退火处理与压缩速率对非晶合金硬度与电子功函数的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技与工业的发展进步,具有独特原子结构的非晶态合金凭借其各方面优异的性能及很好的应用前景,受到越来越多材料学者的关注和研究。但其较强的脆性和很难大块制备这两个缺点严重的限制了它的广泛应用。本文基于开尔文探针测试技术,对经过低温退火和压缩变形的非晶合金进行电子功函数测试以及硬度测试,通过对比电子功函数与硬度的变化规律,试图从原子尺度研究非晶合金的结构及变形行为,进而为从本质上进一步理解非晶合金独特的微观结构和力学行为,克服其在制造和应用上的困难提供理论依据及指导。本文研究的主要
     内容如下:
     1.采用钨极真空电弧熔炼技术,用负压铜模吸铸法制备了Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)非晶态合金样品系,在不同时间和温度下对样品进行退火处理。通过XRD、DSC和SEM等检测技术对铸态样品进行测试分析发现玻璃转变温度(Tg)约为623K,晶化温度(Tx)约为703K,过冷液相区为80K左右,经过退火的Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)非晶合金同原始铸态非晶合金结构都没有发生晶化转变但出现了一定程度的结构弛豫。
     2.基于开尔文探针技术对相同温度下进行不同时间低温退火的Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)非晶样品进行电子功函数测试,结果发现随着退火时间的增大电子功函数值呈下降趋势。
     3.同样使用开尔文探针系统对不同温度退火后的非晶合金样品进行电子功函数测试,发现电子功函数值随着温度的升高而减小,当温度靠近玻璃转变温度(Tg)时,电子功函数值下降的幅度加大。
     4.测量不同温度退火后Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)非晶样品的洛氏硬度,并将结果与电子功函数值相比较,发现硬度值与电子功函数值的变换呈反比,随着退火温度的上升而增大。运用自由体积模型和结构弛豫理论对实验结果进行分析和解释。
     5.测量不同压缩速率下压缩变形后的Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5)非晶样品的电子功函数值,发现电子功函数值随压缩速率的增加而增大,并用自由体积模型的相关理论对实验结果进行了分析和解释。
Go with the development and progress of technology and industry, bulk metallic galss (BMGs) which provided with a unique atomic structure is studied by more and more material scholars by its excellent performance and good prospects. But its brittleness and the difficult to preparation limit its wide application seriously. In our studies, the electronic work function (EWF) of the amorphous alloys which treated by low temperature heat treatment and compression were tested by scanning Kelvin probe (SKP) technique. We analyzed the variety of the EWF and hardness of the BMGs with the aim of investigating their structure and mechanical behavior by a electronic scale and learn more about the unique microstructure to overcome its shortcomings in manufacturing and application. The main contents of this paper are as follows:
     1. Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy samples were prepared by tungsten vacuum melting technique and vacuum copper mold suction casting, and heat-treated by different annealing time and temperature. After XRD, DSC and SEM tests we found that the glass transition temperature (Tg) is 623K, the crystallization temperature (Tx) is 703K and the super cooled liquid region is about 80K. And we found that the crystallization has not took place of the annealed Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) samples and there was a structural relaxation compared with the as-cast sample.
     2. We tested the EWF of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy samples which were treated by low temperature heat treatment for different annealing time. The results showed that the values of the EWF decreased with the increasing of the annealing time.
     3. We also tested the EWF of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy samples which were treated by different annealing temperatures. And the values of the EWF also decreased with increasing the annealing temperature. When the annealing temperature is closed to the glass transition temperature (Tg), the EWF was decreasing more obviously.
     4. The Rockwell hardness of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy samples were tested and compared to the change of the value of EWF. It showed that the hardness and EWF values was changed in a inversely way which the hardness increased with the rise of the annealing temperature. We analyzed experimental results with the free volume model and the structural relaxation refer to the relative literatures.
     5. We tested the EWF of the Zr_(41.2)Ti_(13.8)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy samples which were compressed under different compression rate. The result shows that the values of the EWF increased when the compression rate rose. And we analyzed the result with the theory of free volume model.
引文
[1]王成国,丁洪太,侯绪荣,材料分析测试方法.上海:上海交通大学出版扯, 1994: p. 78-89.
    [2]燕战秋,功能材料概论.机械工程材料, 1984. 4.
    [3]柯成,唐与湛,罗阳等译,非晶态金属合金. 1989:冶金工业出版社.
    [4] Klement, W., R. Willens, and P. Duwez, Non-crystalline structure in solidified gold–silicon alloys. 1960.
    [5] Chen, H. and C. Miller, A rapid quenching technique for the preparation of thin uniform films of amorphous solids. Review of Scientific Instruments, 1970. 41: p. 1237.
