双原子复合填充Skutterudite化合物的制备与热电性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Skutterudite化合物由于具有大的载流子迁移率、高的电导率和较大的Seebeck系数,而作为一种新型的热电材料引起了人们极大的兴趣,但该化合物的热导率较高。如何在保持该化合物好的电传输特性的同时,大幅度降低其热导率、提高其热电性能是国内外关注的重要课题。通过单原子填充和双原子复合填充来增强对声子的散射、调整和优化电热输运特性是提高其热电性能的重要途径。理论研究表明:几种不同性质的原子复合填充时,填充原子对声子的散射作用可能比相同填充分数的单一原子所产生的散射作用更强,晶格热导率可能会降低得更多;此外多种原子复合填充时,与单一原子相比,可以在更宽的范围内调整和控制载流子的特性,从而可以在更宽的组成范围内调整和优化化合物的电传输特性。本论文以双原子复合填充的CoSb_3基化合物为研究对象,用熔融法结合放电等离子快速烧结技术制备出双原子复合填充的单相R_mM_nFe_xCo_(4-x)Sb_(12)(R和M为填充元素Ce、Ca、Ba、Sm等)化合物,研究了不同化合价、原子半径、原子质量的两种原子复合填充对其晶体结构和热电性能的影响。
     Rietveld结构解析表明:合成的R_mM_nFe_xCo_(4-x)Sb_(12)化合物具有填充式Skutterudite结构,与未填充的Skutterudite化合物相比,R_mM_nFe_xCo_(4-x)Sb_(12)化合物的Sb-Sb键长增加,说明外来原子填充进了Skutterudite化合物结构中的Sb二十面体空洞;两种原子复合填充时,无论是平均原子位移参数还是各自的位移参数都比它们单独填充时要大,而且远远大于框架原子Fe、Co、Sb的位移参数,说明填充原子在Sb二十面体空洞中具有扰动效应,并且两种原子复合填充时扰动效果更明显。
     拉曼光谱分析表明:与未填充Skutterudite化合物相比,R_mM_nFe_xCo_(4-x)Sb_(12)化合物的Sb原子四边形环的拉曼呼吸振动模峰位偏移并宽化。比较各试样拉曼峰的半高宽,可以发现填充Skutterudite化合物的谱线比未填充时宽、双原子填充又比单原子填充时宽,说明双原子填充比单原子填充的扰动对Skutterudite化合物晶格振动的影响更大。
     R_mM_nFe_xCo_(4-x)Sb_(12)化合物表面Sb_(3d)电子的窄区XPS谱线分析表明Sb原子化学状态复杂,分别与填充原子、Fe/Co、Sb、O成键;填充原子Ca_(2p)的窄区XPS谱线分析表明Ca在空洞中有两种化学状态,大部分Ca与Sb成键,少部分Ca离子化,这说明填充原子Ca离子化程度较小且主要占据空洞的角落。
     研究了两种填充原子化合价差、质量差、半径差对R_mM_nFe_xCo_(4-x)Sb_(12)化合物晶格热导率的影响,结果表明在R_mM_nFe_xCo_(4-x)Sb_(12)化合物中存在以下几种散射机制,并且对声子的散射作用依次减小。首先,填充原子的扰动对声子的散射是降低其晶格热导率的主要原因;其次,与两种原子的化合价差相比,每种填充原子自己本身的化合价波动更有利于降低化合物的晶格热导率;质量波动散射对晶格热导率的降低所起的作用比较小。据此,对于p型Skutterudite化合物来说,要想得到较低的晶格热导率,所选择填充原子必须同时具有以下特点:原子质量大、离子半径小、并且有几种变价。
     分别研究了Sm和Ce、Ba和Sm、Ca和Sm双原子复合填充对Skutterudite化合物热电性能的影响,结果表明:随着复合填充总量的增加,R_mM_nFe_xCo_(4-x)Sb_(12)化合物Seebeck系数增加、电导率和热导率降低;在填充总量相近的情况下,和单原子填充相比,双原子复合填充的Skutterudite化合物电导率较低、Seebeck系数较高、总热导率和晶格热导率更低;最佳双原子复合填充总量的范围较宽,比最佳单原子填充分数容易调控;在本研究中Ca和Sm复合填充的Ca_(0.15)Sm_(0.24)Fe_(1.51)Co_(2.48)Sb_(12)化合物的最大热电性能指数ZT_(max)值在775K时达0.85。
Skutterudite compounds,as a kind of new thermoelectric material,have drawn great attentions owing to large carrier mobility,high electrical conductivity and relatively great Seebeck coefficient.However,high thermal conductivity limits their application.Therefore,it is key problem as to how to significantly decrease the thermal conductivity of Skutterudite compounds with maintaining good electrical transport properties.The important routes to achieve high-performance skutterudite compounds are through single-atom-filling and double-atom-filling to enhance phonon scattering and optimize electron and phonon transport properties.The theoretical researches indicate that co-filling of atoms with different chemical properties can introduce much more intensive phonon scattering than single-atom-filling at the same filling amount.As a result,lattice thermal conductivity will be significantly reduced by double-atom-filling.Furthermore,compared with single-atom-filling,double-atom-filling can adjust and control carriers'transport properties on a larger scale,resulting in optimization of carriers' transport properties. In this thesis,single phase double-atom-filled R_mM_nFe_xCo_(4-x)Sb_(12)(R,M:Ce,Ca,Ba and Sm)compounds have been prepared by melting method combining with spark plasma sintering technique.The effects of two atoms'differences in valence states, atom radius,and atom mass on crystal structure and thermoelectric transport properties have been investigated.
