力要高于横向的。利用滑移面和滑移方向旋转模型以及运动位错与弥散粒子相互作用模型可较好的解释这一规律。Cu-Al_2O_3合金高温热压缩变形是一个热激活过程;沿同一方向压缩时高浓度合金的激活能高于低浓度的,两种浓度合金沿纵向压缩的激活能均高于相应合金沿横向压缩的。根据Cu-Al_2O_3合金高温压缩实验求出的相关材料常数,建立了峰值屈服应力与应变速率以及温度之间的本构方程。
     对于Cu-0.23vol%Al_2O_3合金,高温变形本构方程为:横向:(?)=[sinh(0.0124836σ)]~(4.39909)exp(11.65218-99.848×10~3/RT)纵向:(?)=[sinh(0.006078σ)]~(8.86218)exp(23.22611-183.614×10~3/RT)
     对于Cu-2.7vol%Al_2O_3合金,高温变形本构方程为:横向:(?)=[sinh(0.007653σ)]~(4.20761)exp(14.84478-120.59×10~3/RT)纵向:(?)=[sinh(0.005638σ)]~(8.52908)exp(26.31261-209.892×10~3/RT)
     8.金相组织观察表明,当合金沿横向压缩时,随着热压缩温度的不断升高,纤维组织不断弱化,纤维边界以及内部出现的动态再结晶晶粒数量不断增加,不过高浓度合金动态再结晶相对较困难。当合金沿纵向压缩时,由于压缩方向平行于纤维组织的排列方向,纤维组织破碎严重。高温纵向压缩比横向压缩更容易沿界面产生裂纹。TEM组织观察表明,热压缩使合金亚晶尺寸不断减小,相邻亚晶粒间取向差不断增加,而位错密度却先增加后降低。
Two kinds of short flow technologies, in situ reaction of double beam melts-rapid solidification and simplified internal oxidation technology, for the preparation of dispersion strengthened cooper alloys, have been investigated systematically in this paper. And both Cu-TiB_2 and CU-Al_2O_3 nano dispersion strengthened cooper alloys have been prepared by these technologies respectively. The mechanical properties, electricity properties, processability and the evolving law of structure have been studied deeply. The main results can be summarized as follows:
     1. The investigation of thermodynamics of in-situ reaction of Cu-Ti and Cu-B melts demonstrates that, the Gibbs free energy values of both TiB_2 and TiB phases are negative, TiB_2 phase is the main strengthening phase generated in the in-situ reaction, since the energy of TiB_2 phase is lower. According to the unilateral diffusion kinetics of the in-situ reaction of double-beam melts, the penetration rate of reaction front forTiB_2 particles can be described by the equation (?). Thenucleation number Z(x) of TiB_2 particles per unit volume is givenby Z(x) =(?) and the radius of the particles is givenby r(x)=(?)
     2. The investigation of the flow characteristics of melts ejected by in situ reactor with flat nozzles using the turbulent theory indicates that, the current velocity ofturbulent jet melt in transverse direction satisfies the equation(1/a)(v/u_m)= (?)F'((?))-1/2F((?)) .
     The current velocity parallel to the axis satisfies the equation u/u_m= F'((?)). The axiscurrent velocity u_m for jet melt satisfies (u_m)/(u_0) = 2.28(?). The entrainment amount of ejected melt satisfies q/q_0= 0.62(?). The initial segment of jet melt satisfiesL_0 = 5.2(2b_0). On the basis of the above mentioned results, in-situ reactor of double beam melts has been designed. The proper spans of the thickness 2bo for the flat-shaped ejection nozzle( 0.5mm < 2b_0 < 3.0mm), ejection angleθ(40-60°) andrelative sizes of reaction cavity have been determined. The Shangguan model was extrapolated to consider the effect of cooling rate on interaction between freezing interface and front-end particles, and the interaction of particles in melts at the same time, the results indicate that only if the cooling rate V can satisfy the relationship ofV_(CI) < V < V_(CP), TiB_2 particles synthesized by in situ reaction of Cu-Ti and Cu-B meltscan be trapped by freezing interface, and uniformly distribute in the copper matrix. At last, the device of combined in situ reaction with rapid solidification were successfully assembled, and can be used to prepare Cu-TiB2 alloys.
     3. According to the theory analysis and experiment results, The optimum conditions of ejecting double beam by in situ reactor are as follows: 2b_0=1.0-2.5mm,θ=50°, Cu-Ti melt temperature=1400-1500℃, Cu-B melt temperature=1300-1400℃, air pressure=0.2-0.35MPa. The corresponding properties of CU-TiB_2 alloys prepared by using these optimum conditions are as follows: Cu-0.45wt%TiB2 alloy: HV=102,σ_b =389MPa,σ_(0.2)=330MPa,δ=21%, relative electric conductivity=92%IACS; Cu-1.6wt%TiB_2 alloy: HV=142,σ_b=456MPa,σ_(0.2)=415MPa,δ=14%, relative electric conductivity=81%IACS ;Cu-2.5wt%TiB_2 alloy:HV=169,σ_b=542MPa,σ_(0.2) =511MPa, 8 =12%, relative electric conductivity =70%IACS. A large number of nano TiB_2 particles can be observed in the matrix of Cu-TiB2 alloys.
     4.Through statistic analysizing of the sizes of TiB_2 particles and grains in the matrix of CU-TiB_2 alloys prepared under their optimum conditions, it is found that, the frequency of TiB_2 particles with the size of 50-75nm is the highest, and with increasing of solute concentration, the volume fraction of nano TiB_2 particles is also increased, yet the grain sizes decrease. On the basis of the above statistic results, both the strengthening and the conductivity mechanisms have been studied. The results show that: dispersion strengthening and fine-grained strengthening are main strengthening mechanisms for Cu-TiB_2 alloys prepared by this technology, and the strength value contributed from dispersion strengthening is higher than that of fine-grained strengthening. The difference between the calculated and measured electric conductivity values for the Cu-0.45wt%TiB2 alloy is much smaller, yet, with increasing of TiB_2 particles concentration, their differential values are also increased gradually. The influencing factors for electric conductivity of Cu-TiB_2 alloys prepared by this technology mainly include the residual amount of Ti and B solute elements, the content, size and distribution of in situ synthesized TiB_2 particles.