    [6] Chen, H., The glass transition temperature in glassy alloys: Effects of atomic sizes and the heats of mixing. Acta Metallurgica, 1974. 22(7): p. 897-900.
    [7] Inoue, A., T. ZHANG, and T. Masumoto, Al-La-Ni amorphous alloys with a wide supercooled liquid region. Materials transactions, JIM, 1989. 30(12): p. 965-972.
    [8] Kim, S., A. Inoue, and T. Masumoto, High Mechanical Strengths of Mg--Ni--Y and Mg--Cu--Y Amorphous Alloys With Significant Supercooled Liquid Region. Materials transactions, JIM, 1990. 31(11): p. 929-934.
    [9] Peker, A. and W. Johnson, A highly processable metallic glass: Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5. Applied Physics Letters, 1993. 63(17): p. 2342-2344.
    [10] L ffler, J., Bulk metallic glasses* 1. Intermetallics, 2003. 11(6): p. 529-540.
    [11]赵德强,等.,大块非晶合金的形成能力及研究进展.金属功能材料, 2003. 10(003): p. 36-39.
    [12] Ramamurty, U., et al., Embrittlement of a bulk metallic glass due to low-temperature annealing. Scripta materialia, 2002. 47(2): p. 107-111.
    [13] Murali, P. and U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Materialia, 2005. 53(5): p. 1467-1478.
    [14] erno ková, E., et al., Structural relaxation near the glass transition temperature. Journal of Non-Crystalline Solids, 2001. 284(1-3): p. 73-78.
    [15] Keryvin, V., V. Hoang, and J. Shen, Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation. Intermetallics, 2009. 17(4): p. 211-217.
    [16] Gilbert, C., R. Ritchie, and W. Johnson, Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Applied Physics Letters, 1997. 71: p. 476.
    [17]虞伟良,硬度测试技术的新动态与发展趋势.理化检验:物理分册, 2003. 39(008): p. 401-405.
    [18] Ullner, C., et al., Hardness testing on advanced technical ceramics. Journal of the European Ceramic Society, 2001. 21(4): p. 439-451.
    [19] Funada, Y., et al., Evaluation of raw hardness of DLC thin films prepared by IBAD. Nuclear Instruments and Methods in Physics Research B, 1999. 148: p. 664-668.
    [20] Chen, J. and S. Bull, On the factors affecting the critical indenter penetration for measurement of coating hardness. Vacuum, 2009. 83(6): p. 911-920.
    [21] Mohamed, M. and G. Aggag, Uncertainty evaluation of shore hardness testers. Measurement, 2003. 33(3): p. 251-257.
    [22] Song, J., et al., Establishing a worldwide unified Rockwell hardness scale using standard diamond indenters. Measurement, 1998. 24(4): p. 197-205.
    [23] Shahdad, S., et al., Hardness measured with traditional Vickers and Martens hardness methods. Dental Materials, 2007. 23(9): p. 1079-1085.
    [24] Chicot, D., et al., Comparison of instrumented Knoop and Vickers hardness measurements on various soft materials and hard ceramics. Journal of the European Ceramic Society, 2007. 27(4): p. 1905-1911.
    [25]吴彩文, ZnO表面光伏行为的Kelvin探针表征. 2009,湘潭大学.
    [26]林宗涵,热力学与统计物理学. 2007,北京:北京大学出版社.
    [27] Li, D. and W. Li, Electron work function: A parameter sensitive to the adhesion behavior of crystallographic surfaces. Applied Physics Letters, 2001. 79: p. 4337.
    [28] Fain Jr, S. and J. McDavid, Work-function variation with alloy composition: Ag-Au. Physical Review B, 1974. 9(12): p. 5099-5107.
    [29] Li, W., et al., An electronic criterion for the intrinsic embrittlement of structural intermetallic compounds. Journal of Applied Physics, 2005. 98: p. 083503.
    [30] Li, W., et al., Influences of tensile strain and strain rate on the electron work function of metals and alloys. Scripta materialia, 2006. 54(5): p. 921-924.
    [31] Li, W. and D. Li, On the correlation between surface roughness and work function in copper. The Journal of chemical physics, 2005. 122: p. 064708.
    [32] Li, W. and D. Li, Influence of surface morphology on corrosion and electronic behavior. Acta Materialia, 2006. 54(2): p. 445-452.
    [33] Li, W. and D. Li, Variations of work function and corrosion behaviors of deformed copper surfaces. Applied Surface Science, 2005. 240(1-4): p. 388-395.
    [34]舒启清,电子隧穿原理. 1998:科学出版社.
    [35] Rabalais, J., Principles of ultraviolet photoelectron spectroscopy. 1977: Wiley New York.
