氯乙烯在不同金属表面选择性环氧化反应的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯乙烯是一种重要的化工生产原料,可以用来合成聚氯乙烯等多种化工产品。随着氯乙烯生产规模的不断扩大,它对人类健康的危害、对大气臭氧层的影响也日益严重。氯乙烯选择性环氧化反应是一种不对称分子的环氧化反应。对称分子的环氧化反应,比如对乙烯选择性环氧化反应的研究在过去已经取得较大进展,但对不对称分子环氧化反应的研究并不充分。本文选取氯乙烯分子为研究对象,对其在不同金属表面的选择性环氧化反应进行了研究,希望能够对完善不对称分子环氧化反应的反应机理有所助益。
     本文应用以平面波基组展开波函数的第一性原理的维也纳从头算软件包(Vienna Ab-initio Simulation Package, VASP),在建立的平板模型基础上,在广义梯度近似(generalized gradient approximation)泛函的PW91交换相关势及PAW原子实势水平上,对氯乙烯在Ag(111)、Pt(111)、Rh(111)、Ag(100)而的选择性环氧化反应进行模拟计算。具体计算过程包括:应用能量梯度法对反应物氯乙烯和氧原子,产物氯代环氧乙烷、氯乙醛和乙酰氯在金属表面吸附态的构型进行优化;应用climbing-nudged(cNEB)方法搜寻基元步骤的一级鞍点——过渡态;应用对角化Hessian矩阵的方法,进行振动频率计算,通过检查正则振动中是否存在唯一虚频方法来确定过渡态;通过对反应体系各物种进行总能量、活化能、反应热等计算和对反应路径坐标跟踪确定反应机理;最终,在分析反应机理和活化能基础上,估算了不同金属表面对氯乙烯氧化反应产物氯代环氧乙烷、氯乙醛和乙酰氯的选择性。
     在采用上述方法对氯乙烯在所涉及的金属表面的选择性环氧化反应进行模拟计算后,得到了如下结论:
     (1)氧原子在Ag(111)、Rh(111)、Pt(111)表面的稳定吸附位为fcc位;而且当氧原子吸附于Ag(111)、Rh(111)、Pt(111)表面fcc位时,吸附作用按照Ag、Pt、Rh的顺序逐渐增强。吸附作用的强弱同吸附原子与底物金属表面成键的数目成正比关系,即成键越多,吸附作用会越强;
     (2)氯乙烯在金属表面的环氧化反应分为两步进行:首先由反应物进行反应生成OMMC中间体;然后中间体进一步反应,生成产物。在氯乙烯环氧化反应中,由于氯乙烯分子是一个不对称分子,所以能够形成三种OMMC中间体,反应最容易通过OMMC (3)中间体进行。在三种金属面上,由OMMC (3)到产物的反应活化能的顺序为AgVinyl ch]oride(VC) is versatile intermediates for chemical synthesis, especially, poly-vinyl chloride(PVC). With the development of vinyl chloride processing, its damages become more and more serious for both humen and ozonosphere. The partial oxidation of vinyl chloride on different metal surfaces is one of asymmetric molecules oxidation reaction. Although a tremendous amount of work has accumulated in the literature regarding the reaction of ethylene to ethylene oxide, the detailed selective oxidation mechanism for the asymmetric molecules is insufficient. In the present work, we give a systemic density functional calculation of vinyl chloride selectivity oxidation on some oxygen preadsorbed metal surfaces, Ag(111), Pt(111), Rh(111) and Ag(100), intend to understand the mechanism of this reaction.
     All calculations were carried out using the Vienna ab initio simulation package(VASP) code. In order to model the metal surfaces, a periodical array model containing four atomic layers was used. The project-augment wave (PAW) method was used to describe the inner cores, and the electronic wave functions of the valence electrons were expanded on a plane wave. The exchange-correlation functional used to obtain the energy was the Perdew-Wang (PW91) implementation of the generalized gradient approach, and a climbing-nudged elastic band method (cNEB) was used for locating the transition state (TS), the frequency analysis was performed to confirm the transition state.