     5. Because the traditional internal oxidation process is very complicated, products are not stable enough, and their costs are also very high, the simplified internal oxidation process is quite needed to be studied. Through investigation, the simplified internal oxidation process is determined as follows: melting of Cu-Al master alloy→preparing powder by gas atomization→mixing of Cu-Al powder and oxidant→hot pressing(internal oxidation & proforming)→hot extrusion. Some steps in the traditional technology are saved, such as internal oxidation→crushing and screen separation→reduction→crushing and screen separation→cool isostatic compression→vacuum stintering→canning, vacuum-pumping, sealing-off and other procedures, which cuts down the production period, avoids the oxygen pollution and improves the product quality. The properties of the CU-Al_2O_3 alloys under extrusion condition fabricated by the simplified process are as follows: Cu-0.23vol%Al_2O_3 alloy: HV=85,σ_b=260MPa,σ_(0.2)=195MPa, 8=30%, relative electric conductivity=96.5%IACS; Cu-2.7vol%Al_2O_3 alloy: HV=145,σ_b=580MPa,σ_(0.2)=521MPa,δ=13%, relative electric conductivity=82%IACS.
     6. With increased cold rolling deformation, a work softening phenomenon can be observed in the CU-Al_2O_3 alloys. The higher concentration of Al_2O_3 particles is, the poorer work softening is. In order to explain this phenomenon, the microstructure changes of Cu-Al_2O_3alloys were analyzed by TEM as a function of deformation, and the models of interaction between dislocation and dispersion particles were also introduced. The reason for the work softening is: annihilation of unlike dislocations during the cold-rolling with large deformation amount, leads to the agglomeration and growing of adjacent dislocation cells, which results in the decrease of alloy hardness, and the appearance of work softening phenomenon. The anisotropy of unidirectional rolled CU-Al_2O_3 alloy is significant, and the strengths in transverse direction are quite lower than those in longitudinal direction. In addition, the phenomenon of stress fluctuation or steep dropping appears in its transverse tension curve. The research of metallographic and tensile fracture analysis demonstrates that, fibre structure with lower bond strength boundary is formed in the CU-Al_2O_3 alloy after unidirectionaly rolling, and leading to the splitting of fibres along their interface during the transverse tension, which are the essential reasons for the stronger anisotropy of unidirectional rolled CU-Al_2O_3 alloy. Tandem rolling can avoid the anisotropy of CU-Al_2O_3 alloy effectively.
     7. With the increasing of strain rate, the stresses of CU-Al_2O_3 alloys compressed in the longitudinal and transverse directions at room temperature are increased. However, the stresses in the longitudinal direction are higher than those in the transverse direction, which can be explained by the rotation model of gliding plans and glide directions, and the model of interaction between moving dislocation and dispersion particles. Through the quantitative research in the effect of strain rate and compression temperature on peak yield stress, it is found that hot compression deformation of CU-Al_2O_3 alloy is a thermal activation process; the higher Al_2O_3 particle concentration is, the higher activation energy of the alloy is. And the activation energy of Cu-Al_2O_3 alloy compressed in longitudinal direction is higher than that in the transverse direction. According to the relative material parameters obtained from the compression experiment, the deformation constitutive equations of CU-Al_2O_3 alloy describing the relationship of yield stress peak value, strain rate and temperature are given as follows: u-0.23vol%Al_2O_3 alloy:
     Transverse direction(?) = [sinh(0.0124836σ)]~(4.39909) exp(11.65218-99.848×10~3/T)
     Longitudinal direction(?)= [sinh(0.006078σ)]~(8.86218) exp(23.22611-183.614×10~3/RT)Cu-2.7vol%Al_2O_3 alloy:
     Transverse direction(?) = [sinh (0.007653σ)]~(4.20761) exp (14.84478 -120.59×10~3 / RT)
     Longitudinal direction(?) = [sinh(0.005638σ)]~(8.52908) exp(26.31261-209.892×10~3/RT)
     8. The observation of metallographical structure demonstrates that, with increasing of deformation temperature, fibre structure is gradually weakened, and the number of dynamic recrystallization grains appearing among the fibers or on its boundary are also increased. However, dynamic recrystallization is difficult to happen in the high concentration CU-Al_2O_3 alloy. During the compression along its longitudinal direction, because the compression direction is parallel to the arrangement orientation of fibres, the fibres are damaged seriously. The generation of crack along the fibre interface is more difficult to occur in the transverse compression than in the longitudinal direction. The observation of TEM microstructure demonstrates that, hot compression makes the subgrain sizes decrease, and the orientation difference between the adjacent subgrain increase, yet, with the increasing of strain rate, the dislocation density first increases, then followed by decrease.
引文
[1] Teruo Takahashi,Yasuhiko Hashimoto. Preparation of dispersion-strengthened coppers with NbC and TaC by mechanical alloying. Materials Transactions JIM, 1991,32:389-397
    