     The Rietveld analysis show that R_mM_nFe_xCo_(4-x)Sb_(12)compounds possess filled skutterudite structure,and Sb-Sb bond length of R_mM_nFe_xCo_(4-x)Sb_(12)increases as compared with that of unfilled compound.It indicates that foreign atoms have filled into the Sb icosahedron cages in skutterudite structure.As to double-atom-filling R_mM_nFe_xCo_(4-x)Sb_(12),both average atomic displacement parameter(ADP)of R and M, and ADP of each filling atom are larger than those of individual filled by R or M. Furthermore,the ADPs of filling atoms are much larger than those of framework atoms Fe,Co and Sb.It shows that filling atoms introduce rattling effect in the Sb icosahedron cages,and rattling effect is more intensive especially for double-atomfilling.
     The Raman spectra analysis show that Sb_4 ring breathing modes in R_mM_nFe_xCo_(4-x)Sb_(12)shift and widen as compared with unfilled skutterudite.The more filling atoms are,the wider full width at half maximum of Raman peaks are.It can be concluded that the effect of rattling induced by double-atom-filling on lattice vibration of skutterudite compounds is more significantly than that of single-atom-filling.
     Sb_(3d)fitted XPS spectra of R_mM_nFe_xCo_(4-x)Sb_(12)compounds show that the chemical states of Sb atom are complicated.It bonds with filled atoms,Fe/Co,Sb and O, respectively.The narrow XPS spectrum of filled atom Ca_(2p)shows that Ca atoms have two chemical states in the cage.Most Ca atom bond with Sb atom,and the rest transform into Ca~(2+)ions.It means that filling atom Ca is hard to form ions and mostly occupies the cages'corner.
     The effects of different valences,masses and radiuses of filling atoms on lattice thermal conductivity have been investigated.The results indicate that there are three kinds of scattering mechanisms in the R_mM_nFe_xCo_(4-x)Sb_(12)compounds.Firstly,the phonon scattering caused by the rattling of filling atoms is the major factor for the decrease of lattice thermal conductivity;secondly,compared with the valence difference of R and M,the self-valence fluctuation of each filling atom(R or M)is more beneficial to the decrease of lattice thermal conductivity.Furthermore,the mass-fluctuation scattering is the minimum factor in all scattering mechanisms. Therefore,as to obtain p-type skutterudite compounds with low lattice thermal conductivity,the filling atoms should possess large mass,small ion radius and several valences.
     It has been investigated how the co-filling of Sm-Ce,Ba-Sm,and Ca-Sm affect the thermoelectric properties of skutterudites.With the increase of co-filling amount, the Seebeck coefficient increases,and electrical conductivity and thermal conductivity decrease.When the filling amount are similar,as to the double-atom-filled skutterudite,the electrical conductivity is smaller,seebeck coefficient is higher,and thermal conductivity and lattice thermal conductivity are much lower than those of single-atom-filled skutterudites.The optimism amount of double-atom-filling is wider and easier to adjust than that of single-atom-filling.A maximum dimensionless figure of merit ZT reaches 0.85 at 775 K for Ca_(0.15)Sm_(0.24)Fe_(1.51)Co_(2.48)Sb_(12)compound.
引文
[1]Fettig R.A view to recent development in thermoelectric sensors.Proc.15th Int.Conf.on Thermoelectrics.IEEE,1996:315-320.
    [2]Disalvo F J.Thermoelectric cooling and power generation.Science,1999,285(5428):703-706.
    [3]Sales B C.Thermoelectric materials-Smaller is cooler.Science,2002,295(5558):1248-1249.
    [4]钟广学.半导体制冷器件及其应用.科学出版社.1989:16-20.
    [5]张景韶,李绍莲,姜烈汉,高敏.温差电器件低温余热发电的实验研究.新能源,1996,18(6):11-16.
    [6]Vedemikov M V,Iordanishvili E K and Ioffe A F.Origin of modem semiconductor thermo-electric energy coversion.Proc.17th Int.Conf.on Thermoelectrics.IEEE,1998:37-42.
    [7]Skrabeck E.A.and Trimmer D S.Thermoelectric Handbook.Edited by D M Rowe(CRC.Boca Raton,F1).1995.
    [8]Heikes and Ure R W.Thermoeletricity:Science and Engineering,Interscience Publishers,NY 1961:105-110.
    [9]Nolas G S,Sharp J,Goldsmidi H J.Thermoelectrics:Basic Principles and New Materials Developments.Springer,2001.
    [10]Cadoff J B and Miller E.Thermoelectric Material and Device.New York:Reinhold Publ Corp.1961,84-92.
    [11]Rowe D M and Bhandari C M.Modem Thermoelectrics.Reston Publishing company.Inc.VA,1983.
    [12]黄昆原著,韩汝琦改编.固体物理学.高等教育出版社.1998.
    [13]Ioffe A E Semiconductor thermoelements and thermoelectric cooling.Infosearch Ltd.London,1957.
    [14]Caillat and Thierry.Preparation and some properties of N-Type Ir_xCo_(1-x)Sb_3 solid solutions.NASA Technical Reports Server.NASA Center:Jet Propulsion Laboratory.1995.
    [15]Nolas G S,Slack G A,Cohn J L and Schujman S B.The next generation of thermoelectric materials.Proc.17th Int.Conf.on Thermoelectrics.IEEE,1998.