     The main conclusions of this work are summarized as follow:
     (1) The calculated results indicated that fcc site was the most steady adsorption site of O atom on Ag(111), Pt(111), Rh(111). The order of the adsorption energies is:Ag(111)     (2) The results show that the reaction mechanism is a two-step process: first forming OMMC and then the products. Because of the asymmetry of vinyl chloride, there are three competitive reaction pathways, and all the processes are investigated. The results imply that the most possible pathway is pathwaylll. Compared the activation energies of the epoxidation reaction on Ag(111), Pt(111) and Rh(111), it is obviously that the reaction via OMMC(3) on Ag(111) is the most favored process. The activation energies of reactions from OMMC(3) to products are in the order of Ag< Pt< Rh. By analyzing the metal atom d-band center position, the order of the stability of OMMC(3) on different metal surfaces is obtained and the order is the same with that of the activation energies of vinyl chloride epoxidation. Namely, the more stable of OMMC intermediate, the higher of the correlative activation energy is.
引文
[1]张生勇,郭建全.不对称催化反应——原理及在有机合成中的应用[M].北京:科学出版社,2002:]69-]70.
    [2]WHO. Vinyl chloride. Environmental health criteria 215. Geneva:World Health Organization; 1999.
    [3]李玉芳,伍小明.氯乙烯生产技术的研究开发进展[J].江苏氯碱.2010,3:3-7.
    [4]Morris Sherman. Vinyl chloride and the liver[J]. Journal of Hepatology.2009, 51(6):1074-1081.
    [5]Kauppinen T, Toikkanen J, Pedersen D etc. Occupational exposure to carcinogens in the European Union. Occup Environ Med 2000,57(1):10-18.
    [6]张元.氯乙烯职业危害的流行病学调查及氯乙烯的诱变性研究[D].天津:天津医科大学,2002.
    [7]胡武洪:申伟 CH2=CHCl与O(3P)反应的理论研究[J].化工学报.2005,63(]2):1042-1048.
    [8]Inoue. G., Akimoto, H. Laser-induced fluorescence of the C2H3O radical[J]. J. Chem. Phys. 1981,74(1):425-434.
    [9]Besenbacher F, Noeskov J K, Oxygen chemisorption on metal surfaces:General trends for Cu, Ni and Ag[J], Prog. Surf. Sci.,1993,44(1):5-66.
    [10]Kim S H, Stair P C, The structure of oxygen adsorbed on Mo(100) studied by high-reolution electron energy-loss spectroscopy[J]. Surf. Sci.,2000,457(1-2):L347-L535.
    [11]Crowella J E, Somorjai G A, The effect of potassium on the chemisorption of carbon monoxide on the Rh(111) crystal face[J]. Appl. Surf. Sci.,1984,19(1-4):73-91.
    [12]Comelli G., Dhanak V. R., Kiskinova M.etc. Oxygen and nitrogen interaction with rhodium single crystal surfaces[J]. Surf. Sci.,1998, 32(5):165-231.
    [13]Wong P. C., Hui K. C., Zhou M. Y. etc. LEED investigations of the Rh(111])-(2×2)-O surface structure:measurements with a video analyser in the presence of some electron beam disordering of the adsorbed layer[J]. Surf. Sci.,1986,165(1):L21-L25.
    [14]Schwegman S., Over H., Renzi V. etc. The atomic geometry of the O and CO+O phases on Rh(111)[J]. Surf. Sci.,1997,375(1):91-106.
    []5]Castner D. G., Sexton B. A., Somorjai G. A. Leed and thermal desorption studies of small molecules (H2,O2, CO, CO2, NO, C2H4, C2H2 and C)chemisorbed on the rhodium(111) and(100)surfaces[J]. Surf. Sci.,1978,71(3):519-540.
    [16]Root T. W., Fisher G. B., Schmidt L. D. Electron energy loss characterization of NO on Rh(111). I.NO coordination and dissociation[J]. J. Chem. Phys.,1986,85(8):4679-4686.
    [17]Gandug]ia-Pirovano M. V., Reuter K., Scheffler M. Stability of subsurface oxygen at Rh(111)[J]. Phys. Rev. B,2002,65(24):245426-245434.
    [18]Mavrikakis M., Rempel J., Greeley J. etc. Atomic and molecular adsorption on Rh(111)[J]. J. Chem. Phys.,2002:117(14):6737-6744.
    [19]Gland J. L., Sexton B.A., Fisher G. B., Oxygen interactions with the Pt(111) surface[J]. Surf. Sci.,1980,95(2-3):587-602.
    [20]Rose M. K., Borg A., Dunphy J. C. etc. Chemisorption of atomic oxygen on Pd(111) studied by STM[J]. Surf. Sci.,2004,561(1):69-78.
