微透镜型光纤氢气传感器的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢燃料是一种无污染的新型能源,但它存在高度的易燃性和易爆性。因此氢燃料的存储、使用和运输的过程中可能产生危险。能够提前预报氢气的泄露对保护人类生命财产安全上显得极为重要。
     考虑到氢气易燃,本文采用光纤作为敏感探头元件,在氢气环境下测试低于爆炸极限的氢气浓度。以微透镜型光纤氢传感器为研究对象,研究了光波在金属表面的反射与透射原理以及氢敏感膜与氢气的反应机理;在光纤端面镀制氢敏感膜,发现了氢气浓度变化与氢敏感膜材料折射率的变化存在关系。
     通过光学研磨、端面切割等手段对光纤端面进行加工,获得平整光洁的光纤端面。并采用高真空磁控溅射镀膜技术将敏感膜溅射在光纤端面、硅片、有机玻璃上。通过对硅片进行SEM扫描电镜扫描薄膜表面形貌、紫外可见分光光度计对玻璃片进行不同波长透过率的测试,从微观与宏观上测试敏感膜的性能。研究了单模光纤端面上镀Pd膜、W03膜、Pd/WO3复合膜的氢气传感特性。结合C8051F120单片机芯片板,通过串口将芯片板上的数据传输到电脑终端记录并保存,完成对光纤端面敏感膜的测试。
     通过一系列测试得出,经过改进的Pd、W03共溅射膜能够改善单一Pd在反复测试氢气的实验中出现的裂纹、脱落现象,提高了敏感膜的机械强度。通过测试不同厚度、不同材料的氢敏感膜的光强变化幅度和响应时间,可以得到敏感膜能分辨出浓度为0.01%的标准氢气,对2%-4%标准浓度的氢气响应最明显,对0.01%-2%和超过4%的标准浓度的氢气均有明显响应。通过改进薄膜厚度,响应时间可减小到15s以下,回复时间可减小到200s以下,薄膜重复性较好。另外,通过利用C8051F120单片机芯片板的数据传输功能改善了光强型氢气传感器人工记录数据的工作方式,提高了数据的精度与连续性。
Hydrogen fuel is a new fuel which is non-polluting. But the character of hydrogen is highly detonable and flammable, which makes hydrogen fuel storage, use and transportation may pose a risk. Therefore, it becomes extremely important to early warn of hydrogen leaking which can protect human life and property security.
     Taking the flammability of hydrogen into account, in this paper, optical fiber is used as a sensing probe in hydrogen environment to test the hydrogen concentration which is below the explosive limit. Studying on micro-mirror optic fiber hydrogen sensor, by the principle of light reflection and transmission on the metal surface combined with the reaction mechanism of hydrogen-sensitive film and hydrogen, it coats hydrogen sensitive film on fiber end face. Through the relationship between the hydrogen concentration and hydrogen-sensitive film refractive index, it can research the optic fiber hydrogen sensor test system based on the principle of light reflection and transmission on the metal surface.
     By means of optical grinding and cutting optical fiber end face, it can access clean fiber end face. Using high vacuum magnetron sputtering system, it is coated sensitive film on the optical fiber end face, silicon, glass. Using electron microscope(SEM) to scan the surface appearance of sensitive films and using UV-Vis photometer of different wavelengths to test the transmittance of sensitive films on the glass, to test the micro and macro performance of sensitive film. It can study the properties of Pd, WO3 and Pd/WO3 hydrogen sensing film on single-mode fiber end face. C8051F120 MCU chip board transfers data to computer terminals through serial port, records and saves the test data.
