金属有机杂化材料的结构设计与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的宏观性能与其微观结构有着紧密的关系。本论文以探讨金属有机杂化材料的结构设计与性能为目的,开展了系列化合物合成与表征方面的研究工作。金属有机杂化材料的制备过程与其它多孔框架材料类似,模板剂的种类和构型对材料最终的结构主题有着重要的影响作用。在本文的工作中,我们引入阴离子Cl-作为模板剂,于1,2,4-苯三甲酸与2,5-吡啶二羧酸的混配体系中合成出了一例新型的二维金属有机混杂材料[Zn2(BTC)(PDC)?3H2O]Cl,通过元素分析、热重(TGA)、粉末X射线衍射(XPRD)、红外以及荧光光谱分析等多项相关表征,对Zn2+与1,2,4-苯三甲酸和2,5-吡啶二羧酸混杂配位合成中的各种影响因素进行了研究与探讨。实验显示氯离子在模板诱导合成混杂配体框架的过程起到了重要的作用。与此相比较,如用F-、Br-、I-、PO43-离子代替Cl-为模板离子,只能得到含2,5-吡啶二羧酸的单配位框架结构。结果表明氯离子与框架结构之间存在着独特的主体-客体识别作用。
     金属有机杂化材料的结构堆积方式与荧光特性紧密相联。通过对自由TPT(2,4,6-三(4-吡啶基)-1,3,5-三嗪)配体和其与Zn配位合成化合物Zn(TPT)2(H2O)4(OH)2的结构表征,发现配位后TPT的π-π堆积模式由错位堆积转变为完美的面对面堆积。结构的变化同时也影响到了物质的固体荧光性能。在360nm的波长激发下,自由状态的TPT在450nm显示出了强烈的荧光发射峰,但是配位后的物质在同样位置的发射强度却大为减弱,这主要是由于配位后层间距的增加而造成的。
     金属与有机配体混杂间存在着有趣的能量转移现象,可望开拓成为新类型的光色材料。利用TPT和Zn分别与1,2,4-苯三甲酸以及1,3,5-苯三甲酸相配位,制备出两例新的混杂框架材料Zn(TPT)(BTC)H2O和Zn3(TPT)(BTC)2(H2O)6。其中化合物Zn(TPT)(BTC)H2O表现出了明显的光致变色性能,而化合物Zn3(TPT)(BTC)2(H2O)6的变色性能不明显。这也与两种化合物的结构密切相关。在化合物Zn(TPT)(BTC)H2O中,TPT的三个吡啶氮并未全部配位,而是留下了一个悬空的配位点,导致分子内部存在着较强的极化度。而在化合物Zn3(TPT)(BTC)2(H2O)6中,TPT的三个位点全部配位,电荷分布均匀,没有极化现象。分子极化导致了电子云的排布的差异使得光致变色性能发生改变。对于化合物Zn(TPT)(BTC)H2O中未配位的吡啶基,进行相关化学修饰方面的探索,考察相关的性能变化。
The characters of the materials are related to the constructions. In this paper, with the purpose of designing and synthesis new metal organic frameworks, we did lots of works on synthesis and characterizing. As most of synthetic reactions, template has been revealed as important factor that goven the structure, so does the MOFs. In this paper, a new two-dimensional metal organic framework is synthesized and characterized. The encapsulated chloride anions organize a collection of building units into a novel mixed-ligand metal organic supramolecular assembly, indicating specific host-guest recognition. By constrast, the addition of F-、Br-、I-、PO4- anions only give out the coordination complexes with single ligand. Reactions of the Zn2+ ion with 1,2,4-benzenetricarboxylic acid have been investigated with emphasis on the facors that govern reaction results. And the sample is characterized by the elemental analysis, TGA, XPRD, IR, and luminescent data.
     In addition, the relations between the luminescence characters and constructions are also investigated.π-πstacking in the 2,4,6-tris(4-pyridyl)-1,3,5-triazine aromatic nitrogen-containing ligand and its metal-ligand complex Zn(TPT)2(H2O)4(OH)2 1 have been investigated by single-crystal X-ray diffraction analyses. The stacking mode of the ligand change from the offset conformation to a face-to-face perfect alignment with the coordination to the zinc centers. The structure features have correlated with their solid-state luminescence properties. With excited at 360nm, free TPT ligand gives a strong fluorescent emission at 455nm and the ligand-centered emission of the metal-ligand complex occurs at the same wavelength with lower emission intensity. The distance between the aromatic rings respond to the difference of the luminescence characters.