    [21]Stelenpohl A., Memmel N., Adsorption site of oxygen on Pd(111)[J]. Surf. Sci.,1999, 443(1-2):13-18.
    [22]]mbihl R., Demuth J. E., Adsorption of oxygen on a Pd(111) surface studied by high resolution electron energy loss spectroscopy(EELS)[J].Surf.Sci.,1986,173(2-3):395-410.
    [23]Sellers H., On modeling chemisorption processes with metal cluster systems:H, O, N and S on the Pd(111) plane[J].Chem. Phys. Lett.,1990,170(1):5-12.
    [24]Taylor K. C., Anderson J. R., Boudrt M., Automobile catalytic converters, in Catalysis-Science and Technology[M]. Eds. Berlin, Springer-Verlag.1984,5,119-165.
    [25]Outka D. A., Stohr J., Jark W. etc. Orientation and bond length of molecular oxygen on Ag(110) and Pt(111):A near-edge x-ray-absorption fine-structure study[J].Phys. Rev. B,1987, 35(8):4119-4122.
    [26]Steininger H., Lehwald S., Ibach H., Adsorption of oxygen on Pt(111)[J].Surf. Sci.,1982, 123(1):1-17.
    [27]Winkler A., Guo X., Siddiqui H. R. etc. Kinetics and energetics of oxygen adsorption on Pt(111) and Pt(112)- A comparison of flat and stepped surfaces[J].Surf. Sci.,1998, 201(3):419-443.
    [28]Jacob T., Muller R. P., Goddard III W. A., Chemisorption of atomic on Pt(111) from DFT studies of Pt-cluster[J].J. Phys. Chem. B,2003.107(35):9465-9476.
    [29]Kokalj A., Lesar, A., Hodoscek M., Interaction of oxygen with the Pt(111) surface:a cluster model study[J].Chem. Phys. Lett.,1997:268(1-2):43-49.
    [30]Ford D. C., Xu Y., Mavrikakis M., Atomic and molecular adsorption on Pt(111)[J]. Surf. Sci.2005, 587(3):159-174.
    [31]Spitzer A., Luth H., The adsorption of oxygen on copper surfaces:Ⅱ. Cu(111)[J]. Surf. Sci.,1982,118(1-2):136-144.
    [32]Matsumoto T., Bennett R. A., Stone P. etc. Scanning tunneling microscopy studies of oxygen adsorption on Cu(111)[J].Surf. Sci.,2001,471(1-3):225-245.
    [33]Simmons G. W., Mitchell D. F., Lawless K. R., LEED and HEED studies of the interaction of oxygen with single crystal surfaces of copper[J].Surf. Sci.,1967.8(1-2): 130-164.
    [34]McDonnell. L., Woodruff D. P. A LEED study of oxygen adsorption on copper (100) and (111)surfaces[J].Surf. Sci.,1974,46(2):505-536.
    [35]Haase J., Kuhr H. J., Reconstruction and relaxation of the oxygen-covered Cu(111) surface:A sexafs study[J].Surf. Sci.,1988,203(3):L695-L699.
    [36]Xu Y., Mavrikakis M., Adsorption and dissociation of O2 on Cu(111):thermochemistry, reaction barrier and the effect of strain[J].Surf. Sci.,2001,494(2):131-144.
    [37]Xu Y., Mavrikakis M., The adsorption and dissociation of O2 molecular precursors on Cu: the effect of steps[J]. Surf. Sci.,2003,538(3):219-232.
    [38]Nagy A. J., Mestl G., Herein D. etc. The Correlation of Subsurface Oxygen Diffusion with Variations of Silver Morphology in the Silver-Oxygen System[J].J. Catal.,1999, 182(2):417-429.
    [39]Perringer B., Bao X., Wilcock I., Muhler M., Schlogl R.,Ertl G., Thermal Decomposition of Silver Oxide Monitored by Raman Spectroscopy:From AgO Units to Oxygen Atoms Chemisorbed on the Silver Surface[J].Angew. Chem. Int. Ed.,1994,33(1):85-86.
    [40]Benzinger J. B., in Shustorovich E., Ed. Metal-Surface Reaction Energetics, New York, VCH,1991
    [41]Xu Y., Greeley J., Mavrikakis M., Effect of Subsurface Oxygen on the Reactivity of the Ag(111) Surface[J].J. Am. Chem. Soc.,2005,127(37):12823-12827.