    [16]Kishimoto K and Koyanagi T.Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties.J.Appl.Phys.,2002,92(5):2544-2549.
    [17]Anno H,Hatada K,Shimizu H.Structure and Electric Transport Properties of Polycrystalline p-type CoSb3.J Appl.Phys.,1998,83(10):5270-5276.
    [18]Muhammet S.Topral,Christian Stiewe,Dieter Plazek,et al.The Impact of Nanostructuring on the Thermal Conductivity of Thermoelectric CoSb_3,Advanced.Func.Mater.,14(12),2004,1189-1196.
    [19]Yu Bolin,Tang Xingfeng,Qi Qiong,et al.Preparation and Thermal Transport Properties of CoSb_3 compound.Acta Phys.Sinica,53(9),2004:3130-3135.
    [20]Muhammet S.Topral,Christian Stiewe,Dieter Plazek,et al.The Impact of Nanostructuring on the Thermal Conducitivity of Thermoelectric CoSb_3, Advanced. Function. Materials, 2004, 14(12): 2004, 1189-1196.
    [21] Joshua R. Williams, Arwyn L. E. Smalley, Heike Sellinschegg, et al. Synthesis of Crystalline Skutterudite Superlattices Using the Modulated Elemental Reactant Method, J. Am. Chem. Soc, 2003, 125, 10335-10341.
    [22] Savchuk V, Boulouz A and Chakraborty S et al. Transport and Structural Properties of Binary Skutterudite CoSb_3 Thin Films Grown by dc Magnetron Sputtering Technique, J Appl. Phys., 92( 9), 2002, 5319-5326.
    [23] Slack G A. In CRC Handbook of Thermoelectrics, Ed by D. M. Rowe, CRC Press, Boca Raton, 1995:407-440.
    [24] Hicks L D and Dresselhaus M S. Effect of Quantum-well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B., 47, 1993:12727
    [25] Harman T C, Taylor P J, Spears D L and Walsh M P. Thermoelectric quantum dot s uperlattices with high ZT. J. Electron. Mater., 2000, 29: L1-L4.
    [26] Chen G. Phonon heat conduction in low-dimensional structures. Semicond. Semimet, 2001, 71:2001:203-259.
    [27] Venkatasubramanian R, Silvola E and Colpitts T et al. Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit. Nature., 2001,413: 597.
    [28] Venkatasubramanian R. Lattice Thermal Conductivity Reduction and Phonon Localizationlike Behavior in Superlattice Structures. Phys. Rev. B., 61, 2000: 3091-3097.
    [29] Kasper J S, Hagenmuller P, Pouchard M and Cros C. Clathrate structure of silicon Na_8Si_(46) and Na_xSi_(36) (x < 11). Science, 150,1713-1714(1965).
    [30] Nolas D S. Semiconductor clathrates: A PGEC system with potential for thermoelectric applications. Materials Research Society Symposium-Proceedings. 1999, 545:435-4425.
    [31] Noals G S, Cohn J L and Nelson E. Transport properties of tin clathrates. 18th International Conference on Thermoelectrics. Baltimore, MD, USA: IEEE, Piscataway, NJ, USA. 1999 493-495.
    [32] Iversen B B, Palmqvist A E C and Cox D E, Nolas G S, Sducky G D, Blake N P and Metiu H. Why are clathrates good candidates for thermoelectrice materials. Journal of Solid State Chemistry, 2000, 149(2):455-458.
    [33] Goldsmid H J and Nolas G S. A review of the new thermoelectric materials. 20th International Conference on themoelectrics. Beijing, 2001, 1-6.
    [34] Meng J F, Chandra Shekar N V, Badding J V and Nolas G S. Threefold enhancement of the thermoelectric figure of merit for pressure tuned Sr_8Ga_(16)Ge_(30). J. Appl. Phys. 2001, 89(03): 1730-1733.
    [35] Saramat A, Svensson G, Palmpvist A E C, Stiewe C, Mueller E, Platzek D, Williams SGK, Rowe D M, Bryan J D and Stucky G D. Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba_8Ga_(16)Ge_(30). J. Appl. Phys., 2006, 99(2): 02378.
    [36] Kim J H, Okamoto N L, Kishida K, Tanaka K and Inui H. High thermoelectric performance of type-Ill clathrate compounds of the Ba-Ge-Ga system. Acta Materialia., 2006, 54(8): 2057-2062.
    [37]Palmpvist A E C,Iversen B B,Furenlid L R,Nolas G S,Bryan D,Latturner S and Stucky G D.Charge transfer and local structure in thermoelectric germanium clathrates.Boston,MA,USA:Materials Research Society Warrendale,PA,USA.2000:51-56.
    [38]Nolas G S,Cohn J L,Kaeser M and Tritt T M.Thermal conductivity of type Ⅰ and Ⅱ clathrate compounds.Sydney,NSW:Institute of Electrical and Electricfal and Electronics Engineers Inc.2001:1311-1316.
    [39]Hermann R F W,Tanigaki K,Kawaguchi T,Kuroshima S and Zhou O.Electronic structure of Si and Ge gold-doped clathrates.Physical Review B,1999,60(19):13245.
    [40]Huo D X,Sasakawa T,Muro Y and Takabatake T.Thermoelectric properties of a clathrate compound Ba_8Cu_(16)P_(30).Applied Physics Letters,2003,82(16):2640-2640.