    [2]曾汉民主编.高技术新材料要览.北京:中国科学技术出版社,1993.110
    
    [3]闵光辉,宋立,于化顺等.高强度导电铜基复合材料.功能材料,1997,28 (4):342-345
    
    [4]葛继平.形变Cu基原位复合材料热稳定性研究.金属热处理学报,1998,19 (4):25-31
    
    [5] Chung J H, Song J S, Hong S I. Bundling and drawing processing of Cu-Nbmicrocomposites with various Nb contents. Journal of Materials ProcessingTechnology, 2001,113:604-609
    
    [6] Popova E N, Popov V V, Rodionova L A, Romanov E P, et al. Effect of annealingand doping with Zr on the structure and properties of in situ Cu-Nb compositeswire. Scripta Materialia, 2002,46:193-198
    
    [7] Bevk J, Harbison J P, Bell J L. Anomalous increase in strength of in situ formedCu-Nb multifilamentary composites. J. Appl Phys, 1978,49(12):6031-6035,
    
    [8] Hong I S, Hill M A. Strength and ductility of heavily drawn bundled Cu-Nbfilamentary microcomposite wires with various Nb contents. Metallurgical andMaterials Transactions A, 2000, 2457-2462
    
    [9]张二林,曾松岩,李庆春.雾化喷射沉积制备颗粒增强型金属基复合材料.材 料工程,1995,(11):11-13
    
    [10]张叔英,孟繁琴,陈玉勇等.颗粒增强金属基复合材料的研究进展.材料导 报,1996,10(2):66-71
    
    [11] Mehrabian R, Riek R G, Flemings M C. Preparation and casting of metal-particulate non-metal composites. Metallurgical Transactions, 1974, 5(8):??1899-1905
    
    [12] Premkumar M K, Chu M G. Synthesis of TiC particulates and their segregationduring solidification in situ processed Al-TiC composites. MetallurgicalTransactions, 1993,24A(10):2358-2362
    
    [13] Johnsson M, Bacherud L, Sigworth G K. Study of the mechanism of grainrefinement of aluminum after additions of Ti-and B-containing master alloys.Metallurgical Transactions, 1993, 24A(2): 481-491
    
    [14] Merzhanov M A G, Shuivo V M. Self-propagating high-temperature synthesisprocess, U.S.patent,3726643, 1973
    
    [15] Owen K C, Wang M J, Persad C, et al. Preparation and tribological evaluation ofcopper-graphite composites by high energy high rate powder consolidation. Wear,1987,120:117-121
    
    [16] Leatham A G, Lawley A. The spray process: principles and applications, theInternational Journal of Powder Metallurgy, 1989, 29(4): 321-329
    
    [17] Perez J E, Morris D G. Copper-Al_2O_3 composites prepared by reactive spraydeposition. Scripta Metal et Mater, 1994, 31(3):231-235
    
    [18]杨朝聪.高强高导电铜合金的研究及进展.昆明冶金,2000,29(6):26-29
    
    [19]甘永学,汴琨,吴云书,等.碳纤维增强铜基复合材料摩擦与磨损行为.金 属科学与工艺,1989,8(2):13-19
    
    [20]刘志农,莫德锋,胡正飞,何国求,马行驰.高导电高耐磨铜基材料研究进 展.材料导报,2007,21专辑Ⅷ:421-427
    
    [21]赵冬梅,高强、高导Cu-Ni-Si合金时效相变夫见律及强化机制研究:[博士学 位论文].陕西,西安交通大学,2003
    
    [22] Groza J R, Gibeling J C. Principles of particles selection for dispersionstrengthened copper. Mter Sci Eng Part A, 1993, A171:115-125
    
    [23] Nagorka M S, Levi C G, Lucas G E. Novel oxide-dispersion strengthened copperalloys form rapidly solidified precursors I:Microstructural development.Metallurgical and materials Transactions A, 1995,26A:859-871
    
    [24] Bersterci M, Ivan J. The mechanism of the failure of the dispersion-strengthenedCu-Al_2O_3 system. Journal of Mterials Science Letters, 1998,17:773-776
    
    [25] Rajkovic V M, Mitkov M V. Dispersion harded Cu-Al_2O_3 produced by highenergy milling, The International Journal of Powder Metallurgy,2000,36(8):45-49
    