    [42]Worbs H, Dissertation, Technische Hochschule, Breslau.1942; US Office of Technical Services, P.B. Rept.98705.
    [43]Aaron N. Fletcher, W. Herzog, Effect of carbon tetrachloride upon the self-association of 1-octanol. Effect of solvent on hydrogen bond formation equilibriums; Reply to comments. J. Phys. Chem,1970,74(1):216-217.
    [44]Kilty P. A., Sachtler W.M.H., The mechanism of the selective oxidation of ethylene to ethylene oxide [J]. Catal. Rev. Sci-eng, 1974,10(]):1-16.
    [45]Force E.L. and Bell A.T. The relationship of adsorbed species observed by infrared spectroscopy to the mechanism of ethylene oxidation over silver[J]. J. Catal,1975,40(3): 356-371.
    [46]Grant R.B., Lambert R.M. A single crystal study of the silver-catalysed selective oxidation and total oxidation of ethylene[J]. J.Catal,1985,92(2):364-375.
    [47]Van Santen R.A., Kuipers H. P. C. E. The mechanism of ethylene epoxidation[J]. Adv. Catal.1987,35:265-321.
    [48]Nakatsuji H., Hu Z.M., Nakai H. Activation of O2 on Cu, Ag, and Au surfaces for the epoxidation of ethylene:dipped adcluster model study[J].Surf. Sci.1997,387(1-3):328-341.
    [49]Nakatsuji H. Dipped Adcluster Model for Chemisorption and Catalytic Reactions[J]. Prog. in Surf. Sci.,1997,54(1):1-68.
    [50]Kobayashi H., Nakashiro K., Iwakuwa T., Density functional study of ethylene oxidation on an Ag(111)surface[J].Theor. Chem.Acc.1999,102(1-6):237-243.
    [51]Carter E.A. and GddardⅢW.A., J. Catal.,1988,112(1):80-92.
    [52]van den Hoek P J, Baerends EJ. van Santen RA, Ethylene epoxidation on silver(110):the role of subsurface oxygen[J]. J. Phys. Chem.1989,93(17):6469-6475.
    [53]Suljo L, Jerome J,and Mark A. Barteau, Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles[J]J. Catal.2004,224(2):489-493.
    [54]任瑞鹏.乙烯选择性环氧化在不同金属表面的DFT研究[D].太原:太原理工大学,2008.
    [55]Williams F. J., Bird D. P. C., Palermo A. etc. Mechanism, Selectivity Promotion, and New Ultraselective Pathways in Ag-Catalyzed Heterogeneous Epoxidation[J]. J. Am. Chem. Soc.2004,126(27):8509-8514.
    [56]Hawker S., Mukoid C., Badyak, J. P. S. etc. Molecular mechanism of heterogeneous alkene epoxidation:A model study with styrene on Ag(111)[J]. Surf Sci.1989.219(3): L615-L622.
    [57]Klust A., Madix R. Selectivity Limitations in the Heterogeneous Epoxidation of Olefins: Branching Reactions of the Oxametallacycle Intermediate in the Partial Oxidation of Styrene[J]. J.Am. Chem. Soc.2006,128(4):1034-1035.
    [58]Santra A. K., Cowell J. J., Lambert R. M. Ultra-selective epoxidation of styrene on pure Cu{111} and the effects of Cs promotion[J]. Catal Lett.2000,67(2-4):87-91.
    [59]Cowell J. J., Santra A. K., Lambert R. M. Ultraselective Epoxidation of Butadiene on Cu{111} and the Effects of Cs Promotion[J]. J.Am. Chem. Soc.2000,122(10):2381-2382.
    [60]Deng X., Friend C. M. Selective Oxidation of Styrene on an Oxygen-Covered Au(111)[J]. J.Am. Chem. Soc.2005, 127(49):17178-17179.
    [61]Xue L. Q., Pang X. Y., Wang G. C. Selective oxidation of styrene on an oxygen-adsorbed Au(111):A density functional theory study[J]. J. Comput Chem 2009,30(3):438-446.
    [62]Pang, X. Y, Xing B., Xue L. Q., Wang G. C. Selective Oxidation of Styrene on an Oxygen-Adsorbed Cu(111):A Comparison with Au(111)[J].2009,31(8):1618-1624.
    [63]Haruta M., Size- and support-dependency in the catalysis of gold[J]. Catal. Today. 1997,36(1):153-166.