     Otherwise, the MOFs could become photochromic materials based on the interesting energy transition among the moleculars.Two new mixed-ligand metal organic frameworks Zn(TPT)(BTC)H2O and Zn3(TPT)(BTC)2(H2O)6 are also synthesized and characterized. Compared with the Zn3(TPT)(BTC)2(H2O)6, Zn(TPT)(BTC)H2O displayed strong photochromic phenomenon. As in Zn(TPT)(BTC)H2O, there is a un-coordinated atom N, and the charge distribution in TPT is imbalance. Contrarily, the charge distribution in Zn3(TPT)(BTC)2(H2O)6 is symmetrical, and the difference respond to the diversity of the photochromic characters. Post modification with pyridine in Zn(TPT)(BTC)H2O also has been investigated.
引文
[1] Hoskins B. F., Robson R., Design and Construction of a new class of scaffolding-like materials comprising infinite ploymeric frameworks of 3-D-linked molecular rods-a reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-Tetracyanotetraphenyl methane]BF4.C6H5NO2[J]. J. Am.Chem.Soc., 1990. 112 : 1546-1554
    [2] Li H., Eddaoudi M.,Yaghi O. M., et al., Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402 : 76-79
    [3] Yaghi O. M., O’Keeffe M., Rosi N. L., et al., Rod Packings and Metal-Organic Frameworks Constructed from Rod-Shaped Secondary Building Units [J]. J. Am. Chem. Soc., 2005, 127 :1504-1518
    [4] Sudik A. C., Millward A. R., Yaghi O. M., et al., Design, Synthesis, Structure, and Gas (N2, Ar, CO2, CH4, and H2) Sorption Properties of Porous Metal-Organic Tetrahedral and Heterocuboidal Polyhedra [J]. J. Am. Chem. Soc., 2005, 127 : 7110-7118
    [5] Morris R. E., Wheatley P. S., Gas Storage in Nanoporous Materials [J]. Angew. Chem. Int. Ed., 2008, 47 : 4966-4981
    [6] Liu Y. L., Eubank J. F., Eddaoudi M., et al., Assembly of Metal-Organic Frameworks (MOFs) Based on Indium Trimer Building Blocks: A Porous MOF with soc Topology and High Hydrogen Storage [J]. Angew. Chem., 2007, 119 : 3342-3347
    [7] Latroche M., Surble S., Ferey G., et al., Hydrogen Storage in the Giant-Pore Metal Organic Frameworks MIL-100 and MIL-101 [J]. Angew. Chem., 2006, 118 : 8407-8411
    [8] Dinca M., Han W. S., Long J. R, et al., Observation of Cu2+-H2 Interactions in a Fully Desolvated Sodalite-Type Metal-Organic Framework [J]. Angew. Chem. Int. Ed., 2007, 46 : 1419-1422
    [9] Dinca M., Dailly A., Long J. R, et al., Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites [J]. J. Am. Chem. Soc., 2006, 128 : 16876-16883
    [10] Dinca M., Dailly A., Long J. R, et al. Expanded Sodalite-Type Metal-Organic Frameworks: Increased Stability and H2 Adsorption through Ligand-Directed Catenation [J]. Inorg. Chem., 2008, 47 : 11-13.