     Through a series of tests, Pd and WO3 co-sputtered film can completely change cracks and shedding of Pd film. This film can enhance the mechanical strength of the sensitive film. By testing the intensity range and response time on different thickness and different hydrogen-sensitive film, Pd and WO3 co-sputtered film can distinguish the standard hydrogen concentration of 0.01%. But response is the most obvious in concentration of 2%-4%. There are also responses at concentration of 0.01%-2% and more than 4%. By improving the thickness of film, the response time can be lower than 15s and the recovery time can be lower than 200s. The Pd and WO3 co-sputtered film has good reproducibility. In addition, by using C8051F120 microcontroller chip board, it improves the data transmission capabilities of the light intensity-type hydrogen sensors which were manually recorded data, so the data is more accuracy and continuity.
引文
[1]许琰玮,刘勇智.光纤氢气传感技术的研究进展[J].激光与光电子学进展,2006,43(7)
    [2]冯颖.微型钯-银氢气传感器的制备与应用研究[D].浙江:浙江大学理学院,2006.
    [3]Mandelis A, Garcia J A.Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated[J].Sensors and Acturators B,1998,49(3):258-267.
    [4]Butler M A.Fiber optic sensor for hydrogen concentrations near the explosive limit[J] Journal Electrochemical Society,1991,138(1):46-47.
    [5]Butler M A.Micromirror optical-fiber hydrogen sensor[J].Sensors and Actuators B,1994,22 (1-2):155-163.
    [6]Fortunato G, Bearzotti A, Caliendo C, et al.Hydrogen sensitivity of Pd/SiO2/Si structure:a correlation with the hydrogeninduced modifications on optical and transport properties of a-phase Pd films[J].Sensors and Actuators,1989,16(1): 43-54.
    [7]Chadwick B, Tann J, Brungs M, et al.Hydrogen sensor based on optical generation of surface plasmons in a palladium alloy[J].Sensors and Actuators B, 1994,17 (3):215-220.
    [8]Wang C, Mandelis A, Au-leong K P.Physical mechanism of reflectance inversion in hydrogen gas sensor with Pd/PVDF structures[J].Sensors and Actuators B,2001, 73 (1-2):100-105.
    [9]M. Kobayashi, Y. Usuki, M. Ishii, et al.Further study on different dopings into Pb/WO4 single crystals to increase the scintillation light yield[J].Nuclear Instruments and Methods in Physics Research Section A,2005,540 (2-3):381-394.
    [10]B. Culshaw, J. Dakin.光纤传感器[M].华中理工大学出版社,2004.
    [11]张凡,刘静胜,李铮.光纤氢传感器[J].遥测遥感,2001,22(2):59-63.
    [12]杜善义,张晓晶,陈吉安,等.光纤氢传感技术的研究现状及应用前景[J].宇航学报,2004,25(4):466-471.
    [13]Sekimoto A. A fiber-optic evanescent-Wave hydrogen gas sensor using palladium-supported tungslenoxide. Sensors and Actuators B:Chemical,2000,66: 142-145
    [14]胡建东.拉锥光纤表面等离子共振氢敏传感器研究与实验[D].浙江:浙江大学,2005
    [15]Alex A Kazemi, D B Larson, M D wuestling.Fiber optic hydrogen detection system[J].Proc. SPIE 3860,1999,507-515
    [16]臧新梅,刘建胜,樊惠隆,等.光纤氢传感器的研究进展[J].光通信技术,2005,4.
    [17]恽斌峰.布拉格光纤光栅理论与实验研究[D].江苏:东南大学物理电子学,2006.
    [18]S Sekimoto, H Nakagawa, S Okazaki, et al. A fiber-optic eveneseent-wave hydrogen gas sensor using palladium-supported tungsten oxide[J]. Sensors and Actuators B:2000,66:142-145.
    [19]Mandelis Andreas, Garcia Jose A. Pd/PVDF thin film hydrogen sensor based on laser-amplitude-modulated optical transmittance:dependence on H2 concentration and device Physics[J]. Sensors and Actuators B:1998,40:258-267.
    [20]S Roy, C Jacob, S. Basu.Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature[J].Sensors and Actuators B:Chemical,2003,94 (3): 298-303.