    [41]Kuznetsov V L,Kuznetsova L A,Kaliazin A E and Rowe D M Preparation and thermoelectric properties of A_8~Ⅱ B_(16)~Ⅱ B_(30)~Ⅲ clathrate compounds Journal of Applied Physics,2000,87(11):7871-7875.
    [42]Avila M A,Suekuni K,Umeo K and Tananka K Carrier-tuning of single-crystalline Ba_8Ga_(16)Ge_(30).Physica B:Condensed Matter,2006,383(1):124-125.
    [43]Latturner S,Bu X,Blake N,Metiu H and Stucky G.Gallium antimonide-doped Germnium clathrate-a p-type thermoelectric cage structure.Journal of Soled State Chemistry,2000,151(1):61-64.
    [44]Matsui T,Furukawa J,Tsudamoto K,Tsuda H and Morii K Structure and properties of Ba_8 Ga_(16)Ge_(30)clathrates by a novel synthesis method using CO gas reductive atmolphere.Journal of Alloys and Compounds,2005,391(1-2):284-287.
    [45]Kishimoto K,Akai K,Muraoka N,Koyangai T and Matsuura M.Synthesis and thermoelectric properties of type-Ⅰ clathrate Ge_(30)P_(16)Te_8.Applied Physics Letters,2006,89(17):172106.
    [46]Deng Shukang,Tang Xinfeng and Qingjie Zhang.Synthesis and thermoelectric properties of p-type Ba_8Ga_(16)Zn_xGe_(30-x)type-Ⅰ clathrates.Journal of Applied Physics,2007,102:043702.
    [47]Deng Shukang,Tang Xinfeng and Qingjie Zhang.High temperature thermoelectric transport properties of p-type Ba_8Ga_(16)Al_xGe_(30-x)type-Ⅰ clathrates with high performance.J.Appl.Phys.,103(2008):073503.
    [48]Kim S G,Mazin Ⅱ and Singh D J.First-principles study of Zn-Sb thermoelectrics.Phys Rev B,1998,57:6199-6203.
    [49]朱铁军,赵新兵,酬淑红等.新型热电材料Zn_4Te_3的电学性能.稀有金属材料与工程,2001.30:187-189.
    [50]Snyder G J,Christensen M and Nishibori E et al.Disordered zinc in Zn_4Sb_3 with phonon-glass and electron-crystal thermoelectric properties.Nature Materials,2004,3(7):458-463.
    [51]Callat T,Fleurial J P and Borshchevsky A.Preparation and thermoelectric properties of semconducting Zn_4Te_3.J.Phys.Chem.Solids.,1999,58:119-125.
    [52]Caillat T,Fleurial J P and Borahchevsky.A preparation and thermoelectric properties of semiconducting Zn_4Sb_3.J.Phy.Chem.Solids.,1997,58(7):1119.
    [53]Caillat T.High performance p-type thermoelectric materials and methods of preparation.United States Patent 6942728.US Patent Issued on September,13,2005.
    [54]Caillat T,Fleurial J P.Zn-Sb alloys for thermoelectric power generation Proc.15th Int.Conf.on Thermoelectrics.IEEE,1996:905-909.
    [55]祁琼,唐新峰,熊聪,赵文俞,张清杰.过量Zn对β-Zn_4Sb_3热电性能的影响.物理学报,2006,55(10):5539-06.
    [56]Cook B A,Harringa J L,Tan Z S and Jesser W A.TiNiSn:a gateway to the intermetallic compounds.Proc.15th Int.Conf.on Thermoelectrics.IEEE.1996:122-127.
    [57]Uher C,Yang J,Hu S,Morelli D T and Meisner G P.Transport properties of pure and doped MNiSn(M=Zr,Hf).Phys.Rev.B,1999,59(13):8615-8621.
    [58]Hohl H,Ramirez A P,Goldmann C,Ernst G,Woelfing B and Bucher E.Substitution Effect on Thermoelectric Properties of ZrNiSn Based Half-Heusler Compounds.J Phys.:Condens.Matter.,1999,11(7):1697-1709.
    [59]Shen Q,Chen L,Goto T Hirai,Yang J,Meisner G P and Uher C.Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds.Appl.Phys.Lett.,2001,79(25):4165-4168.
    [60]Sakurada A,Shutoh N.Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds.Appl.Phys.Lett.,2005,86(8):082105.
    [61]Mahan G D.Good Thermoelectrics.Sokid State Phys.1998,51(chap 2):81-157.
    [62]Kanatzidis M G.The Role of Solid State Chemistry in.the Discovery of New Thermoelectric Materials.Semicond.Semimet.,2001,69:51-100.
    [63]Chung D Y,Hogan T P and Rocci M et al.A new thermoelectric material:CsBi4Te6.Journal of American Chemistry Society,2004,126(20):6414-6428.
    [64]Terasaki I,Sasago Y and Uchinokura K.Large thermoelectric power in NaCo_2O_4 single crystals.Phys.Rev.B,1997,56(20):R12685.
    [65]Ito M,Nagira T and Furumoto D et al.Synthesis of Na_xCo_2O_4 thermoelectric oxides by the polymerized complex method.Scripta Materialia,2003,48(4):403-408.
    [66]Yakabe H,Fujita K and Nakamura K et al.Thermoelectric properties of Na_xCo_2O_4(x approximately equals 0.5)system.17~(th)International Conference on Thermoelectrics Nagoya Jpn.IEEE Piscataway NJ USA.1998:551-558.
    [67]Shin W.Highperformance P-type thermoelectric oxide based on NiO.Materials Letters,2000,45(06):302-306.
