7075铝合金搅拌摩擦加工的组织结构及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
7075铝合金作为可热处理强化高强铝合金,被广泛应用于航天、航空、军工以及汽车等工业领域。但在7075铝合金熔融焊接过程中,容易产生较大的变形、热应力,以及气孔、裂纹等缺陷,严重影响7075铝合金的应用。搅拌摩擦焊接作为一种新型的固相焊接技术,为7075铝合金的焊接与加工提供了有效的加工方法。然而,由于应用的现状,目前对7075合金的搅拌摩擦焊接/搅拌摩擦加工研究主要集中于对时效态7075铝合金的搅拌摩擦加工方面,对固溶态7075铝合金的搅拌摩擦加工研究报导相对较少。本文通过对不同热处理状态(固溶态及时效态)7075铝合金进行搅拌摩擦加工后的显微硬度及光学组织研究,并结合对硬度特征数值处的背散射电子通道衬度相、透射电镜和背散射电子衍射研究,讨论了加工过程中的温度梯度场与合金形变机制、第二相及织构演变的联系规律。
     对比了两种搅拌摩擦加工方式对不同热处理状态合金的的微观组织结构的影响。详细研究了两种状态合金平行于轧向搅拌摩擦加工后的金相组织。结果表明:固溶态合金在加工区横截面的轴肩影响区、搅拌区和前进侧的交界处,以及在焊核区漩涡区、搅拌区与前进侧的交界处,存在较为明显的孔洞型缺陷,而时效态合金并没有在这两处发现缺陷;固溶态合金在轴肩影响区与前进侧的界面变化幅度较为平缓,时效态合金界面过渡则较陡。
     对两种状态合金分两次进行了系统的显微硬度实验,建立了硬度分布图。各层面显微硬度分布总体上呈现出W形状。焊核中心的硬度从底面至表面呈现出逐渐增大的趋势。时效态合金焊核区硬度的回升比固溶态合金的硬度回升明显。同时,在3mm层面附近,时效态合金出现明显的低硬度区,而固溶态合金则没有发现软化带。此外,两次硬度试验表明,自然时效对两种状态合金的硬度分布存在影响。
     根据两种状态合金硬度分布图的特征,通过扫描电镜、背散射电子通道衬度相和透射电镜对特定硬度数值位置处的组织结构进行了分析。研究表明,焊核区晶粒由细小等轴晶粒组成,且从底部至顶部晶粒越来越大。焊核区底部至顶部晶界相逐渐减少,但晶内析出相却逐渐增多。时效态合金在焊核区晶内析出的第二相明显要多于固溶态。
     对两种状态合金的背散射电子衍射实验表明,两种状态合金在热机影响区和焊核区的晶粒的取向变化差别不大。越靠近焊核区,回退侧的热机影响区呈现出小角度晶界逐渐减少,大角度晶界逐渐增加的渐变式的变化。随着逐渐靠近焊核区,晶粒织构越来越弱。两种状态合金焊核区晶粒主要由大角度界面构成,内部有少量的小角度界面,大角度界面的百分数占到了80%以上。经搅拌摩擦加工处理后,由于晶粒发生偏转,两种状态合金在焊核区均形成了弱的剪切织构。
7075 aluminum alloy,as a heat treatmentable high-strength aluminum alloy,has been widely used in aerospace,aviation,military and automotive industries. However,it is generally considered difficult to be the fusion welding process due to the poor solidification microstructure and porosity in the fusion zone. As a new type of solid state welding method, Friction Stir Welding provides an effective processing methods for welding and processing of 7075 aluminum alloy. But,possibly due to practical application status of 7075 aluminum alloy, the studies have been mainly focused on the processing microstructures and mechanical properties of the age-treated 7075 aluminum alloy. There is much less data on the microstructure evolution and mechanical properties of solution treated 7075 alloy. In this paper,through a large number of micro-hardness and OM experiments and combined with ECC,TEM and EBSD study for specific location of hardness profiles, the solution and age treated 7075 aluminum alloy were investigated by friction stir processing respectively. The relationship among temperature gradient,deformation mechanism,the precipitates distribution and texture evolution are discussed.
