A356铸造铝合金热处理强化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代汽车正朝着轻量化、高速、安全舒适、低成本与节能的方向发展。而目前满足上述要求的最有效的途径就减轻汽车自重。铝及其合金加工材料由于具有密度小、比强度高等一系列优良特性成为实现汽车轻量化最理想的首选材料。
     本文以A356铸造铝合金轮毂为研究对象,利用金相显微技术、扫描电镜、差热分析及力学性能测试等手段对合金的各种不同工艺的微观组织与性能进行了全面的测试与分析。
     通过改变固溶处理工艺参数,研究了固溶处理工艺与合金的力学性能之间的关系。当温度为535℃时,随着保温时间的延长,抗拉强度、硬度及延伸率基本上都是先升后降。当保温时间为3.5~4.5h时,轮缘的强度、硬度及延伸率才能达到很好的匹配。
     A356铸造铝合金在545℃×3.5h下进行固溶处理具有较好的综合力学性能,轮缘抗拉强度为251MPa,硬度为82HV,延伸率为12%;轮幅抗拉强度为233MPa,延伸率为9%,故固溶处理的优先工艺为545℃×3.5h。
     研究了室温停留时间与力学性能之间的关系,结果表明室温停留时间选择在2~10h范围之内,但不应超过12h。如果从生产周期及成本方面考虑,室温停留2h,合金就能达到预时效的目的,达到强度、硬度与塑性的良好匹配。
     通过改变时效处理工艺参数,研究了轮缘的时效处理工艺与力学性能之间的关系,结果表明在设定的在三个温度上进行时效处理保温3h时,合金的综合力学性能均很好,因此对A356铝合金进行时效,能够使其达到一个强度、硬度与延伸率均为极值的平衡点。
     当固溶处理工艺采用535℃×4.5h时,时效温度为135℃时,时效时间至少为3h;当采用优选的固溶工艺545℃×3.5h,时效温度为135℃时,则当时效时间为0.5h时,即能达到使强度与塑性达到较高的水平。当时效温度升高至145℃时,则在保温1h时,即能达到较好的强度与延伸率的配合。
     比较了固溶处理工艺为535℃×4.5h及545×3.5h两种工艺下合金的力学性能,表明对于A356铸造铝合金,如果在应用时对塑性的要求较高时,则固溶处理可采用工艺535℃×4.5h;如果对其塑性要求不高,而希望缩短生产周期,提高生产效率时,则建议采用工艺545×3.5h。
     通过对金相组织观察,随着固溶温度和保温时间的增加,α(Al)长大,同时Mg、Si在固溶过程中溶入α(Al)基体中的越多,在随后的时效处理中,非平衡析出大量细小弥散、均匀分布的Mg2Si相,随着保温时间的增加,共晶明显减少, Si颗粒聚集粗化大部分分布在α相中,α相更加圆整,并进一步增大。从而使合金经过热处理后强度、硬度上升,而塑性下降。
     利用扫描电镜观察了拉伸试样的断口,断口微观形貌表现为典型韧窝断口特征,均为塑性断裂,当固溶时间一定时,保温时间适度,则其韧窝大且深,塑性较好,当保温时间过长,则韧窝较浅,塑性较差。
     DSC分析了A356合金的时效析出动力学,50~60℃内析出G.P区, G.P区的析出主要是由空位的团聚所造成的,而与Mg、Si元素的扩散关系不大。250~300℃范围内析出β'相, Mg、Si原子在G.P区富集并有序化,在晶界上或螺旋位错上直接沉淀出来的。当温度在300℃以上析出与基体完全失去共格的β相,使合金性能下降。
At present, vehicles are developing to be lightweight, high speed, safety, comfort, energy-saving and environmental protecting. It is trend to increase the aluminumzation of vehicles because of its lower density, high strength-to-weight ratio and so on. In this paper, the influences of heat treatment on the microstructures and tensile properties of A356 aluminium wheel are investigated by lots of analyzing and testing methods such as Optical Microscope (OM), Scanning Electron Microscope (SEM), Differential Scanning Calorimeten (DSC) and tensile testing.