    [68]Shin W,Murayama N and Ikeda K.Thermoelectric power genration using Li-doped NiO and (Ba,Sr)PbO_3 module.Journal of Power Sources,2003,103(01):80-85.
    [69]Li S,Funahashi R,Matsubara I and Yamada H et al.Synthesis and thermoelectric properties of the new oxide ceramics Ca_(3-x)Sr_xCo_4O_9(x=0.0-0.1).Ceramics International,2001,27(03):321-324.
    [70]闫万珺,谢泉,张晋敏,肖消泉,梁艳,曾武贤.铁硅化合物β-FeSi_2带间光学跃迁的理论研究.半导体学报,2007,28(09):1381-1387.
    [71]Schackenberg K,Muller E and Schilz J et al.Ageing Properties of Thermally Sprayed Iron Disilicide.16~(th)Inter Conf on Thermoelectrics.IEEE,1997:307-310.
    [72]Schackenberg K,Muller E and Schilz J et al.Carrier Density Behavior during Ageing of Doped Plasma Spray Formed Iron Disilicide.17~(th)Inter Conf on Thermoelectrics.IEEE.1998:422-425.
    [73]Okada S,Shishido T and Ogawa M et al.MnSi and MnSi_(2-x)Single Crystals Growth by Ga Flux Method and Properties.J.Crys.Grow.,2001,229(1):532-536.
    [74]Cahill D G,Watson S K and Pohl R O.Lower limit to the thermal conductivity of disordered crystals.Phys.Rev.B,1992,46:6131-6140.
    [75]Fleurial J P,Caillat T and Borshchevsky A.Skutterudites:An update.16~(th)Inter.Conf.on Thermoelectrics IEEE,1997:1-11.
    [76]Morelli D T,Caillat T and Fleurial J P et al.Low-temperature transport properties of p-type CoSb_3.Phys.Rev.B,1995,51(15):9622-9628.
    [77]Watcharapasorn A,Demattei R C and Feigelson R S et al.Preparation and yhermoelectric properties of some phosphide skuterudite compounds.J.Appl.Phys.,1999,86(11):6213-6217
    [78]Slack G A and Tsoukala V G.Some properties of semiconducting IrSb_3.J.Appl.Phys.1994,76(10):1665-1671.
    [79]Caillat T,Fleurial J P and Borshchevsky A.Bridgman-solution crystal grown and characterization of the skutterudite compounds CoSb_3 and RhSb_3.J.Crys.Growth,1996,166(1):722-726.
    [80]Mandel N and Donohue J.The refinement of the crystal structure of skutterudite CoAs_3.Acta Cryst.,1971,B27:2288-2289
    [81]Anno H,Hatada K and Shimizu H et al.Structure and electronic transport properties of polycrystalline p-type CoSb_3.J.Appl.Phys.,1998,83(10):5270-5276.
    [82]Ackermann J and Wold A.The preparation and characterization of the cobalt skutterudites CoP_3,CoAs_3 and CoSb_3.J.Phys.Chem.Solids.,1997,38:1013-1016.
    [83]Anno H,Matsubara K,Caillat T and Fleurial J P.Valence-band structure of the skutterudite compounds CoAs_3,CoSb_3 and RhSb_3 studied by x-ray photoelectron spectroscopy.Phys.Rev.B,2000,62(1.6):10737-10743.
    [84]Bhandari C M and Rowe D M.Thermal Conduction in Semiconductors.New Delhi:WileyEastern Limited.1998.
    [85]唐新峰,陈立东,後藤孝等.Skutterudite化合物Fe_xCo_(4-x)Sb_(12)的固相反应合成及热电特性.物理学报,2000,49(06):1120-04.
    [86]Chen W,Dyck J S,Uher C et al.Low temperature thermoelectric properties of Ni doped n-type filled Skutterudites.20~(th)Inter Confer on Thermoelectric.IEEE,2001:69-72.
    [87]Anno H,Nagamoto Y,Ashida K et al.Effect of on thermoelectric properties of Co_(1-x)M_xSb_3(M=Pd,Pt)skutterudites.19~(th)Int.Conf.on Thermoelectric.IEEE,2000:130-137.
    [88]Caillat T,Borshchevsky A and Fleurial J P.Synthesis of Ir_(1-x-y)Rh_xCo_ySb_3 Semiconductors NASA Technical Reports Server.1994,Sep.1.
    [89]Caillat T.Preparation and some properties of Ir_xCo_(1-x)Sb_3 solid solutions.JPL Technical Reports Server.1995,Sep.
    [90]Navratil J,Plechaek T,Benes L and Vlek M.Some transport properties of CoGe_(1.5)Te_(1.5). Chalcogenide Letters,2004,1(06):73-77.
    [91]Koyanagi T,Tsubouchi T,Ohtani M,Kishimoto K,Anno H and Matsubam K.Thermoelectric properties of Co(M_xSb_(1-x))_3(M=Ge,Sn,Pb)Compounds.15th International Conference on Thermoelectrics.IEEE,1996:107-111.
    [92]Morelli D T and Meisner G.P.Low temperature properties of the filled skutterudite CeFe_4Sb_(12).J.Appl.Phys.,1995,77(08):3777-3779.
    [93]Nolas G S,Cohn J L and Cohn J L.Expanding the investigation of the thermoelectric properties of rare-earth-filled Skutterudites.16~(th)International Conference on Thermoelectrics IEEE,1997:321-325.
