用户名: 密码: 验证码:
用于液体静压导轨的花岗岩材料结构分析与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在设计精密导轨时,通常会选择钢材料来制造导轨。钢材料具有强度大,硬度高的优点,但它也存在加工周期长,成本高等缺点,特别是热处理后的残余内应力会使导轨发生微变形,从而影响导轨精度。
     本文以精密液体静压导轨为研究对象,重点研究了花岗石材料制作静压导轨的可行性。使用有限元分析软件ANSYS,分析花岗岩材料液压导轨溜板在受外载荷时的变形量,同时与相同状态下氮化钢材料液压导轨溜板变形量进行了比较,通过对花岗石材料的结构尺寸优化,使得花岗石溜板的变形量达到了使用要求。最后通过试验研究,检验了导轨的直线度、刚度,并与氮化钢液压导轨进行对比,达到良好效果,各项性能指标均满足要求。
     首先,确定了精密导轨的总体结构形式;论述了液体静压支承系统中有关平面支承单元的理论;分析不同设计参数λ0对于对置双向支承油垫承载能力和刚度的影响;对小孔节流式矩形平面油垫的结构尺寸进行了设计。
     其次,使用有限元分析软件ANSYS,分析花岗岩液压导轨溜板在受外载荷时的变形量,同时与相同状态下氮化钢液压导轨溜板变形量进行了比较,定性地分析溜板变形对导轨承载能力和刚度的影响。
     然后,制定优化方案,通过改变花岗岩材料液压导轨溜板的结构尺寸,使其变形量满足设计要求。使用电感测微仪测量经过结构优化的花岗岩材料液压导轨溜板变形量,验证了有限元计算结果正确。
     最后,对花岗岩材料液压导轨展开试验研究。测量导轨水平方向和竖直方向直线度以及导轨油膜刚度,并与氮化钢液压导轨进行对比。
     本论文完成了导轨的结构设计、分析、精度测量全部过程,设计的花岗岩材料液体静压导轨的各项性能指标均满足使用要求,此导轨的成功研制为相关领域的类似设计提供了借鉴和参考。
In the design of precision guide, steel is usually selected as the material because of its high stiffness and hardness. But steel has long production cycle and high cost, and micro-deforming induced by residual stress after heat-treating could impact the precision of guide.
     In this paper, hydrostatic guide is studied,and the key point of paper is to research feasibility of granite to design and machine precision guide. Using the finite element software Ansys, the deforming of granite hydrostatic guide slide carriage under external loads is analyzed and compared with it of nitriding steel hydrostatic guide slide carriage under similar situation. Through optimization method, the deforming values of slide carriage can satisfy the design request. By experiments and compared with nitriding steel hydrostatic guide, the straightness and stiffness of guide are measured, and it has good results and satisfy the performance requests.
     Firstly, the gross structure of precision guide is determined. The flat bearing theory of hydrostatic is introduced and the influence of different parameterλ0 on bearing capacity and stiffness of bearing oil pad are analyzed. From the analysis orifice flow-restriction rectangular plane oil pad is designed.
     Secondly, using the finite element software Ansys, the deforming of granite hydrostatic guide slide carriage under external loads is analyzed and compared with it of nitriding steel hydrostatic guide slide carriage under similar situation. And the influence of slide carriage deformation on the bearing capacity and stiffness of guide is qualitatively analyzd.
     Thirdly, optimization scheme is determined. Through changing the structure size of granite hydrostatic guide slide carriage, the deforming values of slide carriage can satisfy the design request. For the optimized granite hydrostatic guide, the deformation of slide carriage is measured by induction amesdial and the result is accordant with simulation of FEM.
     Finally, the experiments of granite hydrostatic guide are finished. Compared with nitriding steel hydrostatic guide, straightness in both horizontal and vertical directions is measured, also the stiffness of granite hydrostatic guide is measured.
     The design, structure analysis and precision measurement of guide are completed in this paper. The performance parameters of designed granite hydrostatic guide satisfy the operating requirements. The development of granite hydrostatic guide is useful to the design in the correlation fields.