    [21]J R Pitts, P Liu, S-H Lee, et al.Interfacial stability of hydrogen sensor. Proceedings of the 2000 DOE hydrogen Porgram review.NREL/CP 570-288.
    [22]谭霞,肖沙里,邱柳东等.标准具型光纤氢气传感器[J].光学仪器,2003,25(3).
    [23]陈吉安,张晓晶,武湛君等.探测氢气泄露的布拉格光栅型传感器[J].光学技术,2005,5.
    [24]Sekimoto S, NaKagawa H, Okazaki S et al.A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide[J].Sensors and Actuators B:2000,66:142-145.
    [25]靳伟,寥彦彪,张志鹏等.光纤光栅传感技术[J].导波光学传感器原理与技术[M].北京:科学出版社,1998:320-346.
    [26]Massood Tabib-Azar.Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions.Proceedings of 1998 SPIE-The International Society for Optical Engineering,3513:80-88.
    [27]Sekimoto S, NaKagawa H, Okazaki S, et al.A fiber-optic evanescent-Wave hydrogen gas sensor using palladium-supported tungsten oxide[J].Sensors and Actuators B:2000,66:142-145.
    [28]Petr Tobiska, Olivier Hugon, Alain Trouillet, et al.An integrated optic hydrogen sensor based on SPR on palladium[J].Sensors and Actuators B:Chemical,2001,74 (1-3):168-172.
    [29]原荣.光纤通信[M].电子工业出版社,2002.
    [30]廖延彪.光纤光学[M].清华大学出版社,2000:12-15.
    [31]李宗全,陈湘明等.材料结构与性能[M].浙江大学出版社,2001,88~98.
    [32]唐涛,陆光达.钯氢体系的物理化学性质[J].稀有金属,2003,27(2):278-285.
    [33]Massood T A, Boonsong S, Rose P, Alex K. Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed gores and evanescent field interactions. Sensors and Acturators B:1999,56(1-2):158-163.
    [34]高翔.氢敏钯膜材料的制备与表征[D].上海:上海交通大学材料系,2008.
    [35]李宗全,陈湘明.材料结构与性能[J].浙江大学出版社,2001,88-98.
    [36]Xiang Gao, Dongyan Ding, Zhi Chen, et al. Electrodeposition of Palladium Films on Electroless Ni-P Coatings Supported by Si Substrate[C].Proceedings of 8th International Conference on Electronics Packaging Technology,2007,571-574.
    [37]汪冰冰.基于PdWO3敏感薄膜的光纤氢气传感研究[D].武汉:武汉理工大学,2009.
    [38]侯长军,范小花,范瑛,等.氢敏材料的研究进展[J].电子元件与材料.2006,10(25): 1-5.
    [39]杨晓红,王新强,马勇.W03薄膜气敏光学传感特性研究[J].功能料.2007,8(38):1254-1256.
    [40]胡明,冯有才,尹英哲.直流反应磁控溅射法制备W03薄膜及其氢敏特性研究[J].传感器与微系统.2008,27(3):46-48.
    [41]冯有才.磁控溅射制备三氧化钨气敏薄膜[D].天津:天津大学电子信息工程学院,2007.
    [42]范小花.三氧化钨基光学氢敏膜的制备及性能研究[J].
    [43]Chaudbary V A, Mulla I S, VOaydmohanan K. Selective hydrogen sensing propenies of surface fonctionalized tin oxide. Sensors and Acturators B:1999, 55(2-3):154-160.
    [44]Wada k Egashira M. Hydrogen sensing properties of SnO2 subjected to surface chemical modification with ethoxysilanes. Sctlsors and Acturators B:2000,62(3): 211-219.
    [45]江剑平.半导体激光器.北京:电子工业出版社,2000.125-148
    [46]胥静.嵌入式系统设计与开发实例详解.北京:航空航天大学出版社,2005.
    [47]郑伟涛.薄膜材料与薄膜技术[M].化学工业出版社,2007,63-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700