    [64]Hayashi T., Tanaka K., Haruta. M. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen[J]. J. Catal.1998,178(2):566-575.
    [65]Kobayashi H., Shimodaira Y., Density functional study of propylene oxidation on Ag and Au surfaces:Comparison to ethylene oxidation[J]. Journal of Molecular Structure: THEOCHEM.2006.762(1-3):57-67.
    [66]王广厚等著,团簇物理学[M],上海:上海科学技术出版社,2003.
    [67]Shustorvich E., Metal-Surface Reaction Energies:Theory and Application to the Heterogeneous Catalyst, Chemisorption and Surface Diffusion[M]. New York, VCH,1991.
    [68]Dumesic J.A., Rudd D. F., Aparicio L. M., etc. The Microkinetic of Heterogeneous Catalysis[M], Washington D. C.:Am. Chem. Soc.,1993.
    [69]吴兴惠,项金钟,现代材料计算与设计教程[M],北京:电子工业出版社,2002.
    [70]Thomas L. H.:The Calculation of Atomic Fields[J]. Proc. Cambridge. Philos. Soc.,1927, 23.542-548
    [71]Fermi E.,Eine Statistiche Methode zur Bestimmung Einiger Eigenschaften des Atoms und ihre Anwedung auf die Theorie des periodischen Systems der Elemente,Z Phys.:1928, 48,73-79
    [72]March N.H.,The Thomas-Fermi Approximation in Quantum Mechanics[J].Advan.Phys., ]957,6(21):1-101.
    [73]Hohenberg P.C.,Kohn W.,Inhomogneneous Electron Gas[J]Phys.ReV.,1964, 136(3B):B864-B871.
    []] Thomas L H. The calculation of atomic fields [J]. Mathematical Proceedings of the Cambridge Philosophical Society,]927, 23(5):542-548.
    [2]Fermi E. Un metodo statistico per la determinazione di alcune proprieta dell'atomo [J]. Rend. R. Acc. Naz. dei Lincei,1927,6:602-607.
    [3]Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford:Oxford University Press,1954.
    [4]Hohenberg P, Kohn W. Inhomogeneous Electron Gas[J] Phys. Rev,1964,136(3B): B864-B871.
    [5]Kolm W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev.1965,]40(4A):A1133-A1138.
    [6]Barth U von, Hedin L. A local exchange-correlation potential for the spin polarized case[J]. J. Phys. C,1972,5(13):1629-1643.
    [7]Pant M M and Rajagopal A K. Theory of inhomogeneous magnetic electron gas[J]Solid State Commun.1972,10(12):1157-1160.
    [8]Langreth D C, Perdew J P. Theory of nonuniform electronic systems. Ⅰ. Analysis of the gradient approximation and a generalization that works [J] Phys. Rev. B,1980.21(12): 5469-5493.
    [9]Becke A D. Density-functional thermochemistry:Ⅲ. The role of exact exchange.[J] J. Chem. Phys,1993,98 (7):5648-5653.
    [10]Perdew J, Kurth S, Zupan A, etc. Accurate Density Functional with Correct Formal Properties:A Step Beyond the Generalized Gradient Approximation[J]. Phys. Rev. Lett.1999, 82(12):2544-2547.
    [11]Gunnarsson O, Hjelmberg H, Lundqvist B I. Binding Energies for Different Adsorption Sites of Hydrogen on Simple Metals[J]. Phys. Rev. Lett,1976,37(5):292-295.
    [12]Grimley T B, Pisani C. Chemisorption theory in the Hartree-Fock approximation[J]. J. Phys. C,1974,7(16):2831-2848.
    [13]Tang H R, wang W N, Li Z H, etc. Chemisorption of iodine on Ag(110):a densify—functional theory approach[J].Surf.Sci,2000, 450(1-2):133一141.
    [14]Tang H R,Fan K N.Application of ONOM to cluster modeling of the metal surface[J]. Chem.Phys.Letters,2000, 330(5-6):509-514.
    [15]唐海榕,范康年,邓景发.碘和氧修饰银(110)表面对甲醇催化的影响:密度泛函理论的计算研究[J].化学学报,2000,58(6):647-651.
    [16]Wang Y,Li Z H,Fan K N,The 8th electronic computational chemistry conference, http://eccc8.cooper.edu.2002.