    [26] Ma Z Y, Bi J, Lu Y X, Luo M, Gao Y X. Quench strengthening mechanism ofAl-SiC composites. Scripta Metall. Mater, 1993, 29:225-229
    
    [27] Wu Y, Lavernia E J. Interaction mechanisms between ceramic particles andatomized metallic droplets. Metall Trans, 1992, 23A:2923-2937
    
    [28] Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrixcomposites-a review. J Mater Sci, 1991, 26:1137-1156
    
    [29] Mortensen A, Cornie J A, Flemings M J C. Columnar Dendritic Solidifi-cation ina metal-matrix compostites. Metall Trans, 1988, 19A:709-721
    
    [30] Ma Z Y, Liu J, Yao C K. Fracture mechanism in a SiCw-6061Al composite. JMater Sci, 1991,26:1971-1976
    
    [31] Yih P, Chung D D L. Titantum diboride copper-matrix composites. J Mater Sci,1997,32:1703-1709
    
    [32] Lawley A, Apelian D. Spray forming of metal matrix composites. PowderMetallurgy, 1994, 37(2):123-128
    
    [33] Morris M A, Morris D G. An analysis of the thermal and mechanical stability ofrapidly solidified Cu-Mn-B alloys. Acta Metall, 1988, 36(4): 1187-1199
    
    [34] Morris M A, Morris D G. Segregation structures of melt-spun Cu-Si-B alloys andtheir high temperature deformation behavior. Acta Metall, 1989,37(1):61-69
    
    [35]#12
    
    [36]#12
    
    [37]#12
    
    [38]郭明星,汪明朴,李周,程建奕,曹玲飞.机械合金化制备不同粒子弥散强 化铜合金的研究.稀有金属,2004,28(5):926-930
    
    [39] Morris M A, Morris D G. Microstructural refinement and associated strength of copper alloys obtained by mechanical allpying. Materials Science and Engineering, 1989,A111: 115-127
    
    [40] Wang Yen H, Jong Kook Lee. Preparation of TiB_2 powders by mechanical alloying. Materials Letters, 2002, 54:1-7
    
    [41]郭明星,汪明朴,李周,曹玲飞,程建奕.原位复合法制备纳米粒子弥散强 化铜合金研究进展.机械工程材料,2005,29(4):1-3
    
    [42] Koczak M J, Premkumar M K. Emerging technologies for the in-situ production of MMCs.JOM.1993,45(1):44-48
    
    [43]郭明星,汪明朴,李周,雷若珊,罗丽.纳米Al_2O_3粒子浓度对弥散强化铜 合金退火行为的影响.功能材料,2006,37(3):428-430
    
    [44]郭明星,汪明朴,李周,曹玲飞,程建奕,谭望.低浓度Cu-Al_2O_3弥散强 化铜合金退火特性的研究.材料热处理学报,2005,26(1):36-39
    
    [45]郭明星,李周,汪明朴.不同浓度Cu-Al_2O_3弥散强化铜合金退火行为的研 究.金属热处理,2005,30(增):215-217
    
    [46] Brondsted P, Toft Sorensen O. Prepatration of dispersion-hardened copper byinternal oxidation. J Mater Sci, 1978, 13(6): 1224-1228
    
    [47] Takahashi T, Hashimoto Y, Korama K. Effects of Al concentration and internaloxidation temperature on the microstructure of dilute Cu-Al alloys after internaloxidation. J Japan Inst Metals, 1989,53:814-820
    
    [48] Takahashi T, Hashimoto Y, Omori S, Korama K. Phase and morphology of ZrO_2in internally oxidized dilute Cu-Zr alloys. Trans Japan Inst Metals, 1986, 27:552-558
    
    [49] Takahashi T, Hashimoto Y, Omori S, Korama K. Dispersion hardening ofCu-Al-Ti alloys by internal oxidation. Trans Japan Inst Metals, 1985, 26:271-279
    
    [50] Takahashi T, Hashimoto Y, Korama K. Effect of Ti and Zr additions on theinternal oxidation of Cu-Si alloy. Mater Trans JIM, 1989, 30:127-136
    [51] Cheng J Y, Wang M P, Li Z, Wang Y H, et al. Fabrication and properties of low oxygen grade Al_2O_3 dispersion strengthened copper alloy. Transactions of Nonferrous Metals Society of China, 2004,14 (1): 121-126
    [52] Ashby M F, Balhk,Bevk J, et al. Influence of a dispersion of particle on the sintering of metal powders and wires. Progress in Materials Science, 1980,25(1):1-34
    [53] Swisher J H. Oxidation of metals and alloys. ASM, 1970,p235
    
