多壁碳纳米管类流体结构、流变及组装特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管类流体是一类在无溶剂条件下具有类似液体能够流动的新型纳米流体。本文通过多壁碳纳米管的酸氧化和表面有机接枝方法制备了新型多壁碳纳米管类流体,并系统研究了它们的特殊流变性和组装结构。研究发现:均匀设计法是一种高效的筛选碳纳米管酸氧化条件和进一步制备特定流变性碳纳米管类流体的方法。DC5700接枝氧化碳纳米管(DC5700-g-MCNTs)的优化反应条件为:V(碳管酸液):V(甲醇):V(40wt%DC5700/甲醇溶液)=1:1:0.2,60℃/2h。其中,DC5700加入碳管/浓酸溶液中能迅速产生絮凝,该现象能广泛地应用于包括CNTs,SiO_2,TiO_2以及Fe_2O_3等在内的诸多纳米粒子的液相分离和提取。因而是一类全新的高效、环保的纳米分离方法,可望在降低纳米材料对人体和环境的危害方面发挥重要作用。研究证实该絮凝方法主要基于化学和物理(范德华力和静电引力)的作用机制。实验中我们观察到了氧化碳纳米管在DC5700功能化的玻片表面的特殊组装结构:1~5μm的碳纳米管岛和宽~1μm长5~15μm的碳纳米管棒,该现象为纳米粒子的组装结构提供了新的途径。
     DC5700-g-MCNTs进一步和NPES反应能得到新型纳米类流体MCNTs-IL。流变性能研究证实了它在无溶剂条件下具有类液体行为。该方法有望实现难于加工的“固体”碳纳米管象普通高分子、胶体甚至液体一样进行加工。产品室温下为黑色无定形蜡状物,热稳定性较好(失重率10%时温度高达311℃)。电镜观察表明它具有垂直于碳纳米管表面的双离子层结构,厚度约为6.5nm。
     PEG同样能接枝到碳纳米管表面制得准一维结构的PEG-MCNTs纳米类流体。该类流体表现出不同于以往文献报道的各种0维纳米粒子类流体的特殊流变行为。即较长的PEG-MCNTs粘度大但在20-80℃范围内呈现粘性响应,但粘度较小的短PEG-MCNTs表现为固态弹性流变行为,并在56.7℃实现固-液转变。通过稳态剪切模型的研究,我们发现了碳纳米管表面功能化密度、长径比以及体积分数与碳纳米管类流体宏观流变性的定量关系式,即1/J·x=K·exp(-Ea/RT)(或a/x=K'·exp(-Ea/RT))。该关系式为特定流变行为碳纳米管类流体的制备提供了理论基础,并可以通过酸氧化碳纳米管的简单控制来实现。制得的新型特定碳纳米管类流体可望在新型传感器、纳米器件以及纳米复合材料等众多领域有重大应用前景。
In this work,novel multi-walled carbon nanotube fuids(MCNTFs)with unique rheologic behavior and assembley structures were preparaed through acids oxidation and chemical grafting.Uniform design was found to be very helpful in the production of oxidized carbon nanotubes(o-CNTs)and CNTFs.In other words,our method can produced o-CNTs with specific lengthes and functionalizations,which can pave the way for CNTFs with unique rheological responses.The optimized reaction condition for chemical grafting of DC5700 onto o-MCNTs to give DC5700-g-MCNTs are:V (MCNTs/acids):V(methol):V(40wt%DC5700/methol)=1:1:0.2,60℃/2h。Outstandingly,flocculational DC5700-g-MCNTs can be readily observed,which can be exploited for a practical protocol to protect us through rapid clearing versatile nanoparticles,including carbon nanotubes,SiO_2,TiO_2 and Fe_2O_3 etc.,from nanoparticle-polluted water system in large scale.The laboratorial and industrially viable technique can produce green nanoseparation from corrosive acid mixtures composed of carbon nanotubes.We demonstrated that the separation method is based on flocculation of arrayed nanotubes triggered by both chemical bonding and physical absorption(i.e.,Van der Waals and statistic interaction).Interestingly,well-patterned 'carbon nanotube islands' with a diameter of 1~5 microns and 'carbon nanotube rods' with~1μm diameter,5~15-μm length were found on a modified glass surface,which may pave a new assembly way for nanoparticles.