    [11] Horike S., Tamaki K., Long J. R., et al., Size-Selective Lewis Acid Catalysis in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites [J]. J.Am. Chem. Soc., 2008, 130 : 5854-5855
    [12] Shinpei H., Satoshi H., Ryotaro M., et al.,Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis[J]. J. Am. Chem. Soc., 2007, 129 : 2607-2614
    [13] Wang M. S., Guo G. C., Zou W. Q, et al., Photochromism of a 3D CdII Complex with Two Captured Ligand Isomers Generated In Situ from the Same Precursor [J]. Angew. Chem. Int. Ed., 2008, 47 : 3565-3567
    [14] Xu G., Guo G. C, Wang M. S, et al., Photochromism of a Methyl Viologen Bismuth(III) Chloride: Structural Variation Before and After UV Irradiation [J]. Angew. Chem. Int. Ed., 2007, 46 : 3249-3251
    [15] He H.Y, Collins D., Dai F. N, et al., Construction of Metal-Organic Frameworks with 1D Chain, 2D Grid and 3D Porous Framework Based on a Flexible Imidazole Ligand and Rigid Benzenedicarboxylates [J]. Crystal Growth & Design., 2010, 10 : 895-901
    [16] Dai J. C, Xu X.T., Fu Z.Y., et al., A novel ribbon-candy-like supramolecular architecture of cadmium(II)-terephthalate polymer with giant rhombic channels: two fold interpenetration of the 3D 8210-a net Chem. Commun., 2002, 12-13
    [17] Fang Q. R, Zhu G. S., Qiu. S. L., et al., Amine-Templated Assembly of Metal-Organic Frameworkswit Attractive Topologies [J]. Crystal Growth & Design, 2008, 8 : 319-329.
    [18]Cristian S. C., Brandi L. S., Helen T. C., et al., Anion Template Effect on the Self-Assembly and Interconversion of Metallacyclophanes[J]. J. Am. Chem. Soc., 2005, 127 : 12909-12923
    [19] Zheng B., Dong H, Bai J. F, et al., Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand To Construct Coordination Assemblies:Experimental and Theoretical Studies[J]. J. Am. Chem. Soc., 2008,130 : 7778-7779
    [20] Shi F. N, Cunha-Silva L.; Rocha J., et al., Interconvertable Modular Framework and Layered Lanthanide(III)-Etidronic Acid Coordination Polymers [J]. J. Am. Chem. Soc., 2008, 130 : 150-167
    [21] Jung S. S., Dongmok W., Hyoyoung L., et al., A homochiralmetal organic porous material for enantioselective separation and catalysis [J]. Nature,2002 : 982-985
    [22] Zhen Q. W, Seth M. C., Postsynthetic Covalent Modification of a Neutral Metal-Organic Framework [J]. J. Am. Chem. Soc., 2007, 129 : 12368-12369
    [23] ZhenW. Q, Cohen S. M., Tandem Modification of Metal-Organic Frameworks by a Postsynthetic Approach [J]. Angew. Chem. Int. Ed., 2008, 47 : 4699-4702
    [24] Yu F. S, Leroy C., Postsynthetic Covalent Modification of Metal–Organic Framework (MOF) Materials [J]. Angew. Chem. Int. Ed., 2008, 47 : 2-5
    [25] Jose S. C, Patrick G., Cory A., Chemical Modification of a Bridging Ligand Inside a Metal-Organic Framework while Maintaining the 3D Structure [J]. Eur. J. Inorg. Chem., 2008 :1551-1554
    [26] William M., Christian J. D, Hiroyasu F., et al., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks [J]. J.Am.Chem.Soc., 2008 : 1-5
    [27] Tendai G., Omar K.F., Karen L. M., et al., A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaborationw [J].Chem. Commun., 2009 : 3720-3722.
    [28] Farid N., Juergen E., Jarrod F. E., et al., Zeolite-like Metal-Organic Frameworks (ZMOFs) as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF) Interaction Studies [J]. J. Am. Chem. Soc., 2009, 131 : 2864-2870.
    [29] Zhang L, Qu X., Bi M, et al., Synthesis and crystal structure of Cu2[bbimb]: A metal-organic framework with zeolite ABW topology [J]. Micropor Mesopor Mater., 2008, 119 : 344-347.
    [30] Li J. R; TaoY; Yu Q, et al., Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels [J]. Chem. Eur. J., 2008, 14 : 2771-2776.