     The effect of processing modes on the microstructures of the two alloys was compared. The optical micro-structures that were processed paralleling to the roll direction were studied in more details. The results showed that the solution treated alloy have defects found at the intersection between Shoulder Flow Zone,Stir Zone and Advancing Side, and the intersection of Swirl Zone、Stir Zone and TMAZ on transvere cross-section of processing zone, while no defects were found in the age treated alloy. Interface between the SFZ and AD changes smoothly in the solution treated alloy while the interface transition in the age treated alloy changes steeply.
     Micro- hardness on the cross section of both alloy were test systemetically and the maps of hardness distribution were established. Micro-hardness profiles at the certain planes of solution-treated and age-treated 7075 Al exhibits Letter W morphology, typically as that in the most friction stir welds. Hardness in the center of the WZ gradually increased from bottom to surface. Meanwhile,apparent low hardness zone were found at the 3mm plane of the age treated alloy while no softened bands weren’t found in the solution treated alloy. In addition,two hardness tests showed that the natural aging has great influence on the hardness distribution in the two alloys.
     Microstructures at specific location of hardness profiles were studied by SEM-ECC and TEM. The results showed that the sizes of fine equiaxed grains in the WZ increase from bottom to top of sheet. The amounts of intergruanlar precipitates gradually decreased from bottom to top while that of intragranular precipitates increased from bottom to top. The amount of intragranular precipitates in the age treated alloy were more than that of the solution treated alloy. However,in the 3mm level of hardness distribution,distribution of the second phase is more uniform in the alloy under solution heat treatment more than aging.
     EBSD experiments show that the two alloys have similar grain orientation in the TMAZ and WZ. Low angle boundaries ( LABs) and high angle boundaries ( HABs) in the TMAZ of retreating side increase and decrease, respectively, and grain texture becomes weak when the detected site is approaching to the WZ. The grains are constituted by the HABs that accounted for more than 80% in the WZ. Due to shearing of the pin,the weak shear textures are formed in the WZ by rotation of the grains after the FSP.
引文
[1]曾渝,尹志民,潘青林,郑子樵,刘志义.超高强合金研究及发展趋势[J].中南工业大学学报,2002,33(6):592-596.
    [2]周万盛,姚君山.铝及铝合金的焊接[M].机械工业出版社,2007.
    [3]任淑荣,马宗义,陈礼清.搅拌摩擦焊接及其加工研究现状与展望[J].材料导报,2007,21(1):87-91.
    [4] R.S.Mishra,M.W.Mahoney,S.X.McFadden,N.A.Mara,and A.K.Mukherjee.High strain rate superplasticity in a friction stir processed 7075 al alloy[J].Scripta Materialia,2000,42 :163.
    [5] I. Charit,R.S.Mishra and M.W.Mahoney.Multi-sheet structures in 7475 aluminum by friction stir welding in concert with post-weld superplastic forming[J].Scripta Materialia,2002,47:631.
    [6] P.B.Berbon , W.H.Bingel , R.S.Mishra , C.C.Bampton and M.W.Mahoney.Friction stir processing: a tool to homogenize nanocomposite aluminum alloys[J].Scripta Materialia,2001,44 :61.
    [7] R.S.Mishra , Z.Y.Ma.Friction stir welding and processing[R].Materials Science and Engineering,2005,50:1-78.
    [8] P.L.Threadgill , A.J.Leonard , H.R.Shercliff and P.J.Withers.Friction stir welding of aluminium alloys[R]. International Materials Reviews,2009,54(2):1-45.
    [9] R.S.Mishra,M.W.Mahoney,S.X.McFadden. High strain rate super plasticity in a friction stir processed 7075Alalloy [J].Scr Mater,1999,42 (2):163.
    [10] Z.Y.Ma,R.S.Mishra and M.W.Mahoney.Superplastic deformation behavior of friction stir processed 7075Al alloy[J].Acta Materialia,2002,50 :4419.
    [11] A.Dutta,I.Charit,L.B.Johannes and R.S.Mishra.Deep cup forming by superplastic punch stretching of friction stir processed 7075 Al alloy [J].Materials Science & Engineering A,2005,395 :173-179.
    [12]王大勇,冯吉才,王攀峰.搅拌摩擦焊用搅拌头研究现状与发展趋势[J].焊接,2004,6:7.
    [13]王快社,王训宏,沈洋,徐可为.搅拌摩擦焊技术的最新进展[J].热加工工艺,2004,10:53-155.