     100nm~500nm length MCNTs-IL with a liquid-like behavior and an excellent thermally stability was obtained.It is noticeable that ca.6.5nm thickness shell model with an ionic,perpendicular bilayer structure on the CNTs surface were verified.This finding will offer a new practical method to process "solid CNTs" or polymer/CNTs composites like macromolecules,colloids or even solutions.
     Our quasi 1D PEG-MCNTs nanofluids behaved an unpredicted rheology behavior greatly different from the reported 0D nanostructures.Namely,highly viscous longer PEG-MCNTs system exhibits a liquid-like behavior throughout all the temperature range of 20-80℃,but low-viscous shorter PEG-MCNTs fluids behave as an unexpected elastic solid and even can give a solid-liquid transition at 56.7℃.Our model gives the quantitative relation(1/J·x = K·exp(-Ea/RT)or a/x= K'·exp(-Ea/RT))) between functionality density,aspect ratio and volume fraction and bulk rheological response.Our finding will be very attractive,according to the above quantitative relation,because the novel controlled rheological nanofluids can be achieved via a very simple oxidation technique.And these viscoelasticity controllable nanofluids will find important applications in sensors,nanodevices,and nanocomposites and so on.
引文
[1]Walden P.Bull.Acad.Imper.Sci.(St.Petersburg),1914,1800.
    [2]顾彦龙,石峰,邓友全.室温离子液体:一类新型的软介质和功能材料.科学通报,2004,(06).
    [3]李汝雄.绿色溶剂:离子液体的合成与应用,北京:化学工业出版社,2004.
    [4]丁卓,马英冲,徐云鹏等.室温离子液体在材料合成中的应用.化工新型材料,2007,(04).
    [5]王强,梁洪泽,包伟良.功能化离子液体的制备及其在合成中的应用.应用化学,2007,(02).
    [6]陈晓伟,包宗宏.室温离子液体的应用进展.精细石油化工,2006,(02).
    [7]李雪辉,赵东滨,费兆福等.离子液体的功能化及其应用.中国科学(B辑:化学),2006,(03).
    [8]Mestres R.A green look at the aldol reaction.Green Chemistry,2004,6(12):583-603.
    [9]Bhanage B M,Arai M.Catalyst product separation techniques in Heck reaction.Catalysis Reviews-Science And Engineering,2001,43(3):315-344.
    [10]Cave G W,Raston C L,Scott J L.Recent advances in solventless organic reactions:towards benign synthesis with remarkable versatility.Chemical Communications,2001,(21):2159-2169.
    [11]Dupont J,Consorti C S,Spencer J.Room temperature molten salts:Neoteric "green"solvents for chemical reactions and processes.Journal of The Brazilian Chemical Society,2000,11(4):337-344.
    [12]Zhang Z C.Catalysis in ionic liquids:Sandiego:Elsevier Academic Press Inc,2006:49,153-237.
    [13]Li M,Wang T,Pham P J,et al.Liquid phase extraction and separation of noble organometallic catalysts by functionalized ionic liquids.Separation Science And Technology,2008,43(4):828-841.
    [14]Dorsey J G.Editorial on "Ionic liquids in separation techniques" by A.Berthod,M.J.Ruiz-Angel and S.Carda-Broch.Journal of Chromatography A,2008,1184(1-2):5-5.
    [15]Berthod A,Ruiz-angel M,Carda-broch S.Ionic liquids in separation techniques.Journal of Chromatography A,2008,1184(1-2):6-18.
    [16]Zhao H,Xia S Q,Ma P S.Use of ionic liquids as 'green' solvents for extractions.Journal of Chemical Technology And Biotechnology,2005,80(10):1089-1096.
    [17]Handy S T.Greener solvents:Room temperature ionic liquids from biorenewable sources.Chemistry-A European Journal,2003,9(13):2938-2944.
    [18]Van R F,Sheldon R A.Biocatalysis in ionic liquids.Chemical Reviews,2007,107(6):2757-2785.
    [19]Fukaya Y,Iizuka Y,Sekikawa K,et al.Bio ionic liquids:room temperature ionic liquids composed wholly of biomaterials.Green Chemistry,2007,9(11):1155-1157.
    [20]Rogers R D.Materials science - Reflections on ionic liquids.Nature,2007,447(7147):917-918.
    [21]Wasserscheid P.Chemistry-Volatile times for ionic liquids.Nature,2006,439(7078):797-797.
    [22]Rogers R D,Seddon K R.Ionic liquids - Solvents of the future? Science,2003,302(5646):792-793.