     The relations between the solution treatment technology and the mechanical properties are investigated by variation of solution treatment parameter. .When the solution temperature is 535℃,the the mechanical properties including the tensile strength, the hardness and the elongation of the alloy rise first, then descend. When the solution time reach to 3.5~4.5h,the comprehensive properties are well matched.
     The results show that the A356 cast Aluminum alloys have good comprehensive mechanical properties by solution treatment for 3.5 hours at 545℃,and for the wheel rim the tensile strength is 251MPa,the hardness is 82HV,and the elongation is 12%; The tensile strength is 233MPa, and the elongation is 9% for the wheel breadth.So the technology of 545℃×3.5h is recommended .
     The relations between the aging time at room temperature and mechanical properties show that the time is suitable within 0~10h, but it can`t be over 12 hours. when the time is 2 hours ,the alloys have good comprehensive mechanical properties.
     The relations between the aging heat treatment technology and the mechanical properties are discussed by changing aging technology parameters. The results show that the mechanical properties go beyond the standard by aging treatment for 3 hours at the three temperature being set. So for A356, the tensile strength ,the hardness and the elongation can reach the highest simultaneously by aging treatment .
     When the solution technology is 535℃×4.5h,the aging time is at least for 3h.If the solution technology is 545℃×3.5h and the aging temperature is 135℃,when the aging time is 0.5h,the tensile strength and the plastic properties are very good .The time must be prolonged to 2.5~3.5h.If the aging temperture is 145℃,when the aging time is 1h,the comprehensive properties are well matched .So the time will be 1.5h~2.5h.
     The mechanical properties are compared between solution threatment of 535℃×4.5h and 545℃×3.5h.If the aim is to be good plastical properties ,the solution technology for 535℃×4.5h is suitable; and the solution technology for 545℃×3.5h is available for shortening the production cycle.
     The microstructure is observed through metallography microscope. The higher of the solution temperature and the longer of the heat preservation time are, the bigger the particles ofα(Al)grow, and the more Mg and Si would dissolve inα(Al) during the solution process. And the eutectic particles reduce obviously while Si particles become bigger.Α(Al)phases become grounder, the strength and hardness grow while the plastic properties drop.
     The fracture of tension specimens is observed on SEM. And the micro-appearance is typical plastic fracture. If the solution temperature and time are suitable, the dimples are big and deep. The plastics properties also are good. Either them less or higher than the optimal process parameters would lead to poor properties.
     The aging kinetics is discussed by means of DSC. G..P area is formed within 50~60℃, which attributes to vacancy's reuniting .β'-phase is formed within 250~300℃and deposited from the grain boundary or the screw dislocation because of Mg and Si atom enrichs in G.P area. The properties of the Al alloy will become bad whenβis formed over 300℃.
引文
[1]杨映芬,齐洪亮.铝合金汽车轮毂的市场需求及发展趋势[J].有色金属设计,1999,26(1):65-70
    [2]刘闯,姚嘉,卢伟.铝合金在汽车上的应用现状和前景分析[J].佳木斯大学学报,2006,24(4):559-562
    [3]周洁,白杉.铝合金轮毂的市场-特点和制造工艺[J].铝加工,2006,32(3):43-44
    [4]宋春强,铝合金汽车轮毂的市场需求与发展趋势[J] .铝加工,2006,32(5):5-9
    [5] M.Estey,S.L.CocKcroft .Constitutive behaviour of A356 during the quenching peration[J].materials science & engineering ,2004, 383 (6):241-245
    [6]崔凤岐.铝合金汽车_21世纪汽车工业的骄子[J].轻金属,1995,12(7):51-56
    [7]张少华.铝合金在汽车上应用的进展[J].汽车工业研究,2003,10(3):36-39
    [8]王祝堂.铝合金轮毂工业的发展[J].轻合金加工技术,1994,22(3):17-21
    [9] S. Sreeja Kumari, R.M. Pillai , B.C. Pai. A study on the structural, age hardening nd mechanical characteristics of Mn and Ca added Al–7Si–0.3Mg–0.6Fe alloy. ournal of Alloys and CoMPounds.2006,135(11)1-7
    [10]张广安,吴树迎.轿车铝合金轮毂的液态模锻[J] .锻压技术,1999 ,28(3):33
    [11]何德林,李志刚.铝型材挤压模CAD/ CAM系统及其关键技术的研究[J].轻合金加工技术,1997 ,25(9):25-30.