    [31] Li D. S, Wang Y. Y, Luan X. J, et al., 1-D Open-channeled 3-D supramolecular self-assembled frameworks encapsulating unprecedented cyclic (H2O)8 clusters or solvent molecules [J]. Eur. J. Inorg. Chem., 2005 : 2678-2684
    [32] Liu J. Q, Wang Y. Y, Liu P, et al., A novel 3D twofold interpenetrating microporous metal-organic framework containing 1D water tapes with cyclic pentamer units [J]. Inorg.Chem. Commun., 2007 : 343-347
    [33] Li Y, Xu G, Zou W. Q, A novel metal-organic network with high thermal stability: Nonlinear optical and photoluminescent properties [J] Inorg. Chem., 2008, 47 : 7945-7947
    [34] Liu G. X, Zhu K, Chen H, et al., Two zinc(II) supramolecular isomers of square grid networks formed by two flexible ligands: syntheses, structures and nonlinear optical properties [J]. CrystEngComm, 2008, 10 : 1527-1530
    [35] Zaworotko. M. J., Nanoporous structures by design [J]. Angew. Chem. Int. Ed., 2000, 39 : 3052-3054
    [36] Withersby M. A., Blake A. J., Champness N. R., et al., Solvent control in the synthesis of3,6-bis(pyridin-3-yl)-1,2,4,5-tetrazine-bridged cadmium(II) and zinc(II) coordination polymers [J]. Inorg. Chem., 1999, 38 : 2259-2266
    [37] Lee I. S., Shin D. M., Chung Y. K., Novel supramolecular isomerism in coordination polymer synthesis from unsymmetrical bridging ligands: Solvent influence on the ligand placement orientation and final network structure [J]. Chem. Eur. J.,2004, 10 : 3158-3165
    [38] Hannon M. J., Painting C. L., Plummer E. A., et al., Competing supramolecular interactions give a new twist to terpyridyl chemistry: anion- and solvent-induced formation of spiral arrays in silver(I) complexes of a simple terpyridine[J]. Chem. Eur. J., 2002, 8 : 2225-2238
    [39] Chen S, Yu S.H,. Yu B, et al., Solvent effect on mineral modification: Selective synthesis of cerium compounds by a facile solution route [J]. Chem. Eur. J., 2004, 10 : 3050-3058
    [40] Tanaka D., Kitagawa S.,Template effects in porous coordination polymers[J]. Chem. Mater., 2008, 20 :922-931
    [41] Chandra D., Kasture M.W., Bhaumik A., A new microporous MOF material based on Zn(II)-polycarboxylate coordination polymer synthesized with the aid of 1,6-diaminohexane as template [J]. Micropor. Mesopor. Mater. 2008, 116 : 204-209
    [42] Fang Q, Zhu G, Xue M, et al., Amine-Templated Assembly of Metal-Organic Frameworks with Attractive Topologies[J]. Cryst Growth Des., 2008, 8 : 319-329
    [43] Chen C, Yi Z, Ding H, et al., Template synthesis and characterization of a novel three-dimensional open-framework indium phosphate (C6N4H22)1/2[In3(HPO4)6]·H3O[J]. Micropor.Mesopor. Mater., 2005, 83 : 301-308
    [44] Vickers M. S., Beer P. D., Anion templated assembly of mechanically interlocked structures [J]. Chem. Soc. Rev., 2007, 36 : 211-225
    [45] Lankshear M. D., Beer P. D., Anion templated double cyclization assembly of a chloride selective [2]catenane [J]. Coord. Chem. Rev., 2006, 250 : 3676-3678
    [46] Campos-Fernandez C.S., Schottel B. L., Chifotides H.T., et al., Anion template effect on the self-assembly and interconversion of metallacyclophanes [J]. J. Am. Chem. Soc., 2005, 127 : 12909-12923
    [47] Vilar R., Anion-templated synthesis [J]. Angew. Chem., Int. Ed. 2003, 42 : 1460-1477.