引文
1庞涛.超精密加工技术.国防工业出版社, 2000:1~3
    2袁哲俊,王先奎.精密超精密加工技术.机械工业出版社, 1997:1~2
    3黄长征,王建萍,朱昱.影响超精密加工精度的主要因素.韶关大学学报. 2000, (4):79
    4许茂桃.超精密加工技术的发展及其对策.制造技术与机床. 2001,(1):7~8
    5李圣怡,朱建忠.超精密加工及其关键技术的发展.中国机械工程. 2000, 11(1~2):177
    6漆仲如.机床导轨误差对零件加工精度的影响.南昌高专学报. 1999, (3):17~18
    7唐开勇.机床床身导轨的磨损及其对机床精度的影响.机械研究与应用. 2006, 19(5):12~13
    8叶正环.导轨导向精度对加工精度的影响.太原师范学院学报. 2007, 6(1):67~68
    9花国梁.精密测量技术.中国计量出版社, 1990:1~3
    10朱士忠.精密测量技术常识.电子工业出版社, 2005:1~2
    11邵东向,李良.机械工程测量技术基础.哈尔滨工业大学出版社, 2003:1~2
    12贺大兴,周祖德.超精密精密机床技术状况与技术内涵.武汉理工大学学报. 2005, 27(3):75~76
    13黎永明,刘建国.超精密机床的发展及其关键技术.上海机械学院学报. 1994, 16(2):57~58
    14李圣怡,戴一帆,彭小强.超精密加工机床及其新技术发展.国防科技大学学报. 2000, 22(2):95~96
    15王先奎.精密加工技术实用手册.机械工业出版社, 2001:257
    16 C. L. Chao, J Neou. Model Reference Adaptive Control of Air-lubricated Capstan Drive for Precision Positioning. Precision Engineering. 2000, (124): 285~290
    17张景和,张顺国,赵海潇.大型超精密机床导轨卸荷系统结构设计与测试.光学精密工程. 2007, 15(9):1384
    18冯辛安,黄玉美,杜君文.机械制造装备设计.机械工业出版社,2001:158~159
    19贾宝贤,胡富强,张勇等.花岗岩构件的应用与设计. 2002, 29(5):58~60
    20 M. J. Wu. The Ultra-precision Machine Tool Made of Granite. Second International Conference on Manufacturing Technology. Hong Kong, 16-18 Dec 1993:155~158
    21王贵林,李圣怡,粟时平.基于超精密应用的高刚度高阻尼空气静压导轨研究.航空精密制造技术. 2001, 37(6):1~2
    22 K. J. Stout, S. M. Barrans. The Design of Aerostatic Bearings for Application to Nanometer Resolution Manufacturing Machine Systems. Tribology International, 2000(33):803~809
    23王东锋.液体静压导轨及其在机床导轨设计中的应用研究.液压气动与密封. 2003, (5):26~27
    24庞志成.液体气体静压技术.黑龙江人民出版社, 1981
    25陈燕生.液体静压支承原理和设计.北京航空学院出版社, 1980
    26现代实用机床设计手册编委会.现代实用机床设计手册.机械工业出版社, 2006:1526~1527
    27谭建国.使用ANSYS6.0进行有限元分析.北京大学出版社, 2002:1~2
    28 M. J. Fagan. Finite Element Analysis Theory and Practice. 1997:253~256
    29 P. H. Denke. A Matrix Method of Structural Analysis. Proc. 2nd.U. S. Natl. Conger. Appl. Mech. ASME, Jun, 1954:445~451
    30 R. W. Clough. The Finite Element Method in Plane Stress Analysis. Proc. of 2nd ASCE Conf. On Electronic Computation, Pittsburgh, Pa, Sep1960, 8~9
    31 A. Farah, J. Godoy. Finite Element Analysis of the GTC Commissioning Instrument Structure. Proceedings of SPIE-The International Society for Optical Engineering. 2002,4837(1):317~324
    32 Cao Ji-Guang, Zhou Si-Zhu, Chen Wei-Qian. Analysis of Dynamic Property of Radar Antenna by Using Finite Element Method (FEM). Jianghan Shiyou Xueyuan Xuebao/Journal of Jianghan Petroleum Institute. 2002,24(1): 86~87
    33 Kitamura, Mitsuru. Optimization of Ship Structure Based on Zooming Finite Element Analysis with Sensitivities. International Journal of Offshore and Polar Engineering. 2003,13(1):60~65
    34 Subramaniam, Anandh, N. Ramakrishnan. Analysis of Thin Film Growth Using Finite Element Method. Surface and Coatings Technology. 2003,167(3):249~254
    35 M. P. Rodriguez, N. Y. Shammas. Finite Element Simulation of Thermal Fatiguein Multilayer Structures: Thermal and Mechanical Approach. Microelectronics and Reliability. 2001,41(4):517~523
    36 M. Sedighi, M. Mohammadi. On the Static and Dynamic Analysis of a Small Satellite (MESBAH). Acta Astronautica. 2003, 52(9): 1007~1012
    37崔胜民,杨占春.基于有限元分析的汽车车轮结构优化设计.机械设计. 2001, (9):41~43
    38机械设计手册编委会.机械设计手册(第一卷).机械工业出版社. 2004:38
    39李黎明. ANSYS有限元分析实用教程.清华大学出版社, 2005:323~325
    40 Q. Feng, B. Zhang, C. F. Kuang. A Straightness Measurement System Using a Single-mode Fiber-coupled Laser Module. Laser Technology. 2004,36:279~283
    41 K. C. Fan, Y. Zhao. A Laser Straightness Measurement System Using Optical Fiber and Modulation Techniques. Manufacture. 2000,40:2073~2081
    42 L. J. Wuerz, R. C. Quennelle. Laser Interferometer System for Metrology an Machine Tool Applications. Precision Engineering. 1998,12:111~114
    43 C. R. Steinmetz. Sub-micro Position Measurement and Control on Precision Machine Tools with Laser Interferometer. Precision Engineering. 1990,14:12~24
    44 Makoto Yamauchi, Kiyofμm I Matsuda. Interferometric Straightness Measurement System Using a Holographic Grating. Optical Engineering. 1994,(4):1178~1183
    45 A. Shimokohbe, H. Aoyama. A High Precision Straight-motion System. Precision Engineering. 1986,3:151~154
    46 H. H. Sakm, H. Wada. Straightness Measurement Using a Heterodyne Moire Method. Precision Engineering. 1987,9:19~21
    47 R. J. King. Polarimetry Applied to Alignment and Angle Measurement. Optical Engineering. 1981,20:39~43
    48 C. R. Steinmetz. Sub-micro Position Measurement and Control on Precision Machine Tools with Laser Interferometer. Precision Engineering. 1990,12:12~24
    49 Shinji KASEI, Kohji ONDA. Measurement of Straightness by Means of Overlap Coupling of Data. JSME International Journal. 1987,30:992~995
    50张善锺,于瀛洁,张之江.直线度平面度测量技术.中国计量出版社, 1997:18~21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700