    [12]张泉林.整体式铝合金轮毂的合金处理及其铸造[J].特种铸造及有色合金,2001:21-24
    [13]曾诚.铝合金车轮的制造工艺及设备探析[J].铝加工,2006,6(2):13-14
    [14]毛麒瑞.汽车轻量化与铝合金[J].金属世界,2002,8(6):16-17
    [15] GUAN Shao-Kang , YAO Bo ,WANG Ying-xin. The progressand prospect of research on aluminium alloys for auto body sheets[J ] . Materials for Mechanical Engineering , 2001 , 57(5) :12 - 18.
    [16]金道成. A356系列铝合金在汽车工业中大显身手[J].金属世界,2000,9(3):4
    [17]李继文,谢敬佩,刘忠侠等.国内外著名汽车轮毂内在质量分析研究[J].汽车工艺与材料,2004,5(7):76-80
    [18]余忠士,张梅,孙保良等.常用铝合金及其热处理工艺[J].热处理,2006,21(3):44-47
    [19]林肇琦.有色金属材料学[M].辽宁:东北工学院出版社,1989:4-8
    [20]张宝昌.有色金属及其热处理[M].西安:西北工业大学出版社, 1993:31-35
    [21]龚磊清,金长庚等.铸造铝合金金相图谱[M].湖南:中南工业大学出版社, 1987:3-7
    [22] Edwards G A, Stiller K , Dunlop G L, et al. The Precip ition Sequence in Al2Mg2Si Alloys[J]. Acta mater, 1998, 46 (11) : 3893 -3901.
    [23] Marioara C D, Andersen S J, Jansen J, et al. Atomicmodel for GP -zones in Al2Mg2Si system[J]. Acta Mater, 2001, 49 (8): 321 - 328.
    [24] Ravi C, Wolverton C. First principle study of crystal structure andstability of l2Mg2Si alloy[J]. Acta Mater, 2004, 52 (10): 4213 - 4227.
    [25] Andersen S J, Marioara C D , Froseth A, et al. Crystal structure ofprecipitate in the Mg2Si alloy system and its relation to the andphases[ J ]. Mater Sci Eng A, 2005, 390(6): 127 - 138.
    [26] Mstsuda K, Gamada H, Fujii K, et al. High Resolution Electron Mi-croscopy on the tructure of GP zones in an Al21.6%Mg2Si Alloy[J].MetalMater TransA, 1998, 29 (7): 161 - 1167.
    [27]陈延红,严密.亚共晶Al-Si合金细化及变质的研究现状与发展[J].材料科学与工程,2000,18(4):121-126
    [28]瞿学良.工艺因素对铸造Al - Si - Mg合金机械性能的影响[J].铝加工,2001,6(12):50-53
    [29]杨莉莉.几种典型细化剂对A356合金的细化作用[J].特种铸造及有色合金,2006,26(6):375-377
    [30]仲志国.细晶铝锭熔炼的A356铝合金组织与性能的研究[J].铸造,2006,55(8):828-831
    [31]姚巍,杨贵海,王建军.亚共晶Al - Si合金熔体处理工艺研究[J].铸造,2005,54(9):916-919
    [32]耿浩然,马家骥. Al-Si合金变质技术的应用现状与进展[J].机械工程材料,1995,19(10):6-10
    [33]王冰,谭秀琴.A356合金的研制[J].汽车工艺和材料,1997,41(7):19-21
    [34]杨国良,彭齐全.铝轮毂用A356. 0合金铸锭冶金质量的研究[J].轻合金加工技术,1997,25(11):23-27
    [35]栾纲.铸造铝合金炉前变质处理的研究及生产实践[J].机械设计与制造,2003,34(6):86-88
    [36]杨彬,高平等.稀土加入量对A356合金力学性能的影响[J],热加工工艺,2005,23(7):68-69
    [37]陆伟,吕先年.铝合金的热处理工艺[J].世界有色金属,2005,31(10):28-29
    [38]李友川,胡志亮.铸造铝合金轮毂热处理参数选择及其设备[J].轻合金加工技术,1997,(10):33-40
    [39]邓苏莲译. Al-Mg-Si和Al-Mg-Mn合金自然时效和人工时效之间的关系[J].铝加工,1986,97(1):26- 27
    [40]姚秀军,边秀房,尹奎波.间断时效工艺对A356合金力学性能及微观组织的影响[J].铸造,2005,154(8):791-793
    [41]陈旷,关绍康,胡保健等.双级时效工艺对低压铸造A356合金轮毂力学性能的影响[J].轻合金加工技术,2006,34(4):44-48
    [42]戴洪尚,刘志勇,王明星等,固溶处理对电解制备的A356合金硅颗粒的影响[J],中国有色金属学报,2004 14(7): 1201-1205