    [14]汪建华.搅拌摩擦焊接的传热和力学计算模型[J].焊接学报,2000,4:61-64.
    [15] M.W.Mahoney,C.G.Rhodes,J.G.Flintoff,R.A.Spurling,and W.H. Bingel.Properties of Friction-Stir-Welded 7075 T651 Aluminum[J].Metallurgucal and Materials Transactions A,1998,29:1998—1955.
    [16] Y.S.Sato,H. Kokawa,M.Enmoto,S.Jogan.Microstructural Evolution of 6063 Aluminum during Friction Stir Welding[J]. Metallurgical and Materials Transactions A,1999,30(9):2429—2437.
    [17] K.V.Jata,K.K.Sankaran,J.J.Ruschau.Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050—T7451[J].Metallurgical and Materials Transctions A,2000,31(9):2181—2192.
    [18] Weifeng Xu,Jinhe Liu,Guohong Luan,Chunlin Dong.Temperature evolution.Microstructure and mechanical properties of friction stir welded thick 2219—O aluminum alloy joints[J]. Materials and Design,2009,30:1886—1893.
    [19] C.G.Rhodes,M.W.Mahoney,W.H.Bingel,R.A.Spurling,C.C.Bampton.Effects of friction stir welding on microstructure of 7075 aluminum[J].Scripta Materialia,1997,36 (1):69—75.
    [20] W.Woo,H.Choo,P.J.Withers,Z.Feng.Prediction of hardness minimum locations during natural aging in an aluminum alloy 6061-T6 friction stir weld[J].Mater Sci,2009,44:6302—6309.
    [21] C.W. Bartges.Evidence of eta“or ordered zone formation in aluminum alloy 7075 from differential scanning calorimetry[J]. Scripta Metallurgica et Materialia , 1993 , 28 :1039—1042.
    [22] J.Q.Su,T.W.Nelson,R.Mishra,M.Mahoney.Microstructural investigation friction stir welded 7050-T651 aluminium[J].Acta Materialia,2003,51:713—29.
    [23] L.K.Berg,J.Gjonnes,V.Hansen,X.Z.Li,M.K.Wedel,G.Waterloo,D.Schryvers, L.R.Wallenberg.GP—zones in Al—Zn—Mg alloys and their role in artificial aging[J].Acta Materialia,2001,49:3443—51.
    [24] R.M.Allen,J.B.V.Sande.The oriented growth of precipitates on dislocations in Al—Zn—Mg. I.Experimental observations[J].Acta Metallurgica,1980,28:1185—1195.
    [25] G.Liu,L.E.Murr,C.S.Niou,J.C.McClure,F.R.Vega.Microstructural aspects of the friction stir welding of 6061—T6 aluminum[J].Scripta Mater,1997,37:355.
    [26] M.Strangwood,J.E.Berry,D.P.Cleugh,A.J.Leonard,P.L.Threadgill.Characterisation of the thermo-mechanical effects on microstructral development in friction stir welded age hardening aluminium based alloys[J].1st International Symposium on Friction Sir Welding,1999:15.
    [27] Christian B.Fuller,Murray W.Mahoney,Mike Calabresea,Leanna Miconab.Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds.Materials Science and Engineering A. 2010,527 :2233—2240.
    [28] A.J.Leonard.Microstructure and ageing behaviour of FSWs in aluminium alloys 2014A-T651 and 7075-T651[J]. 2nd International Symposium on Friction Sir Welding,2000:18—20.
    [29] R.W.Fonda,J.F.Bingert.Microstructural Evolution in the Heat—Affected Zone of a Friction Stir Weld[J].Metallurgical and Materials Transctions A,2003,35 :2004—1487.
    [30] H.R.Shercliff,M.J.Russell,A.D.Taylor,T.L.Dickerson.Microstructural modelling in friction stir welding of 2000 series aluminium alloys[J].Mecanique & Industries,2005,6,25—35.
    [31] M.J.Peel,A.Steuwer,P.J.Withers.Dissimilar friction stir welds in AA5083-AA6082.Part I:Process parameter effects on thermal history and weld properties[J].Metallurgical and Materials Transctions A,2006,37,2195—2206.