    [23]Lu W,Fadeev A G,Qi B H,et al.Use of ionic liquids for pi-conjugated polymer electrochemical devices.Science,2002,297(5583):983-987.
    [24]Galinski M,Lewandowski A,Stepniak I.Ionic liquids as electrolytes.Electrochimica Acta,2006,51(26):5567-5580.
    [25]Cole-hamilton D J.Homogeneous catalysis - new approaches to catalyst separation,recovery,and recycling.Science,2003,299(5613):1702-1706.
    [26]Chiappe C,Pieraccini D.Ionic liquids:solvent properties and organic reactivity.Journal of Physical Organic Chemistry,2005,18(4):275-297.
    [27]Endres F.Ionic liquids:Solvents for the electrodeposition of metals and semiconductors.Chemphyschem,2002,3(2):144.
    [28]Antonietti M,Kuang D B,Smarsly B,et al.Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures.Angewand Te Chemie-International Edition,2004,43(38):4988-4992.
    [29]Yu S F,Lindeman S,Tran C D.Chiral ionic liquids:Synthesis,properties,and enantiomeric recognition.Journal of Organic Chemistry,2008,73(7):2576-2591.
    [30]Dzynba S V,Li S F,Bartsch R A.Convenient syntheses of perdeuterated ionic liquids.Journal of Organic Chemistry,2007,44(1):223-225.
    [31]Handy S T.Room temperature ionic liquids:Different classes and physical properties.Current Organic Chemistry,2005,9(10):959-988.
    [32]Zhao H.Current studies on some physical properties of ionic liquids.Physics and Chemistry of Liquids,2003,41(6):545-557.
    [33]Zhang S J,Sun N,He X Z,et al.Physical properties of ionic liquids:Database and evaluation.Journal of Physical And Chemical Reference Data,2006,35(4):1475-1517.
    [34]胡雪生,余江,夏寒松等.离子液体的绿色合成及环境性质.化学通报,2005,(12).
    [35]李雪辉,赵东滨,费兆福等.离子液体的功能化及其应用.中国科学(B辑:化学),2006,(03).
    [36]仇深杰,刘庆彬,胡进勇等.手性离子液体的合成及其应用.化学通报,2007,(06).
    [37]孙茜,刘元兰,陆嘉星.离子液体在电化学中的应用.化学通报,2003,(02).
    [38]Dupont J,De S R,Suarez P A.Ionic liquid(molten salt)phase organometallic catalysis.Chemical Reviews,2002,102(10):3667-3691.
    [39]Bourlinos A B,Herrera R,Chalkias N,et al.Surface-functionalized nanoparticles with liquid-like behavior.Advanced Materials,2005,17(2):234.
    [40]Bourlinos A B,Chowdhury S R,Herrera R,et al.Functionalized nanostructures with liquid-like behavior:Expanding the gallery of available nanostructures.Advanced Functional Materials,2005,15(8):1285-1290.
    [41]Warren S C,Banholzer M J,Slaughter L S,et al.Generalized route to metal nanoparticles with liquid behavior.Journal of The American Chemical Society,2006,128(37):12074-12075.
    [42]Shah D,Maiti P,Bourlinos A,et al.Nanocomposites and nanofluids.Abstracts of Papers of The American Chemical Society,2005,229(Part 2):1127-1127.
    [43] Giannelis E P, Bourlinos A, Herrera R, et al. Solvent-free nanofluids. Abstracts of Papers of The American Chemical Society, 2006,231.
    [44] Schmidt D F, Clement F, Giannelis E P. On the origins of silicate dispersion in polysiloxane/layered-silicate nanocomposites. Advanced Functional Materials, 2006, 16(3): 417-425.
    [45] Bourlinos A B, Giannelis E P, Zhang Q, et al. Surface-functionalized nanoparticles with liquid-like behavior: The role of the constituent components. European Physical Journal E, 2006,20(1): 109-117.
    [46] Bourlinos A B, Chowdhury S R, Jiang D D, et al. Weakly solvated PEG-functionalized silica nanoparticles with liquid-like behavior. Journal of Materials Science, 2005, 40(18): 5095-5097.
    [47] Bourlinos A B, Stassinopoulos A, Anglos D, et al. Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small, 2006, 2(4): 513—516.
    [48] Bourlinos A B, Chowdhury S R, Jiang D D, et al. Layered organosilicate nanoparticles with liquidlike behavior. Small, 2005,1(1): 80-82.