    [48] Neil E .J. O., Smith B.D., Anion recognition using dimetallic coordination complexes [J] Coord. Chem. Rev., 2006, 250 : 3068-3080
    [49] Gale P. A., Navakhun K., Camiolo S., et al. Anion-anion assembly: A new class of anionic supramolecular polymer containing 3,4-dichloro-2,5-diamido-substituted pyrrole anion dimers [J]. J. Am. Chem.Soc., 2002, 124 : 11228-11229
    [50] Adarsh N. N., Kumar D. K., Dastidar P., Ligating topology and counter anion controlled formation of discrete metallo-macrocycle and 2D corrugated sheet in coordination compounds derived from a bis-pyridyl-bis-amide ligand and Cd (II)salts [J]. Inorg. Chem. Commun., 2008, 11 : 636-642
    [51] Díaz P., Benet-Buchholz J., Vilar R., et al., Anion influence o n the structures of a series of copper(II) metal-organic frameworks. [J]. Inorg. Chem., 2006, 45 : 1617-1626
    [52] Du J. L, Hu T. L, Li J. R, et al., Metal coordination architectures of 2,3-bis(triazol-1-ylmethyl)quinoxaline: Effect of metal ion and counterion on complex structures [J]. Eur. J. Inorg. Chem., 2008, 7 :1059-1066
    [53] Hasenknopf B., Lehn J. M., Kneisel B. O., et al., Self-Assembly of a Circular Double Helicate[J]. Angew. Chem. Int. Ed. Engl., 1996, 35 :1838-1840
    [54] Coles S. J., Frey J. G., Gale P. A., et al., Anion-directed assembly: the first fluoride-directed double helix [J]. Chem. Commun., 2003 : 568-569
    [55] Beer. P. D., Gale. P.A., Anion recognition and sensing: The state of the art and future perspectives [J]. Angew. Chem., Int. Ed., 2001,40 : 486-516
    [56] Wisner J. A., Beer P. D., Drew M.G. B., A demonstration of anion templation and selectivity in pseudorotaxane formation [J]. Angew. Chem., Int. Ed. Engl., 2001, 40 : 3606-3607
    [57] Blight B. B., Van Noortwyk K. A., Wisner J. A., et al., Pseudorotaxanes through second-sphere coordination [J]. Angew.Chem., Int.Ed. Engl. 2005, 44 : 1499-1504
    [58] Sambrook M. R., Beer P. D., Wisner J. A., et al. Anion-templated assembly of a catenane [J]. J. Am. Chem. Soc., 2004, 126 : 15364-15365
    [59] Diaz P., Mingos D. M. P., Vilar R., et al., Anion-templated synthesis of metallacages as a means for the colorimetric detection of chlorides [J]. Inorg. Chem., 2004, 43 : 7597-7604
    [60] Software packages SMART, and SAINT,Siemens Analytical X-ray Instruments Inc.
    [61] Sheldrick G. M., SHELXTL-97, Program for the Solution of Crystal Structures, University of G?ttingen, Germany, 1997
    [62] Mahata P., Natarajan S., Pyridine- and imidazoledicarboxylates of zinc: Hydrothermal synthesis, structure, and properties [J]. Eur. J. Inorg. Chem, 2005 : 2156-2163
    [63] Xu L, Liu B,. Zheng F. K, Blue fluorescence of three metal-organic zinc polymers containing tetrazinc units and asymmetric ligand of btc3-[J]. J. Solid State Chem., 2005,178 : 3396-3404
    [64] Liang Y, Hong M.C, Cao R, Tetrakis(2,5-pyridinedicarboxylato)tetrazinc(II) octahydrate[J]. Acta Crystallogr., Sect., 2001. E57 : m145-147
    [65] Zhang X., Huang D., Chen C, et al., Synthesis, structural characterization and magnetic property of metal 2,5-pyridine dicarboxylate complex[J]. Inorg. Chem. Commun., 2005, 8 : 22-26
    [66] Férey G., Mellot-Draznieks C., Serre C., et al., Crystallized frameworks with giant pores: Are there limits to the possible [J]. Acc. Chem. Res., 2005, 38 : 217-245
    [67] Chen X. M., Tong M. L, Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry [J].Acc. Chem. Res., 2007, 40 : 162-167