    [32] O.Frigaard,O.Grong,O.T.Midling.A process model for friction stir welding of age hardening aluminum alloys[J].Metallurgical and Materials Transctions A,2001,32,1189—1200.
    [33] Colegrove P.A.Shercliff H.R.Hyoe.T.Development of the Trivex friction stir welding tool for making lap welds[J].5th International Friction Stir Welding Symposium, 2004:14—16.
    [34] T.Hyoe,P.A.Colegrove,H.R.Shercliff.Thermal and microstructure modelling in thick plate aluminium alloy 7075 friction stir welds[J]. Friction stir welding and processing II,2003,33—42.
    [35] Robson.J. D,Sullivan. A,McShane.G,Shercliff.H. R.Microstructural evolution during friction stir welding of AA7449[J].5th International Friction Stir Welding Symposium, 2004:20.
    [36] O.Grong,O.R. Myhr.Additivity and isokinetic behaviour in relation to diffusion controlled growth[J].Acta Materialia,2000,48,445—452.
    [37] O.R.Myhr,O.Grong.Modelling of non-isothermal transformations in alloys containing a particle distribution[J].Acta Materialia,2000,48,1605—1615.
    [38] A.Sullivan , N.Kamp , J.D.Robson.Modelling of heterogeneous precipitate distribution evolution during friction stir welding process[J].Acta Materialia,2006,54,2003—2014.
    [39] D.P.Field,T.W.Nelson,Y.Hovanski,K.V.Jata,Metall.Mater.Trans.A 32 (2001) 2869.
    [40] R.W.Fonda,J.F.Bingert.Texture variations in an aluminum friction stir weld[J].Scripta Materialia,2007,57:1052—1055.
    [41] G.R.Canova , U.F.Kocks , J.J.Jonas.Theory of torsion texture development[J].Acta Metallurgica,1984,32 (2) :211—226.
    [42] F.Montheillet,M.Cohen,J.J.Jonas.Axial stresses and texture development during the torsion testing of Al,Cu and alpha-FE[J].Acta Metallurgica,1984,32 (11) :2077—2089.
    [43] F.Montheillet,P.Gilormini,J.J.Jonas. Axial stresses and texture development during the torsion testing—a simplififd theory[J].Acta Metallurgica,1985,33 (4) :705—717.
    [44] L.S.Toth,P.Gilormini,J.J.Jonas.Effect of rate sensitivity on the stability of torsion textures[J].Acta Metallurgica,1988,36(12) :3077—3091.
    [45] J.K.Solberg , H.J.Mcqueen , N.Ryum , E. Nes. Influence of ultrahigh strains at elevated-temperatures on the microstructure of aluminum.1[J]. Philosophical Magazine a—Physics of Condensed Mater Structure Defects and Mechanical Properties,1989,60 (4) :447—471.
    [46] M.R.Barnett,F.Montheillet,The generation of new high-angle boundaries in aluminium during hot torsion[J].Acta Materialia,2002,50 (9):2285—2296.
    [47] T.Pettersen,E.Nes.On the origin of strain softening during deformation of aluminum in torsion to large strains[J].Metallurgical and Materials TransactionsA,2003,34A(12) :2727—2736.
    [48] L.S.Toth,K.W.Neale,J.J.Jonas.Stress response and persistence charateristics of the ideal orientations of shear textures[J].Acta Metallurgica,1989,37(8):2197—2210.
    [49]胡运明.直接观察位错结构的扫描电镜电子通道衬度技术[J].材料研究学报,1997,3:240—244.
    [50] Adams.B.L,Dingley.D.J,Kunze.K. Orientation imaging microscopy:new possibilities for microstructural investigations using automated BKD analysis[J].Mater.Sci.Forum,1994,157(162):31—42.
    [51]陈康华,刘红卫,刘允中.7075和2024铝合金的固溶组织与力学性能[J].中国有色金属学报,2000,6(10):819—822.
    [52] Z.W.Chen,T.Pasang,Y.Qi.Shear flow and formation of Nugget zone during friction stir welding of aluminium alloy 5083-O[J].Materials Science and Engineering A,2008,474: 312—316.
    [53]傅志红,贺地求,周鹏展,胡爱武.7A52铝合金搅拌摩擦焊焊缝的组织分析[J].焊接学报,2006,5(27):65—68.