    [94]Tang X F,Chen L D andGoto T et al.Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich Ce_yFe_xCo_(4-x)Sb_(12).J.Mater.Res.,2001,16(3):837-843.
    [95]Anno H,Hatada K and Shimizu H.Structure and electric transport properties of polycrystalline p-type CoSb3.J Appl.Phys.,1998,83(10):5270-5276
    [96]Toprak M S,Stiewe C and Platzek D et al.The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb_3.Advhnced.Func.Mater.,2004,14(12):1189-1196.
    [97]余柏林,唐新峰,祁琼,张清杰.CoSb_3纳米热电材料的制备及热电传输性能.物理学报,2004,53(9):3130-3135.
    [98]Williams J R,Smalley A L E and Sellinschegg H et al.Synthesis of Crystalline skutterudite superlattices using the modulated elemental reactant method.J.Am.Chem.Soc.,2003,125(34):10335-10341.
    [99]Savchuk V,Boulouz A and Chakraborty S et al.Transport and structural properties of binary skutterudite CoSb_3 thin films grown by dc magnetron sputtering technique.J Appl.Phys.,2002,92(9):5319-5326.
    [100]史迅,陈立东,柏胜强,唐新峰.CoSb_3/C_(60)复合材料的固相反应合成和热电性能.物理学报,2004,53(05):1469-1473.
    [101]罗派峰,唐新峰,熊聪,张清杰.多壁碳纳米管对p型Ba_(0.3)FeCo_3Sb_(12)化合物热电性能的影响.物理学报,2005,54(05):2403-2408.
    [102]Zhao X Y,Shi X and Chen L D et al.Synthesis of Yb_1Co_4Sb_(12)/Yb_2O_3 composites and their thermoelectric properties.Appl.Phys.Lett.,2006,89(09):092121.
    [103]Nolas G S,Cohn J L and Slack G A.Effect of partial void filling on the lattice thermal conductivity of skutterudites.Phys.Rev.B,1998,58(01):164-170.
    [104]Morelli D T,Meisner G P and Uher C.Cerium filling and doping of cobalt triantimonide Phys.Rev.B,1997,56(12):7376-7383.
    [105]Lamberton G A,Jr.,Bhattacharya S and Nolas G S.High figure of merit in Eu-filled CoSb_3-based skutterudites.Appl.Phys.Lett.,2002,80(04):598-560.
    [106]Dilley N R,Bauer E D and Sales B C.Thermoelectric properties of chemically substituted skutterudites Yb_1Co_4Sn_xSb_(12-x)J.Appl.Phys.,2000,88(04):1948.
    [107]Sales B C,Chakoumakos B C and Mandrus D.Thermoelectric properties of thallium-filled skutterudites.Phys.Rev.B,2000,61(04):2475-2481.
    [108]Kuzenetsov V L,Kuznetsova L A and Rowe D M.Effect of partial void filling on the transport properties of Nd_xCo_4Sb_(12)skutterudites.J.Phys.:Condens.Matter.,2003,15: 5035-5048.
    [109]Chen L D.Recent advances in filled skutterudites systems.21~(th)International Conference on Thermoelectronics.IEEE,2002:42-47.
    [110]Puyet M,Lenoir B and Dauscher A et al.Synthesis and thermoelectric properties of new partially filled Ca_xCo_4Sb_(12)skutterudites.22~(th)lntcmational Conference on thermoelectrics IEEE,2003:56-59.
    [111]Zhao X Y,Shi X and Chen L D et al.Synthesis and thermoelectric properties of Sr-filled skutterudite Sr_yCo_4Sb_(12).J.Appl.Phys.,2006,95(05):053711.
    [112]Takizawa H,Ito M and Uheda K.Synthesis and thermoelectric properties of Tin-filled skutterudite Sn_xCo_4Sb_(12).Journal of the Ceramic Society of Japan,2000,108(1258):530-534.
    [113]Shi X,Zhang W and Chen L D et al.Filling fraction limit for intrinsic voids in crystals:Doping in skutterudites.Phys.Rev.Lett.,2005,95:185503.
    [114]唐新峰,陈立东,後藤孝等.Ce填充分数对p型Ce_yFe_(1.5)Co_(2.5)Sb_(12)化合物热电性能传输特性的影响.物理学报,2000,49(12):2460-2465.
    [115]罗派峰,唐新峰,余柏林.p型方钴矿化合物Ba_yFeCo_3Sb_(12)的热电性能研究.半导体技术,2005,30(02):13-16.
    [116]Berardan D,Godart C and Alleno E et al.Chemical properties and thermopower of the new series of skutterudite Ce_(1-p)Yb_pFe_4Sb_(12).J.Alloys and comp.,2003,351(02):18-23.
    [117]Nolas G S,Harris V G and Tritt T M.Low-temperature transport properties of the mixed-valence semiconductor Ru_(0.5)Pd_(0.5)Sb_3.J.Appl.Phys.,1996,80(11):6304-6308.
    [118]Yang J,Morelli D T and Uher C et al.Effect of Sn substituting for Sb on the low-temperature transport properties of ytterbium-filled skutterudites.Phys.Rev.B,2003,67(16):165207.
    [119]Hermann R P,Grandjean F and Long G J.Eeinstein osdillators that impede the thermal transport.Am.J.Phys.,2005,73(2):110-118.
    [120]Hermann R P,Jin R Y and Sales B C et al.Einstein oscillators in Thallium filled antimony skutterudites.Phys.Rev.Lett.,2003,90(13):135505.