    [49] Bourlinos A B, Georgakilas V, Tzitzios V, et al. Functionalized carbon nanotubes: Synthesis of meltable and amphiphilic derivatives. Small, 2006, 2(10): 1188—1191.
    [50] Bourlinos A B, Georgakilas V, Boukos N, et al. Silicone-functionalized carbon nanotubes for the production of new carbon-based fluids. Carbon, 2007,45(7): 1583—1585.
    [51] Baughman R H, Zakhidov A A, De H W. Carbon nanotubes - the route toward applications. Science, 2002,297(5582): 787-792.
    
    [52] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56.
    [53] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666—669.
    [54] Leroy B J, Lemay S G, Kong J, et al. Electrical generation and absorption of phonons in carbon nanotubes. Nature, 2004,432(7015): 371—374.
    [55] Nitzan A, Ratner M A. Electron transport in molecular wire junctions. Science, 2003, 300(5624): 1384-1389.
    [56] Hafner J H, Cheung C L, Oosterkamp T H, et al. High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies. Journal of Physical Chemistry B, 2001, 105(4): 743-746.
    [57] Cheung C L, Hafner J H, Odom T W, et al. Growth and fabrication with single-walled carbon nanotube probe microscopy tips. Applied Physics Letters, 2000, 76(21): 3136— 3138.
    [58] Ye Q, Cassell A M, Liu H B, et al. Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension Imaging applications. Nano Letters, 2004, 4(7): 1301-1308.
    [59] Ishikawa K, Cho Y. Using an electroconductive carbon nanotube probe tip in scanning nonlinear dielectric microscopy. Review of Scientific Intstruments, 2006,77.
    [60] Chen L W, Cheung C L, Haushalter K, et al. Carbon nanotube probes: SPM probe technology for the future. Abstracts of Papers of The American Chemical Society, 2001, 221(Part 1): 363-363.
    [61] Chen Z X, Zhang Q, Lan P X, et al. Ultrahigh-current field emission from sandwich-grown well-aligned uniform multi-walled carbon nanotube arrays with high adherence strength. Nanotechnology,2007,18(26570226).
    [62]Oh S J,Zhang J,Cheng Y,et al.Liquid-phase fabrication of patterned carbon nanotube field emission cathodes.Applied Physics Letters,2004,84(19):3738-3740.
    [63]Murakami H,Hirakawa M,Tanaka C,et al.Field emission from well-aligned,patterned,carbon nanotube emitters.Applied Physics Letters,2000,76(13):1776-1778.
    [64]Nilsson L,Groening O,Emmenegger C,et al.Scanning field emission from patterned carbon nanotube films.Applied Physics Letters,2000,76(15):2071-2073.
    [65]Wang W,Ciselli P,Kuznetsov E,et al.Effective reinforcement in carbon nanotubepolymer composites.Philosophical Transactions of The Royal Society A-Mathematical Physical and Engineering Sciences,2008,366(1870):1613-1626.
    [66]Lee H,Mall S,He P,et al.Characterization of carbon nanotube/nanofiber-reinforced polymer composites using an instrumented indentation technique.Composites Part B-Engineering,2007,38(1):58-65.
    [67]Laha T,Agarwal A,Mckechnie T,et al.Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite.Materials Science And Engineering A-Structural Materials Properties Microstructure and Processing,2004,381(1-2):249-258.
    [68]An L N,Xu W X,Rajagopalan S,et al.Carbon-nanotube-reinforeed polymer-derived ceramic composites.Advanced Materials,2004,16(22):2036.
    [69]Cadek M,Coleman J N,Barron V,et al.Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites.Applied Physics Letters,2002,81(27):5123-5125.
    [70]Du P,Zhou B,Cai C X.Development of an amperometric biosensor for glucose based on electrocatalytic reduction of hydrogen peroxide at the single-walled carbon nanotube/nile blue A nanocomposite modified electrode.Journal of Electroanalytical Chemistry,2008,614(1-2):149-156.
    [71]Zhang X R,Cao D P,Chen J F.Hydrogen adsorption storage on single-walled carbon nanotube arrays by a combination of classical potential and density functional theory.Journal of Physical Chemistry B,2003,107(21):4942-4950.
    [72]Shiraishi M,Takenobu T,Yamada A,et al.Hydrogen storage in single-walled carbon nanotube bundles and peapods.Chemical Physics Letters,2002,358(3-4):213-218.