    [17]Bloch F.Uber die Quantenmechanik der Elektronen in Kristallguttern[J] Z.Phys,1928, 52(7-8):555-600.
    [18]Herring C. A New Method for Calculating Wave Funcitons in Crystals[J]Phys.Rev.. 1940:57(12):1169-1177.
    [19]Herring C and Hill A G.The Theoretical Constitution of Metallic Beryl]ium[J].Phys.Rev ]940,58(2):132-162.
    [20]Loucks T L.Augmented plane wave method[J].Nuclear Physics A,1967,105(2): 705-712.
    [2]]Hamann D R,Schluter M,Chiang C.Norm-Conserving Pseudopotentials[J].Phys. Rev. Lett.1979,43(20):]494-]497.
    [22]Kresse G,Hafner J.Ab initio molecular dynamics for liquid metals[J].Phys.Rev.B, ]993,47(]):558-561.
    [23]Kresse G, Furthmuller J.Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Comput.Mat.Sci,1996,6(1):15-50.
    [24]Kresse G. Furthmuller J,Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J].Phys.Rev.B:1996,54(16):11169一11186.
    [25]Vanderbilt D. Soft self-consistent pseudopotentials in ageneralized eigenvalue formalism[J].Phys,Rev.B:1990,41(11):7892-7895.
    [1]Rhodin T. N., Ertl G., The Nature of the Surface Chemical Bond[M], New York: North-Holland Pub. Co.,1979.
    [2]Koper M. T. M., van Santen R. A. Interaction of H, O and OH with metal surfaces[J]. J. Electroanal. Chem.1999,472(2):126-136.
    [3]Krekelberg W P, Greeley J, Mavrikakis M. Atomic and Molecular Adsorption on lr(111)[J] J. Phys. Chem. B.2004, 108(3):987-994.
    [4]Ford D C, Xu Y, Mavrikakis M. Atomic and molecular adsorption on Pt(111)[J]. Surf. Sci.. 2005, 587(3):159-174.
    [5]Mavrikakis M., Rempel J., Greeley J., Atomic and molecular adsorption on Rh(111)[J]. J. Chem. Phys.2002,117(14):6737-6744.
    [6]Wang G C, Jiang L, Cai Z S etc. Interaction of atoms (H,D, O, C) with the Cu(111) surface[J]. J. Mol. Struct. (THEOCHEM),2002,589-590,371-378.
    [7]Perdew J P, Chevary J A, Vosko S H etc. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992,46(11):6671-6687.
    [8]Blochl P E. Projector Augmented-wave Method[J]. Phys. Rev. B.1994, 50(24):17953-17979.
    [9]Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. J. Phys.:Condens. Matter,1994,6(40):8245-8258.
    [10]Xu Y, Mavrikakis M, Layer stacking implementation of tensor low energy electron diffraction[J]. Surf. Sci.,2001,494(2):131-139.
    [1]]Xu Y, Mavrikakis M, The adsorption and dissociation of O2 molecular precursors on Cu: the effect of steps[J]. Surf. Sci.,2003,538(3):219-232.
    [12]Haase J, Kuhr H J, Reconstruction and relaxation of the oxygen-covered Cu(111) surface: A sexafs study[J]. Surf. Sci.,1988,203(3):L695-L699.
    [1]Weissermel K,Arpe H J, Industrial Organic Chemistry[M], VCH,NewYork,1993.
    [2]Lambert R M, Williams F J and Palermo A, Heterogeneous alkene epoxidation:past, present and future[J]J. Mol. Catal. A.2005.228 (1-2):27-33.
    [3]Serafin J G, Liu A C. Seyedmonir S R, Surface science and the silver-catalyzed epoxidation of ethylene:an industrial perspective[J] J. Mol. Catal.1998,131 (1-3):157-168.
    [4]Daniel T. Nuria L. Francesc I. Why Copper Is Intrinsically More Selective than Silver in Alkene Epoxidation:Ethylene Oxidation on Cu(111) versus Ag(111)[J]J. Am. Chem. Soc. 2005:127(31):10774-10775.
    [5]Daniel T and Francesc I, On the Performance of Au(111) for Ethylene Epoxidation:A Density Functional Study[J] J. Phys. Chem. B 2006,110(27):13310-13313.
    [6]Mavrikakis M, Doren D J, Barteau M A, Density Functional Theory Calculations for Simple Oxametallacycles:Trends across the Periodic Table[J]J. Phys. Chem. B.1998, 102(2):394-399.