    [54]柯黎明,潘际銮,邢丽,黄永德.焊缝金属厚度方向的流动与洋葱瓣花纹的形成[J].焊接学报,2008,29(7):39—42.
    [55] Krishnan.K.N.On the formation of onion rings in friction stir welds[J] .Materials Science and Engineering A,2002,327:246—251.
    [56] L.E.Svesson,L.Karlsson,H.Larsson,B.Karlsson,M.Fazzini,J.Karlsson.Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082[J].Science and Technology of Welding & Joining,2000,5:285—296.
    [57] Y.S.Sato , S.H.C.Park , H.Kokawa.Microstructural Factors governing Hardness in Friction–Stir–Welds of Solid—Solution—Hardened Al Alloys[J].Metallurgical and MaterialsTransactions A,2001,32(12):3033—3042.
    [58] P.Cavaliere,R.Nobile,F.W.Panella,A.Squillace.Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding[J].International Journal of Machine Tools & Manufacture,2006,46:588—594.
    [59] P.Cavaliere,A.Squillace.High temperature deformation of friction stir processed 7075 aluminium alloy[J]. Materials Characterization,2005,55:136—142.
    [60] A.Gerlich,G.Avramovic–CIingara,and T.H.North.Stir Zone Microstructure and Strain Rate during Al 7075–T6 Friction Stir Spot Welding[J]. Metallurgical and Materials Transactions A,2006,37(9):2773—2786.
    [61] Goloborodko,Alexandre,Ito Tsutomu,Yun Xiao yong,Motohashi,Yoshinobu,Itoh,Goroh.Friction stir welding of a commercial 7075-T6 aluminum alloy:Grain refinement,thermal stability and tensile properties[J]. Metallurgical and Materials Transactions A,2004,45(8):2503—2508.
    [62] Lee Won Bae,Lee Chang Yong,Yeon,YunMo,Seung Boo.Effects of the local microstructures on the mechanical properties in FSW joints of a 7075-T6Al alloy[J]..Materials Research and Advanced Techniques,2005,96(8):940—947.
    [63] K.Stiller,P.J.Warren, V.Hansen.Investigation of precipitation in an Al-Zn-Mg alloy after two-step ageing treatment at 100 degrees and 150 degrees C Mater[J].Materials Science and Engineering a-structural Materials Properties Microstructure and Processing,1999, 270(1) :55—63.
    [64] X.J.Jiang,B.Noble,B.Holme,G.Waterloo,J.Tafto.Differential scanning calorimetry and electron diffraction investigation on low-temperature aging in Al-Zn-Mg alloys[J]. Metallurgical and Materials Transactions A,2000, 31(2):339—348.
    [65] M.Dumont,A.Steuwer,A.Deschamps,M. Peel,and P.J.Withers.Microstructure mapping in friction stir welds of 7449 aluminium alloy using SAXS[J]. Acta Metallurgica,2006,54:4793—4801.
    [66] Adler.PN,Delasi.R.Calorimetric studies of 7000 series aluminum-alloys 2.comparision of 7075,7050,and RX720 alloys[J]. Metallurgical and Materials Transactions A,1977,8(7):1185—1190.
    [67] A.H.Feng,D.L.Chen and Z.Y.Ma.Microstructure and cyclic deformation behavior of a friction-stir-welded 7075 Al alloy[J]. Metallurgical and Materials Transactions A,2010,41:957—971.
    [68] Christian B.Fuller,Murray W.Manhoney,Mike Calabrese,Leanna Micona.Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stirwelds[J]. Materials Science and Engineering A,2010,527:2233—2240.
    [69] D.A.Hughes , N.Hansen.High angle boundaries formed by grain subdivision mechanisms[J].Acta Materialia,1997(45):3871—3886.
    [70] R.W.Fonda,J.F.Bingert,K.J.Colligan.Development of grain structure during friction stir welding[J].Scripta Materialia,2004(51):243—248.
    [71] R.W.Fonda,J.F.Bingert.Texture variations in an aluminum friction stir weld[J].Scripta Materialia,2007(57):1052—1055.
    [72] M.M.Z Ahmed,B.P.Wynne,W.M.Rainforth,PL Threadgill.Quantifying crystallographic texture in the probe-dominated region of thick section friction stir welded aluminium[J].Scripta Materialia,2008(59):507—510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700