    [54] 申玉田,崔春翔.高强度高电导率Cu-Al_2O_3复合材料的制备.金属学报. 1999, 35(8): 888-892
    
    [55] SCM Corporation Clidcop,Alloy Digest.Sep,1973
    [56] Tu J P, Wand N Y, Yang Y Z, Qi W X, et al. Preparation and properties of TiB_2 nanoparticle reinforced copper matrix composites by in situ processing. Materials Letters, 2002, 52:448-452
    [57] Chrysanthou A, Erbaccio G. Production of copper-matrix composites by in situ processing. Journal of Materials Science, 1995,30 (24): 6339-6344
    [58] Lee J, Kim N J, Jung J Y, Lee E S, Ahn S. The Influence of reinforced particle fracture on strengthening of spray formed Cu-TiB_2 composites. Scripta Metall Mater, 1998, 39(8): 1063-1069
    [59] Lawley A, Aperlian D. Spray forming of metal matrix composites. Powder Metallurgy, 1994, 37(2):123-128
    [60] Perez F J, Morris D G. Copper-Al_2O_3 composites prepared by reactive spray desposition. Scripta Metall Mater, 1994, 31 (3):231-235
    [61] Zeng X, Liu H, Chu M G, Lavernia E J. An experimental investigation of reactive atomization and processing of Ni_3Al/Y_2O_3 using N_2-O_2 atomization. Metall. Trans A, 1992, 23A: 3394-3399
    [62] Lee J, Jung J Y, Lee Eon-Sik, Park W J, Ahn S, Kim Nack J. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming. Materials Sciecce and Engineerig, 2000, A277: 274-283
    [63] Lee A K, Sanchez-Caldera L E, Oktay S T, Suh N P. Liquid-metal mixing process tailors MMC microstructures. Adv Mater Proc, 1992,8:31-34
    
    
    [64] Schaffer E B, McCormick P G. Met Trans, 1991,22A:3019
    
    [65] Ying D Y, Zhang D L. Processing of Cu-Al_2O_3 metal matrix nanocomposite materials by high energy ball milling. Materials Science and Engineering, 2000,A286,152-156
    
    [66] Biselli C, Morris D G, Randall N. Mechanical alloying of high strength copperalloys containing TiB_2 and Al_2O_3 dispersion particles. Scriptal MetallurgicalMaterialia, 1994, 30(10):1327-1332
    
    [67] Kin J S, Kum J W, Kang E H,et al. Microstructure and property of TiB_2-dispersedCu-matrix composites. 2006 International Forum on Strategic Technology,2006, 366-368
    
    [68] Dong S J, Zhou Y, Shi Y W, Chang B H. Formation of a TiB_2-reinforcedcopper-based composite by mechanical alloying and hot pressing. Metallurgicaland Materials Transactions A, 2002, 33(4): 1275-1280
    
    [69] Yuasa E, Morooka T, Laag R, Kaysser W A, Petzow G. Microstructural change ofCu-Ti-B powders during mechanical alloying. Powder Metallurgy, 1992, 35(2):120-123
    
    [70]董仕节,史耀武,雷永平,Zhou Norman.Cu-Al-B_2O_3-TiO_2粉末机械合金化. 中国有色金属学报,2002,12(4):693-699
    
    [71]董仕节.电焊电极用TiB_2增强铜基复合材料的研究:[博士学位论文].西安: 西安交通大学,1999
    
    [72] Hansen M, Constitution of Binary Alloys. McGraw, New York, 1985
    
    [73] Chi F, Schmerling M, Eliezer Z, Marcus H L, Fine M E. Prepration of Cu-TiNalloy by external nitridation in combination with mechanical alloying. MaterialsScience and Engineering, 1995, A190:181-186
    
    [74]董仕节,史耀武,雷永平,Zhou Norman.TiB_2含量对TiB_2/Cu复合材料性能 的影响.热加工工艺,2002,3:47-49
    
    [75] Biselli C, Morris D G, Randdall N. Mechanical alloying of high-strength copper alloys containing TiB_2 and Al_2O_3 dispersoid particles. Scripta Metallurgica et Materials, 1994, 30(10): 1327-1332
    
    [76]Groza J R, Gibeling J C. Principles of particle selection for dispersion-??strengthened copper. Materials Science Engineering A: 1993, A171 (1-2):115-125.
    
    [77] Nagorka M S, Levi C G, Lucas G E, Ridder S D. Potential of rapid solidificationin oxide- dispersion-strengthened copper alloy development. Materials ScienceEngineering A, 1991, A142( 2): 277-289.
    
    [78]Srivatsan T S, Troxell J D, Effect of niobium filments on mechanical responseand fracture characteristics of dispersion strengthened copper alloy andcopper-niobium microcomposite. Materials Science and Engineering, 1999,A264: 60-73
    
    [79]武建军,张运,李国彬,雷廷权.Al_2O_3/Cu复合材料的塑性变形及再结晶.复 合材料学报,2000,17(2):106-110
    
    [80] Srivatsan T S, Dhana Singh K, Troxell J D. The tensile behavior of an oxidedispersion strengthened copper-niobium composite, Materials Letters, 1996,28:423-429
    
    [81] Srivatsan T S, Al-Hajri Meslet, Troxell J D. The tensile deformation, cyclicfatigue and final fracture of dispersion strengthened copper. Mechanics ofMaterials, 2004, 36:99-116
    
    [82] Michal Besterci, Jozef Ivan, Ladislav Kovac, Thomas Weissgaerber, ChristaSauer. Strain and fracture mechanism of Cu-TiC. Materials Letters,1999(38):270-274
    
    [83] Michal Besterci, Jozef Ivan, Ladislav Kovdc. Influence of particles in CU-Al_2O_3system on fracture mechanism. Materials Science and Engineering, 2001,A319-321:667-670
    