    [7]David L, Mohammed A, Juaied A etc, Ethylene Epoxidation on Ag-Cs/a-Al2O3 Catalyst: Experimental Results and Strategy for Kinetic Parameter Determination [J] Ind. Eng. Chem. Res.2000, 39(7):2148-2156.
    [8]Suljo L, Jerome J, and Mark A. Barteau, Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles[J]J. Catal.2004, 224(2):489-493.
    [9]Marta C N, Passos F B, Schmal M, Study of the active phase of silver catalysts for ethylene epoxidation [J]J. Catal.2007, 248(1):124-129.
    [10]Gao W, Zhao M, Jiang Q, A DFT Study on Electronic Structures and Catalysis of Ag12O6/Ag(111) for Ethylene Epoxidation [J]J. Phys. Chem. C 2007,111(10):4042-4046.
    [11]Bocquet M L, Michaelides A, Loffreda D etc, New Insights into Ethene Epoxidation on Two Oxidized Ag{111} Surfaces[J]J. Am. Chem. Soc.2003, 125(19):5620-5621.
    []2]Scott G, Mavrikakis M, Mark A, First Synthesis, Experimental and Theoretical Vibrational Spectra of an Oxametallacycle on a Metal Surface[J]J. Am. Chem. Soc.1998, 120(13):3196-3204.
    [13]Barteau M A, Surface science and the advancement of direct olefin epoxidation:A perspective on the article, "Partial oxidation of higher olefins on Ag(111) and Ag(100): Conversion of styrene to styrene oxide, benzene, and benzoic acid", by Andreas Klust and Robert J. Madix[J]Surf. Sci.2006,600(23):5021-5023.
    [14]Klust A. Madix R J, Partial oxidation of higher olefins on Ag(111):Conversion of styrene to styrcne oxide, benzene. and benzoic acid[J]Surf. Sci.2006, 600(23):5025-5040.
    [15]Torres D. Illas F, On the Performance of Au(111) for Ethylene Epoxidation:A Density Functional Study[J] J.Phys. Chem. B.2006,110(27):13310-13313.
    [16]Torres D, Lopez N and Lambert R M, Low-Basicity Oxygen Atoms:A Key in the Search for Propylene Epoxidation Catalysts[J].Angew. Chem. Int. Ed,2007,46(12):2055-2058.
    [17]Yang M X. Kash P W and Gland J L, Chemistry of chloroethylenes on Cu(100):bonding and reactions[J] Surf Sci 1997,380(2-3):151-164.
    []8]Blocbl P E, Projector augmented-wave method[J] Phys. Rev. B 1994,50(24): 17953-17979.
    [19]Krresse G, Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]Phys. Rev. B 1999,59(3):] 758-1775.
    [20]Morikawa Y, Iwata K. Terakura K. Theoretical study of hydrogenation process of formate on clean and Zn deposited Cu(111) surfaces[J] Appl. Surf. Sci.2001,169-170:11-15.
    [21]Mills G, Jonsson H, Schenter G K. Reversible work transition state theory:application to dissociative adsorption of hydrogen[J] Surf. Sci.1995.324(2-3):305-337.
    [22]Henkelman G, Uberuaga B P, Jonsson H, A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]J. Chem. Phys.2000,113(22): 9901-9904.
    [23]Grassian V H. and Pimentel G C, The structures of cis- and trans-dichloroethenes adsorbed on Pt(111)[J]J. Chem. Phys.1988,88(7):4478-4484.
    [24]Hammer B, Norskov J K. The energetics and electronic structure of defective and irregular surfaces on MgO[J]Surf. Sci.1995,343(3):211-239.
    [25]Mavrikakis M, Hammer B, Norskov J K. Effect of Strain on the Reactivity of Metal Surfaces[J] Phys.Rev. Lett.1998,81(13):2819-2822.
    [1]Jerome, Jankowiak T, Barteu M A. Ethylene epoxidation over silver and copper-silver bimetallic catalysts:Ⅰ. Kinetics and selectivity[J]. Journal of Catalysis,2005.236(2):366-378.
    [2]Torres D. Lopez N. Illas F. A theoretical study of coverage effects for ethylene epoxidation on Cu(11l)under low oxygen pressure[J].Journal of Catalysis,2006,243(2):404-409.