    [73]Bauschlicher C W.Hydrogen and fluorine binding to the sidewalls of a(10,0)carbon nanotube.Chemical Physics Letters,2000,322(3-4):237-241.
    [74]冯瑞华,张军,刘清.主要国家纳米技术战略研究计划及其进展.科技进步与对策,2007,(09).
    [75]裴晓亮,潘坚.欧盟及日本纳米技术发展计划最新进展.新材料产业,2002,(04).
    [76]老蔡.美国国家纳米技术计划(NNI).电子产品世界,2002,(08).
    [77]兆文.美国国家纳米计划2006年新部署.新材料产业,2006,(01).
    [78]TomanekD,Enbody R J.Science and Application of Nanotubes,New York:Kluwer Academic/Plenum Publishers,2000.
    [79]Berger C,Song Z M,Li X B,et al.Electronic confinement and coherence in patterned epitaxial graphene.Science,2006,312(5777):1191-1196.
    [80]Strano M S,Dyke C A,Usrey M L,et al.Electronic structure control of single-walled carbon nanotube functionalization.Science,2003,301(5639):1519-1522.
    [81] Tang X P, Kleinhammes A, Shimoda H, et al. Electronic structures of single-walled carbon nanotubes determined by NMR. Science, 2000,288(5465): 492—494.
    [82] Joachim C, Gimzewski J K, Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature, 2000,408(6812): 541-548.
    [83] Chen J Y, Kutana A, Collier C P, et al. Electrowetting in carbon nanotubes. Science, 2005, 310(5753): 1480-1483.
    [84] Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors. Science, 2001, 294(5545): 1317-1320.
    [85] Yu M F, Lourie O, Dyer M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000, 287(5453): 637—640.
    [86] Zhang M, Fang S L, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science, 2005, 309(5738): 1215—1219.
    [87] Podsiadlo P, Kaushik A K, Arruda E M, et al. Ultrastrong and stiff layered polymer nanocomposites. Science, 2007, 318(5847): 80—83.
    [88] Chang C W, Okawa D, Majumdar A, et al. Solid-state thermal rectifier. Science, 2006, 314(5802): 1121-1124.
    [89] Bonard J M, Weiss N, Kind H, et al. Tuning the field emission properties of patterned carbon nanotube films. Advanced Materials, 2001, 13(3): 184—188.
    [90] Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen storage in microporous metal-organic frameworks. Science, 2003, 300(5622): 1127-1129.
    [91] Snow E S, Perkins F K, Houser E J, et al. Chemical detection with a single-walled carbon nanotube capacitor. Science, 2005, 307(5717): 1942—1945.
    [92] Ghosh S, Sood A K, Kumar N. Carbon nanotube flow sensors. Science, 2003, 299(5609): 1042-1044.
    [93] Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials. Nature, 2006,442(7100): 282-286.
    [94] Sfeir M Y, Beetz T, Wang F, et al. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science, 2006, 312(5773): 554—556.
    [95] Goh H W, Goh S H, Xu G Q, et al. Optical limiting properties of double-C-60-end-capped poly(ethylene oxide), double-C-60-end-capped poly(ethylene oxide)/poly(ethylene oxide) blend, and double-C-60-end-capped poly(ethylene oxide)/multiwalled carbon nanotube composite. Joruanl of Physical Chemistry B, 2003, 107(25): 6056—6062.
    [96] Panhuis M I, Sainz R, Innis P C, et al. Optically active polymer carbon nanotube composite. Joruanl of Physical Chemistry B, 2005,109(48): 22725-22729.
    [97] Zhu H W, Xu C L, Wu D H, et al. Direct synthesis of long single-walled carbon nanotube strands. Science, 2002, 296(5569): 884—886.
    [98] Biro L P, Horvath Z E, Szalmas L, et al. Continuous carbon nanotube production in underwater AC electric arc. Chemical Physics Letters, 2003, 372(3-4): 399—402.
    [99] Keidar M, Waas A M. On the conditions of carbon nanotube growth in the arc discharge. Nanotechnology, 2004, 15(11): 1571-1575.
    [100] Arepalli S, Holmes W A, Nikolaev P, et al. A parametric study of single-wall carbon nanotube growth by laser ablation. Journal of Nanoscience And Nanotechnology, 2004, 4(7): 762-773.
    [101] Puretzky A A, Geohegan D B, Fan X, et al. Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics A-Materials Science & Processing, 2000, 70(2): 153-160.
    [102] Colomer J F, Stephan C, Lefrant S, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters, 2000, 317(1-2): 83-89.