    [84] Nadkarni A V, Klar E, Shafer W M. A new dispersion-strengthened copper.Metals Engineering Quarterly, 1976, 8:10-15
    
    [85] Broyles S E, Anderson K R, Groza J R, Gibeling J C. Creep deformation of dispersion-strengthened copper. Metallurgical and Materials Transactions A, 1996,27:1217-1227
    
    [86] Humphreys F J, Hirsch P B, Gould D, in Proc. 2~(nd) Int. Conf. On the Strength ofMetals of Metals and Alloys, ASM, Metals Park, OH, 1970, pp550-554
    
    [87] Rosier J, Arzt E. The kinetics of dislocation climb over hard particles. I. Climb??without attractive particle-dislocation interaction. Acta Metallurgica, 1988,36(4):1043-1051
    
    [88] Rosier J, Arzt E. A new model-based creep equation for dispersion strengthenedmaterials. Acta Metall Mater, 1990, 38(4):671-683
    
    [89] Arzt E, Wilkinson D S. Threshold stresses for dislocation climb over hardparticles: the effect of an attractive interaction. Acta Metall., 1986,34(10):1893-1898
    
    [90] Stephens J J, Bourcier F J, Vigil F J, Schmale D T, Sandia Report No.SAND88-351, UC-25, Sandia National Laboratory. Albuquerque, NM, 1988
    
    [91] Lund R W, Nix W D, High temperature creep of Ni-20Cr-2ThO_2 single crystals.Acta Metall, 1976, 24(5):469-481
    
    [92] Oliver W C, Nix W D. High temperature deformation of oxide dispersionstrengthened Al and Al-Mg solid solutions. Acta Metall, 1982,30(7): 1335-1347
    
    [93]韩胜利,田保红,宋克兴,刘平,董企铭,刘勇,曹先杰,牛立业.Al_2O_3弥散 强化Cu基复合材料高温拉伸行为研究.材料开发与应用,2004,19(3):4-7
    
    [94] Arnberg L, Backmark U, Backstrom N, Lange J. A new high strength, high conductivity Cu-0.5 wt.%Zr alloy produced by rapid solidification technology. Materials Science and Engineering, 1986, A 83(1):115-121
    
    [95] Krotz P D, Spitzig W A, Laabs F C. High temperature properties of heavily deformed Cu-20%Nb and Cu-20%Ta composites, Materials Science Engineering,1989, A110:37-47
    
    [96] Biselli C, Morros D G, The high temperature deformation of mechanically alloyed copper-based alloys, Materials Science and Engineering, 1991, A148:163-173
    
    [97] Funkenbusch P D, Courtney T H. On the role of interphase barrier andsubstructural strengthening in deformation processed composite materials.Scripta Metall, 1989, 23(10): 1719-1724
    
    [98] Dadras M M, Morris D G. Examination of some high-strength, high-conductivitycopper alloys for high-temperature applications. Scripta Materialia, 1997,38(2):199-205
    
    [99] Biselli C, Morris D G, Randdall N. Mechanical alloying of high-trength copper??alloys containing TiB_2 and Al_2O_3 dispersoid particles, Scripta Metallurgica et Materials, 1994,30(10): 1327-1332
    
    [100] Nadkarni A V. Dispersion strengthened copper properties and application. In: Ling E and Taubenblat. P W, eds. High conductivity copper and aluminum alloys. Warrendale PA: The Metallurgica of AIME, 1984. 77-100
    
    [101]申玉田,崔春翔,孟凡斌,等.高强度高导电Cu-Al_2O_3复合材料的制备.会 属学报,1999,35(8):888
    
    [102] Swisher J H, Fuchs E O. Dispersion-strengthening of copper by internaloxidation of two-phase copper-zirconium alloys, J Inst Metals, 1970,98:129-133
    
    [103] Preston O, Grant N J. Dispersion strengthening of copper by internal oxidation.Transaction of the Metallurgical society of AIME, 1961, 221:164-172
    
    [104] Jongsang Lee, Yong Chan Kim, Sunghak Lee. Correlation of the microstructureand mechanical of oxide-dispersion-strengthened coppers fabricated by internaloxidation. Metallurgical and Materials Transactions A, 2004, 35A:493-502
    
    [105] Mandal D. Baker I. On the effect of fine second-phase particles on primaryrecrystallization as a function, Acta Mater,1997,45(2):453-461
    
    [106] Meslet Al-Haijri, Aldo Melendez, Woods R, Srivatsan T S. Influence of heattreatment on tensile response of an oxide dispersion strengthened copper. Journalof Alloys and Compounds.1999,290:290-297.
    