    [3]Pang X Y, Xing B, Xue L Q, Wang G C. Selective oxidation of styrene on an oxygen-adsorbed Cu(111):A comparison with Au(111).J. Comput. Chem,2010, 31(8):1618-1624.
    [4]Linic S. Barteau M A. Control of Ethylene Epoxidation Selectivity by Surface Oxametallacycles[J]. J. Am. Chem. Soc,2003, 125(14):4034-4035.
    [5]Bocquet M L, Sautet P. Cerda J, Carlisle C I. Specific Ethene Surface Activation on Silver Oxide Covered Ag(111) from the Interplay of STM Experiment and Theory[J]. J. Am. Chem. Soc,2003:125(10):3119-3125.
    [6]Bocquet M L, Loffreda D. Ethene Epoxidation Selectivity Inhibited by Twisted Oxametallacycle:A DFT Study on Ag Surface-Oxide[J]. J. Am. Chem. Soc,2005,127(49): 17207-17215.
    [7]Santen R A, Kuipers H. The Mechanism of Ethylene Epoxidation[J].Adv. Catal,1987, 35: 265-321.
    [8]Grant R B, Lambert R M. A single crystal study of the silver-catalysed selective oxidation and total oxidation of ethylene[J].J. Catal,1985,92(2):364-375.
    [9]Bukhtiyarov V I, Boronin A I, Prosvirin I P, Savschenko V I. Stages in the Modification of a Silver Surface for Catalysis of the Partial Oxidation of Ethylene:Ⅱ. Action of the Reaction Medium[J]. J. Catal,1994,150(2):268-273.
    [10]Gleaves J T, Sault A G, Madix R J, Ebner J R. Ethylene oxidation on silver powder:A tap reactor study[J].J. Catal, 1990,121(1):202-218.
    [11]Stegelmann C, Stoltze P. Microkinetic analysis of transient ethylene oxidation experiments on silver[J].J. Catal,2004,226(1):129-137.
    [12]Linic S, Piao H, Adib K, Barteau M A. Ethylene Epoxidation on Ag:Identification of the Crucial Surface Intermediate by Experimental and Theoretical Investigation of its Electronic Structure[J]. Angew. Chem. Int. Ed, 2004, 43(22):2918-2921.
    [13]Torres D, Lopez N, Illas F, Lambert R M, Low-Basicity Oxygen Atoms:A Key in the Search for Propylene Epoxidation Catalysts[J]. Angew. Chem. Int. Ed,2007.46(12), 2055-2058.
    [14]刘书红,陈文凯,曹梅娟:许莹,李俊篯.甲醇在Au(1]1)表面吸附的密度泛函研究.催化学报(Liu S H,Chen W K, Cao M J,Xu Y, Li J. Density Functional Theory Study of Methanol Adsorption on Au(111) surface[J].J. Chin J Catal.2006, 27(1):55-59.
    [15]Blochl P E. Projector augmented-wave method[J].Phys. Rev. B,1994,50(24): 17953-17979.
    [16]Kresse G,Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B,1999,59(3):1758-1775.
    []7]Morikawa Y, Iwata K, Terakur A K. Theoretical study of hydrogenation process of formate on clean and Zn deposited Cu(111) surfaces[J]. Appl. Surf. Sci,2001,169-170(1-2): 11-15.
    [18]White J A, Bird D M. Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations[J].Phys. Rev. B,1994,50(7):4954-4957.
    [19]Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Phys. Rev. B,1992,46(11):6671-6687.
    [20]Mills G, Jonsson H, Schenter G K. Reversible work transition state theory:application to dissociative adsorption of hydrogen[J]. Surf. Sci,1995,324(2-3):305-337.
    [21]Henkelman G, Uberuaga B P. Jonsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys,2000,113(22): 9901-9904.
    [22]Linic S, Jaiikowiak J, Barteau M A. Selectivity driven design of bimetallic ethylene epoxidation catalysts from first principles[J]. J. Catal,2004,224(2):489-493.
    [23]Torres D, Lopez N, Illas F, Lambert R M. Why Copper Is Intrinsically More Selective than Silver in Alkene Epoxidation:Ethylene Oxidation on Cu(111) versus Ag(111)[J]. J. Am. Chem. Soc,2005,127(31):10774-10775.
    [24]Xing B,Pang X Y,Wang G C,Shang Z F.]nvestigation the active site of methane dissociation on Ni-based catalysts:A first-principles analysis[J].J. Mol. Catal.A:Chem,2010, 315(2):187-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700