    [103] Couteau E, Hernadi K, Seo J W, et al. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chemical Physics Letters, 2003, 378(1-2): 9-17.
    [104] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388(6644): 756—758.
    [105] Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science, 2004, 306(5700): 1362—1364.
    [106] Joselevich E, Dai H J, Liu J, et al. Carbon nanotube synthesis and organization. Carbon Nanotubes, 2008, 111: 101-164.
    [107] 方开泰,马长兴. 正交与均匀试验设计,北京:科学出版社.,2001.
    [108] http://www.advancedtechnic.com/ud/.
    [109] Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science, 2000, 290(5495): 1331-1334.
    [110] Richard C, Balavoine F, Schultz P, et al. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science, 2003, 300(5620): 775—778.
    [111] Warren S C, Disalvo F J, Wiesner U. Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids (vol 6, pg 156, 2007). Nature Materials, 2007, 6(3): 248—248.
    [112] Cleuziou J P, Wernsdorfer W, Bouchiat V, et al. Carbon nanotube superconducting quantum interference device. Nature Nanotechnology, 2006, 1(1): 53—59.
    [113] Vaisman L, Marom G, Wagner H D. Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Advanced Functional Materials, 2006, 16(3): 357-363.
    [114] Yu A P, Bekyarova E, Itkis M E, et al. Application of centrifugation to the large-scale purification of electric arc-produced single-walled carbon nanotubes. Journal of The American Chemical Society, 2006, 128(JA062041M30): 9902-9908.
    [115] Bachilo S M, Strano M S, Kittrell C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes. Science, 2002, 298(5602): 2361—2366.
    [116] Yoneya N, Watanabe E, Tsukagoshi K, et al. Coulomb blockade in multiwalled carbon nanotube island with nanotube leads. Applied Physics Letters, 2001, 79(10): 1465 — 1467.
    [117] Lei Y, Xiong C X, Dong L J, et al. Ionic liquid of ultralong carbon nanotubes. Small, 2007, 3(11): 1889-1893.
    [118] Bourlinos A B, Georgakilas V, Zboril R, et al. Preparation of a water-dispersible carbon nanotube-silica hybrid. Carbon, 2007,45(10): 2136-2139.
    [119] Chalkias N G, Giannelis E P. A nanohybrid membrane with lipid bilayer-like properties utilized as a conductimetric saccharin sensor. Biosensors and Bioelectronics, 2007, 23(3): 370-376.
    [120] Shah D, Maiti P, Jiang D D, et al. Effect of nanoparticle mobility on toughness of polymer nanocomposites.Advanced Materials,2005,17(5):525-528.
    [121]Liu J,Rinzler A G,Dai H,et al.Fullerene pipes.Science,1998,280(5367):1253-1256.
    [122]Han B H,Winnik M A,Bourlinos A B,et al.Luminescence quenching of dyes by oxygen in core-shell soft-sphere ionic liquids.Chemistry of Materials,2005,17(15):4001-4009.
    [123]Lei Y A,Xiong C X,Guo H,et al.Controlled viscoelastic carbon nanotube fluids.Journal of The American Chemical Society,2008,130(11):3256-3257.
    [124]Fukushima T,Kosaka A,Ishimura Y,et al.Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes.Science,2003,300(5628):2072-2074.
    [125]Li X,Liu Y,Fu L,et al.Efficient synthesis of carbon nanotube-nanoparticle hybrids.Advanced Functional Materials,2006,16(18):2431-2437.
    [126]Terrones M,Hsu W K,Schilder A,et al.Novel nanotubes and encapsulated nanowires.Applied Physics A:Materials Science & Processing,1998,66(3):307-317.
    [127]Chik H,Xu J M.Nanometric superlattices:non-lithographic fabrication,materials,and prospects.Materials Science & Engineering R-Reports,2004,43(4):103-138.
    [128]Chen S,Shen W,Wu G,et al.A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups.Chemical Physics Letters,2005,402(4-6):312-317.
    [129]郭虹.具有类液体行为的碳纳米管衍生物的制备、结构及特性:[硕士学位论文].武汉:武汉理工大学,2007.
    [130]Jones J L,Mcleish T C.Rheological response of surfactant cubic phases.Langmuir,1995,11(3):785-792.
    [131]Doi M,Harden J L,Ohta T.Anomalous rheological behavior of ordered phases of block copolymers.Macromolecules,1993,26(18):4935-4944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700