    [107]张吟秋,雷长明,李美英.弥散强化铜棒材加工性能的研究.上海金属(有 色分册),1983,4(2):37
    
    [108]张吟秋,雷长明.复杂应力状态下良塑性弥散强化铜的冷变形行为.中南 矿冶学院学报,1985,44(2):59
    
    [109]张呤秋,雷长明,复杂应力状态下良塑性弥散强化铜的冷变形行为,中南 矿冶学院学报,1985,2:59-65
    
    [110]张呤秋,雷长明,李美英,弥散强化铜棒材加工性能的研究,上海金属(有 色分册),1983,4(2):38-41
    
    [111]万传琨.弥散强化铜的组织与性能.铜加工,1990,37(1):34-39
    
    [112]武建军,张学仁,蒋正行等.氧化铝颗粒增强铜基复合材料, 河北工业大??学学报,1996,25(3):62-66
    
    [113]秦荣泰.铜的内氧化弥散强化.铜加工,1996,62(2):30-36
    
    [114]律恕章.浅谈我国弥散铜的现状与展望,铜加工,1997,67(3):1-3
    
    [115]于艳梅,杨银仓,李华伦.内氧化制备Cu-Al_2O_3复合材料新工艺的研究.粉 末冶金技术,2000,18(4):252-256
    
    [116]程建奕,汪明朴,钟卫佳等.内氧化法制备的Cu-Al_2O_3合金的显微组织与 性能.材料热处理学报,2003,24(1):23-26.
    
    [117] Guo Mingxing, Wang Mingpu, et al. Comparison Study on Annealing Behavior of Dispersion Strengthened Copper Alloy with Different Nano-particles, Rare Metals, 2007,26 (5): 456-462
    
    [118]梁英教,车荫昌,刘晓霞.无机物热力学数据手册.沈阳:东北大学出版社, 1993:476.
    
    [119]吕映宾,马乃恒,王浩伟.TiB_2+SiC混杂颗粒增强的ZL109复合材料.中 国有色金属学报,2007,17(4):602-606
    
    [120]王鹏,马乃恒,李险峰.原位合成铝基复合材料中颗粒沉降的研究.特种 铸造及有色合金,2004,2:30-33
    
    [121] Tjong S C, Ma Z Y. Microstructure and mechanical characteristics of in situ metal matrix composites. Materials Science Engineering A, 2000, A29:49-113
    
    [122] Fan T, Zhang D, Yang G, et al. Fabrication of in situ Al_2O_3/Al composite via remelting. Journal of Materials Processing Technology, 2003,142:556-561
    
    [123]霍启明,张丽华,王冀恒,谢春生.液-液原位反应合成TiB_2/CuCrZr复合 材料的研究.特种铸造及有色合金,2007,27(4):297-299
    
    [124]闵光辉,王常春,于普涟.Cu-Zr合金基体中TiB_2的原位反应合成.复合材 料学报,2002,19(6):66-70
    
    [125] Chrysanthou A, Erbaccui G. Production of copper matrix composition by in situ processing. Journal of Materials Science, 1995, 30:6339-6340
    
    [126]王耐艳,徐江平,杨友志,等.原位反应TiB_2/Cu复合材料制备和微结构. 中国有色金属学报,2002,12(1):342-345
    
    [127]韩宝军,徐洲.铸造法制备MgO增强铜基复合材料的研究.特种铸造及有??色合金,2005,25(12):753-755
    
    [128] Fu H M, Wang H, Zhang H F, Hu Z Q. In situ TiB-reinforced Cu-based bulkmetallic glass composites. Scripta Materialia, 2006,54(11): 1961-1966
    
    [129]丁俭,赵乃勤,师春生,杜希文,朱新华.原为化学法制备纳米ZrO2/Cu复 合材料的研究,功能材料,2006,37(6):922-924
    
    [130]秦中平,李英华,刘峰海.高频感应加热设备输出功率的调节.新技术新 工艺,机械加工与自动化,2001,2:7-8
    
    [131]汤景明.感应电热设备的设计.工业加热,1997,3:47-51
    
    [132]常炳国,王华民.提高感应加热电源加热效率的一种方法.工业加热, 1998,6:4-7
    
    [133]窦国仁.紊流力学(上册),人民教育出版社,1981,p226
    
    [134]陈卓如.工程流体力学,高等教育出版社,1992
    
    [135]李国钧,湛柏琼.工程流体力学,华中理工大学出版社,1989
    
    [136]Albertson M L. Diffusion of Submerged Jets. Transactions ASCE, 1950,639-664
    
    [137] Busse P, Deuerler F, Potschke J. The Stability of the ODS Alloy CMSX6-Al_2O_3during Melting and Solidification under Low Gravity. Journal of Crystal Growth,1998, 193:413-425
    
    [138] Shangguan D, Ahuja S, Stefanescu D M. An Analytical Model for the Interaction between an Insoluble Particle and Advancing Solid/Liquid Interface. Metallurgical Transactions, 1992, 23A: 669-680
    
    [139] Kin S H, Lee D N. Annealing behavior of alumina dispersion-strengthened copper strips rolled under different conditions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33(6):1605-1616
    
    [140] Song Kexing, Xing Jiandong, Tian Baohong, Liu Ping, Dong Qi Ming. Influence of annealing treatment on properties and microstructures of alumina dispersion strengthened copper alloy. Transactions of Nonferrous Metals Society of China, 2005,15(1): 139-143
    
    [141] Mishkovichova M, Bestertsi M. Influence of particles on the recrystallization of dispersion strengthened metals. Poroshkovaya Metallurgiya, 1993,5:74-78
    