    [68] Liu Q. D, Li J. R, Gao S, et al., Synthesis, crystal structures and magnetism of a series of heptanuclear rare-earth-centered trigonal prism clusters [J].Eur. J. Inorg. Chem., 2003 : 731-739
    [69]Janiak C. J., A critical account on pi-pi stacking in metal complexes with aromatic nitrogen-containing ligands [J].J. Chem. Soc. Dalton Trans., 2000 : 3885-3901
    [70] Burley S. K., Petsko G. A.,X-Ray Structure and refinement of carbon-monoxy (FeII)-Myoglobin at 1,5-a resolution [J]. J. Am. Chem. Soc., 1986, 108 : 7995-7801
    [71] Hunter C. A., Singh J., Thornton J. M., Pi-Pi-Interactions-the geometry and energerics of phenylalanine phenylalanine phenylalanine interactions in proteins [J]. J. Mol. Biol., 1991, 218 : 837-846
    [72] Serrano L., Bycroft M., Fersht A. R., et al., Aromatic interactions and protein stability-investigation by double-mutantcycles [J]. J. Mol. Biol., 1991, 218 : 465-475
    [73] Burley S. K., Petsko G. A., Aromatic-aromatic interaction-a mechanism of protein-structure atabilization [J]. Science, 1985, 229 : 23-28
    [74] Guckian K. M., Schweitzer B. A., et al., Factors contributing to aromatic stacking in water: Evaluation in the context of DNA [J]. J. Am. Chem. Soc., 2000, 122: 2213-2222
    [75] Zaworotko M. J., Nanoporous structures by design [J]. Angew. Chem.Int. Ed., 2000, 39 : 3052-3054
    [76] Reinhoudt D. N., Crego-Calama M., Synthesis beyond the molecule [J]. Science., 2002, 295 : 2403-2407
    [77] Bell J. W., Hext N. M., Supramolecular optical chemosensors for organic analytes[J].Chem. Soc. Rev., 2004, 33 : 589-598
    [78] Bowron D. T., Finney J. L., Soper A. K., The structure of liquid tetrahydrofuran [J]. J. Am. Chem. Soc., 2006, 128 : 5119-5126
    [79] Fu Z.Y; Yi J. L, ChenY, et al., From interwoven to noninterpenetration: Crystal structural motifs of two new manganese-organic frameworks mediated by the substituted group ofthe bridging ligand [J]. Eur. J. Inorg. Chem., 2008 : 628.-634
    [80] Janczak J., Sleclz M., Kubiak R., Catalytic trimerization of 2-and 4-cyanopyridine isomers to the triazine derivatives in presence of magnesium phthalocyanine [J]. J. Mol. Struct., 2003, 659 : 71-79
    [81] Li M. X, Miao Z. X, Zhu S. R, et al., Metal-Organic Frameworks Constructed from 2,4,6-Tris(4-pyridyl)-1,3,5-triazine [J]. Inorg. Chem., 2008, 47: 4481-4489
    [82]樊美公,光致变色与光子器件[J],化学进展,1997, 9 : 170-173
    [83] Malcolm B. R., Pieroni O., Afferent and efferent synaptic connections of somatostatin-immunoreactive neurons in the rat fascia-dentata [J]. Biopolymers., 1990, 29 : 1121-1131
    [84] Tanaka M., Kamada K., Ando H., et al., Synthesis and photochromism of crowned spirobenzothiapyran: Facilitated photoisomerization by cooperative complexation of crown ether and thiophenolate moieties with metal ions [J]. J.Org.Chem, 2000, 65 : 4342-4347
    [85] Zhang Z. J, Xiang S. C., Guo G. C., et al., Wavelength-Dependent Photochromic Inorganic-Organic Hybrid Based on a 3D Iodoplumbate Open-FrameworkMaterial [J]. Angew. Chem. Int. Ed., 2008, 47: 4149-4152
    [86] Bottcher H., Epperlein J., Moderne photographische Systeme,VEBD eutscher Verlageg fur Grundstoflindustrie, Umschau, 1983, 83 : 474-476
    [87] Willner I., Rubin S., et al., Control of the Structure and Functions of Biomaterials by Light [J]. Angew Chem.Int.Ed.Engl.,1996, 35: 367-385
    [88] Rubin S., Wonner J., Willner I., et al., Photoswitchable binding of substrates to proteins: photoregulated binding of alpha-D-mannopyranose to concanavalin A modified by a thiophenefulgide dye [J]. J.Am.Chem.Soc. 1992, 114: 3150-3151

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700