    [43] S.W. Youn, C.G. Kang. Characterization of age-hardening behavior ofeutectic surface on rheo-cast A356-T5 alloy by usingnano/micro-indentation, scratching and atomic force microscopy[J].Materials Chemistry and Physics 2006,100 (5) 117–123
    [44]张恒华,许珞萍,邵光杰等. AlSi7Mg合金半固态压铸件热处理强化机理研究[J],2003,24(6):62-68
    [45] C.M. Estey, S.L. CocKcroft, et al. Constitutive behaviour of A356 during the quenching operation[J]. Materials Science and Engineering. 2004,A383 (9):245–251
    [46] S.W. Youn, C.G. Kangb. Characterization of age-hardening behavior of eutectic region in squeeze-cast A356-T5 alloy using nanoindenter and atomic force microscope[J]. Materials Science and Engineering. 2006,A 425 (12) :28–35
    [47] S.W. Youn, C.G. Kang. Characterization of age-hardening behavior ofeutectic surface on rheo-cast A356-T5 alloy by usingnano/micro-indentation, scratching and atomic force microscopy[J]. Materials Chemistry and Physics. 2006,100 (5):117–123
    [48] H.S. Kang, W.Y. Yoon. Effective parameter for the selection of modifying agent for Al–Si alloy[J]. Materials Science and Engineering . 2007,A 449 (7): 334–337
    [49] Omid LashKari , Reza Ghomashchi. Deformation behavior of semi-solid A356 Al–Si alloy at lowshear rates: The effect of sample size[J]. Materials Science and Engineering . 2007,A 444 (3) :198–205
    [50] E. Ogris, A. Wahlen. On the silicon spheroidization in Al–Si alloys[J]. Journal of Light Metals. 2002 (2) :263–269
    [51] P. Ramamurty Raju, B. Satyanarayana. Evaluation of fatigue life of aluminum alloy wheels under radial loads[J]. Engineering Failure Analysis. 2007,14 (6):791–800
    [52] Rajesh Sharma, Anesh. Solutionizing temperature and abrasive wear behaviour of castAl–Si–Mg alloys. Materials and Design . 2006, 26(11) :27–35
    [53] HE Shu-xian , WANG Jun. Effect of low temperature melt on solidif ication structure ofA356 alloy with melt thermal treatment. Trans[J]. Nonferrous Met. 2001,361(6):0863 - 0875
    [54] H.M. Guo, X.J . Yang ,rheocasting of A356 Alloy by low superheat pouring wyth a shearing field[J]. Ac ta Me ta ll. Sin. 2006,19 (9): 328- 334
    [55] Rajesh Sharma, Anesh. Solutionizing temperature and abrasive wear behaviour of cast Al–Si–Mg alloys[J]. Materials and Design. 2006,98 (7): 135-122
    [56] A.Gaber, M.A. Gaffar. Precipitation Kinetics of Al–1.12 Mg2Si–0.35 Si and Al–1.07 Mg2Si–0.33 Cu alloys[J]. Journal of Alloys and CoMPounds. 2007,429 (7): 167–175

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700