    [121]Sales B C,Mandrus D,Chakoumakos B C,Keppens V and Thompson J R.Electron crystals and filled skutterudite antimonides:phonon glasses.Phys.Rev.B,1997,56(23):15081-15089.
    [122]唐新峰,隙立东,後藤孝,平井敏雄,袁润章.填充式skutterudite化合物:Ba_yFe_xCo_(4-x)Sb_(12)的多步固相反应合成利结构.物理学报,2000,49(11):2196-2200.
    [123]Tang X F,Chen L D and Takashi G et al.Solid state reaction synthesis of filled skutterudite compounds(Ce or Y)FeCoSb and the effect of filling atoms Ce or Y on lattice thermal conductivity.Science in China(series B),2000 43(03):306-312.
    [124]Meisner G P,Morelli D T and Uher C et al.Structure and lattice thermal conductivity of fractionally filled skutterudites:Solid solutions of fully filled and unfilled members.Phys.Rev.Lett.,1998,80(16):3551-3554.
    [125]Chen B,Xu J and Uher C et al.Low-temperature transport properties of the filled skutterudites CeFe_(4-x)Co_xSb_(12).Phys.Rev.B,1997,55(03):1476-1480.
    [126] Fleurial J P, Borshchevsky A and Caillat T. High figure of merit in Ce-filled skutterudites. 15th International Conference on Thermoelectrics. IEEE, 1996: 91-95.
    [127] Tang X F, Zhang L M and Yuan R Z et al. High-temperature thermoelectric properties of n-type Ba_yNi_xCo_(4-x)Sb_(12). J. Mater. Res., 2001, 16(12):3343-3346.
    [128] He T, Chen J Z and Subramanian DR et al. Thermoelectric properties of Indium-filled skutterudites. Chem. Mater., 2006, 18(03):759-762.
    [129] Sales B C, Mandrus D, Williams R K. Filled skutteudite antimonides: a new class of thermoelectric materials. Science, 1996, 272(5266): 1325-1328.
    [130] Kim S W, Kimura Y and Mishima Y. Effect of partial La filling on high-temperature thermoelectric properties of IrSb3-based skutterudite compounds. Journal of Electronic Materials, 2004, 33(10): 1156-1160.
    [131] Da Ros V, Lenoir B and Dauscher A. Thermoelectric properties of Nd_xCo_(4-y)Ni_ySb_(12) skutterudite compounds. International Conference on Thermoelectrics. IEEE, 2006: 155-158.
    [132] Tedstrom R H, Lamberton G A, Tritt T M and Nolas G S. High-temperature electrical transport properties of Eu and Yb-doped skutterudites. Materials Research Society symposium proceeding. 2002, 691: 221-226.
    [133] Anno H, Ashida K and Matsubara K. Effect of Yb filling on thermoelectric p roperties of CoMSb (M=Pd/Pt) skutterudites. ICT 2000: Technical Programme
    [134] Anno H, Nolas G S and Akai K. et al. Electronic structure of Yb-filled CoSb_3 skutterudites studied by x-ray photoelectron spectroscopy. 20th International Conference on Thermoelectrics. IEEE, 2001: 61-64.
    [135] Anno H, Nagao J and Matsubara K. Electronic and Thermoelectric Properties of Yb_yFe_(4-x)Ni_xSb_(12) Filled Skutterudites. 21th International Conference on Thermoelectronics. IEEE, 2002: 56-59.
    [136] Anno H and Matsubara K. Effect of Filling Fraction on Thermoelectric Properties of Yb_yFe_(4-x)Ni_xSb_(12) Compounds. Trans Mater Res Soc Jpn, 2004, 29(06): 2837-2840.
    [137] Mori H, Anno H and Matsubara K. Effect of Yb Filling on Thermoelectric Properties of Ge-Substituted CoSb_3 Skutterudites. Mater Trans., 2005, 46(07): 1476-1480.
    [138] 宋波, 唐新峰, 李涵等. p型Y_yFe_xCo_(4-x)Sb_(12)化合物的热电性能. 功能材料, 2005, 36(01): 57-59.
    [139] Tang X F, Song B and Zhang Q J. Effect of Y filling fraction on thermoelectric properties of p-type Y_yFe_xCo_(4-x)Sb_(12). Journal of Wuhan University of Technology-Mater.Sci. 2006, 21(04): 64-67.
    
    [140] Sales B C. Filled skutterudites. Handbook on the Physics and Chemistry of the Rare Earths.
     [141] Sellinschegg H, Johnson D C, Nolas G S and Slack G A. A Novel Approach to Thermoelectrics Materials Research of Skutterudites. 17th International Conference on Thermoelectrics. IEEE, 1998: 338-341.
    [141] Puyet M, Lenoir B and Dauscher A et al. High temperature transport properties of partially filled Ca_xCo_4Sb_(12) skutterudites. J. Appl. Phys., 2004, 95(09): 4852-4854.
    [142] Puyet M, Lenoir B and Dauscher A et al. Beneficial effect of Ni substitution on the thermoelectric properties in partially filled Ca_yCo_(4-x)Ni_xSb_(12)skutterudites.J.Appl.Phys.,2005,97(08):083712.
    [143]Puyet M,Dauscher A and Lenoir B et al.Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites Ca_yCo_(4-x)Ni_xSb_(12).Phys.Rev.B,2007,75(01):245110.
    [144]唐新峰,隙立东,後藤孝,平井敏雄,袁润章.p型Ba_yFe_xCo_(4-x)Sb_(12)化合物的热电性能.物理学报,2001,50(08):156-162.