    [142]李红霞,田保红,林阳明,李士凯,刘平.内氧化法制备Al_2O_3/Cu复合材料 的再结晶行为.稀有金属材料与工程,2005,34(7):1039-1042
    
    [143] Mandal D, Baker I. On the effect of fine second-phase particles on primary recrystallization as a function of strain. Acta Mater 1997,45(2):453-461
    
    [144]李斌,许庆彦,李旭东,柳百成.搅拌铸造SiC_P/Al-7.0%Si复合材料的三维 微观组织模拟.金属学报,2006,42:875-881,
    
    [145]李斌,许庆彦,李旭东,柳百成.用颗粒推移模型模拟Al-Si/SiC_P复合材料 微观组织.金属学报,2005,41:1303-1308
    
    [146] Asthana R, Tewari S N. Review The Engulfment of foreign particles by a freezing interface. Journal of Materials science , 1993 , 28:5414-5425
    
    [147] Omenyi S N, Neumann A W. Thermodynamic aspects of particle engulfment by solidifying melts. Journal of APPL.PHYS.1976,47:3956-3962
    
    [148] Uhlman D R, Chalmers B, Jackson K A. Interaction between particles and a solid-liquid interface. Journal of APPL.PHYS, 1964,35:2986-2993
    
    [149] Doru M. Stefanescu, Avijit Moitra, Sedat Kacar A, Dhindaw Brij K. Theinfluence of buoyant forces and volume fraction of particles on the particle pushing /entrapment transition during directional solidification of Al/Graphite composites. Metallurgical Transaction, 1990,21 A; 231-239
    
    [150] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961, 7:453
    
    [151] Wagner C Z. Elektrochem. 1961,65:581
    
    [152] Ivan Anzel, Albert C. Kneissl, Alojz Krizman, et al. Dispersion strengthening of copper by interna oxidation of rapidly solidified Cu-RE alloys Part I : The microstructure and stability of rapidly solidified ribbons. Z. Metallkd, 2002, 94(2): 127-133
    
    [153]Calm R.W.材料科学与技术丛书-材料的变形与断裂。北京:科学出版社, 1999
    
    [154]冯端.金属物理学第三卷(金属力学性质).北京:科学出版社,2000.554
    
    [155]陈树川.金属物理性能,上海:上海交通大学出版社,1988.201-280
    
    [156]田莳,李秀臣,刘正.金属物理性能.北京:航天工业出版社.1993.27-47
    
    [157] Kurowski M, Kusnierz J, Grabianowski A, Bielanska E, Metallkd Z. Effect ofcombined forming methods on the properties of Al rods of circular cross-section,1998,89:573-79.
    
    [158] Kusnierz J, Kurowski M, Strain softening effects in texture and microstructureof torsioned pre-deformed Al rods, Z. Metallkd. 2002,93:1233-36.
    
    [159] Kurowski M, Kusnierz J, Bielanska E, in: Swiatkowski K.(Ed.), Proceedings ofthe 12th Conference of the Committee of Metallurgy of PAS "Metallurgy '98",AKAPIT, Krakow, 1998, p. 558(in Polish).
    
    [160] Kusnierz J, Kurowski M, Baliga W. Strain softening effects in microstructure oftwisted pre-deformed copper rods, Materials Chemistry and Physics, 2003,81:548-551
    
    [161] Beatty M F, Krishnaswamy S. A theory of stress-softening in incompressibleisotropic materials. J. Mech. Phys. Solids 2000 48, 1931 - 65.
    
    [162] Rasa Kazakeviciute-Makovska, Rimantas Kacianauskas, Modelling of stresssoftening in elastomeric materials: foundations of simple theories, MechanicsResearch Communications, 2004,31: 395 - 403
    
    [163] Thompson A W. Yield points during cyclic strain of a Cu-7.5%A1 alloy. PhysStatus Solidi, AAppl Res Sep 1974;25(1):85 - 91.
    
    [164] Ashby M F. In: Kelly A, Nicholson RB, editors. Strengthening methods incrystals. New York: Elsevier; 1971. p. 165.
    
    [165]Guo M X, Wang M P, Cao L F, Lei R S. Work softening characterization ofalumina dispersion strengthened copper alloys, Materials Characterization,2007,58: 928-935
    
    [166]郭明星,汪明朴,李周,等.原位复合法制备纳米粒子弥散强化铜合金研 究进展.机械工程材料,2005,29(4):1-3
    
    [167] Nagorka M S, Levi C G, Lucas G E. Novel oxide-dispersion-strengthened copper alloys from rapidly solidified precursors I: Microstructural development. Metallurgical and Materials Transaction A,1995,26A: 859-871.
    
    [168] Shi Ziyuan, Wang Deqing. Alumina particles in a copper matrix formed by aluminizing and internal oxidation. Journal of Materials Science Letters, 1998, 17:477-479.
    
    [169] Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31, Journal of Light Metals,2001(1):167-177
    
    [170] Jonas J J,Sellars C M,Tegart W J.McG. strength and structure under hot-working conditions [M].London:Iron and Steel Institute,1968.49-54
    
    [171]PoiRier J P,关德林译,晶体高温塑性变形,大连,大连理工大学出版社, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700