    [145]Chen L D,Kawahara T andTang X F et al.Anomalous barium filling fraction and n-type thermoelectric performance of Ba_yCo_4Sb_(12).J.Appl.Phys.,2001,90(04):1864-1868.
    [146]Dyck J S,Chen L D and Uher C et al.Thermoelectric properties of the n-type filled skutterudite Ba_(0.3)Co_4Sb_(12)doped with Ni.J.Appl.Phys.,2002,91(06):3698-3705.
    [147]Tang X F,Chen L D and Zhang L M et al.Effect of Ba Filling Fraction on Thermoelectric Properties of p-type Ba_yFe_(1.6)Co_(2.4)Sb_(12).J.Wuhan Univ.of Tech.,Mater.Sci.Edition,2002,17(03):8-12.
    [148]Tang X F,Chen L D and Goto T.Synthesis and thermoelectric properties of p-type barium-filled skutterudite Ba_yFe_xCo_(4-x)Sb_(12).J.Mater.Res.,2002,17(11):2953-2959.
    [149]唐新峰,隙立东,後藤孝,平井敏雄,袁润章.n型Ba_yNi_xCo_(4-x)Sb_(12)化合物热电性能物理学报,2002,51(12):2823-2828.
    [150]Nolas G S,Takizawa H and Endo T et al.Thermoelectric properties of Sn-filled skutterudites.Appl.Phys.Lett.,2000,77(01):52.
    [151]He T,Chen J Z and Subramanian M A.Thermoelectric properties of Indium-filled skutteruidtes.Chem.Mater.,2006,18(03):759-762.
    [152]Chakoumakos B C and Sales B C.Skutterudites:Their structural response to filling.Journal of Alloys and Compounds,2006,407(1-2):87-93.
    [153]Okazaki K,Takizawa H and Uheda K.High pressure synthesis and crystal structure of filled-skutterudite n-type M_xCo_4Sb_(12)(M=Ge,Sn,Pb).Program and Abstracts of Papers.High Pressure Conference of Japan.1998,39(01):52.
    [154]Nolas G S,Kendziora C A and Takizawa H.Polarized raman-scattering study of Ge and Sn filled CoSb3.J.Appl.Phys.,2003,94(12):7440-7444.
    [155]Takizawa H,Okazaki K,and Uheda K et al.High pressure synthesis and thermoelectric properties of CoSb3-based filled Skutterudites.Review of High Pressure Science and Technology,2006,16(04):322-328.
    [156]Berardan D,Alleno E and Godart C et al.Improved thermoelectric properties in double-filled skutterudites Ce_(y/2)Yb_(y/2)Fe_(4-x)(Co/Ni)_xSb_(12).J.Appl.Phys.,2005,98(03):033710.
    [157]李涵,唐新峰,刘桃香,宋晨,张清杰.Ca和Ce双原子复合填充p型 Ca_mCe_nFe_xCo_(4-x)Sb_(12)化合物的合成及热电性能.物理学报,2005,54(11):5481-5486.
    [158]Tang X F,Li H and Zhang Q J et al.Synthesis and thermoelectric properties of double-atom-filled skutterudite compounds Ca_mCe_nFe_xCo_(4-x)Sb_(12).J.Appl.Phys.,2006,100(12):123702.
    [159]李涵,唐新峰,赵文俞,张清杰.双原子填充式skutterudite化合物的结构及X射线 光电子能谱分析.物理学报,2006,55(12):6506-6510.
    [160]Zhao W Y,Dong C L and Zhang Q J et al.Synthesis and high temperature transport properties of barium and indium double-filled skutterudites Ba_xIn_yCo_4Sb_(12-z).J.Appl.Phys.,2007,102(11):113708.
    [161]Nolas G S,Slak G A,Caillat T and Meisner G P.Raman scattering study of antimony-based skutterudites.J.Appl.Phys.,1996,79(5):2622-2626.
    [162]Nolas G S and Kendziora C A.Raman spectroscopy investigation of lanthanide-filled and unfilled skutterudites.Phys.Rev.B,1999,59(9):6189-6192.
    [163]Nolas G S,Kendziora C A and Takizawa Hirotsugu.Polariaed Raman-scattering study of Ge and Sn-filled CoSb_3.J.Appl.Phys.,2003,94(12):7440-7444.
    [164]Noals G S,Slack G A and Morelli D.The effect of rare-earth filling on the lattice thermal conductivity of skutterudites.J.Appl.Phys.,1996,79(08):4002-4007.
    [165]Stetson N T,Kauzlarich S M and Hakon H.The synthesis and structure of two filled skutterudite compounds:BaFe_4Sb_(12)and BaRu_4Sb_(12).Journal of solid state chemistry,1991,91:140-147.
    [166]Schmidt T,Kliche G and Lutzstructure H D.Structure refinement of skutterudite-type cobalt triantimonide,CoSb_3.Acta Cryst.,1987,C43:1678-1679.
    [167]Feldman J L and Singh D J.Lattice dynamics of skutterudites:First-principles and model calculations for CoSb_3.Phys.Rev.B,1996,53(10):6273-6282.
    [168]Naoya Takeda and Masayasu lshikawa.The ferromagnetic Kondo-lattice compound SmFe_4P_(12).J.Phys:Condens.Matter.,2003,15(14):L229-233.
    [169]Nordstrom L and Singh D J.Electronic structure of Ce-filled skutterudites.Phys.Rev.B,1996,53(03):1103-1108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700