    [36] Zhu, B., S. Liu, and Q. Ran, Optical image encryption based on multifractional Fourier transforms. Optics letters, 2000. 25(16): p. 1159-1161.
    [37] Giesen, K., et al., Two-photon photoemission via image-potential states. Physical review letters, 1985. 55(3): p. 300-303.
    [38] Schmuttenmaer, C., et al., Time-resolved two-photon photoemission from Cu (100): Energy dependence of electron relaxation. Physical Review B, 1994. 50(12): p. 8957-8960.
    [39] Binnig, G., et al., Surface studies by scanning tunneling microscopy. Physical review letters, 1982. 49(1): p. 57-61.
    [40] Stroscio, J. and W. Kaiser, Scanning tunneling microscopy. 1993: Academic Pr.
    [41]贾金锋, K. Inoue,用扫描隧道显微镜测量局域功函数.物理学报, 1997. 46(008): p. 1552-1558.
    [42] Hennelly, B. and J. Sheridan, Optical image encryption by random shifting in fractional Fourier domains. Optics letters, 2003. 28(4): p. 269-271.
    [43] Jacobs, H., et al., Resolution and contrast in Kelvin probe force microscopy. Journal of Applied Physics, 1998. 84: p. 1168.
    [44] Stratmann, M., et al., The scanning Kelvin probe; a new technique for the in situ analysis of the delamination of organic coatings. Progress in Organic Coatings, 1996. 27(1): p. 261-267.
    [45]程洁一,等,用Fowler-Nordheim公式测定ITO功函数的研究.光电子激光, 2007. 18(8).
    [46]曾葆青,杨中海,场致发射体的局域功函数研究.真空科学与技术, 1999. 19(003): p. 201-206.
    [47]郭可珍,万梅香,用XPS方法测量导电高聚物的功函数.分析仪器, 1990(002): p. 64-67.
    [48]王文皓,关于用UPS测量功函数.物理测试, 2007(04).
    [49] Dornbusch, M., The use of modern electrochemical methods in the development of corrosion protective coatings. Progress in Organic Coatings, 2008. 61(2-4): p. 240-244.
    [50] Nazarov, A. and D. Thierry, Scanning Kelvin probe study of metal/polymer interfaces. Electrochimica Acta, 2004. 49(17-18): p. 2955-2964.
    [51] Han, L. and F. Mansfeld, Scanning Kelvin probe analysis of welded stainless steel. Corrosion Science, 1997. 39(1): p. 199-202.
    [52] Kasai, T., et al., Applications of a non-contacting Kelvin probe during sliding. Wear, 1999. 225: p. 1186-1204.
    [53] De Paoli, M. and W. Gazotti, Electrochemistry, polymers and opto-electronic devices: a combination with a future. Journal of the Brazilian Chemical Society, 2002. 13: p. 410-424.
    [54] Ltd, K.T., Manual Version SKP 4.5, in www.kptechnology.ltd.uk. 2005.
    [55] Baikie, I., et al., Multitip scanning bio-Kelvin probe. Review of Scientific Instruments, 1999. 70: p. 1842.
    [56] Schmidt, W. and M. Stratmann, Scanning kelvinprobe investigations of filiform corrosion on aluminum alloy 2024-T3. Corrosion Science, 1998. 40(8): p. 1441-1443.
    [57] Grundmeier, G., K. Wapner, and M. Stratmann, Applications of a new height regulated Scanning Kelvin Probe for the study of polymer/metal interfaces in corrosive environments.
    [58] Nonnenmacher, M., M. O'boyle, and H. Wickramasinghe, Surface investigations with a Kelvin probe force microscope. Ultramicroscopy, 1992. 42: p. 268-273.
    [59] Inoue, A. and A. Takeuchi, Recent progress in bulk glassy alloys. Mater. Trans, 2002. 43(8): p. 1892.
    [60] Gottschall, R., Recent advances and future research directions in bulk metallic glasses. Materials Transactions, 2001. 42(4): p. 548-550.
    [61] Johnson, W., Bulk amorphous metal—An emerging engineering material. JOM Journal of the Minerals, Metals and Materials Society, 2002. 54(3): p. 40-43.
    [62]杨元政,等., Zr-基块体非晶合金近玻璃转变温度热处理后的组织与性能.金属热处理, 2005. 30(003): p. 17-20.
    [63]张玲,詹肇麟,李莉, Zr基非晶合金力学性能的研究进展.热加工工艺, 2008. 37(016): p. 103-107.
    [64] Fan, C. and A. Inoue, Shear sliding-off fracture of bulk amorphous Zr-based alloys containing nanoscale compound particles. Materials transactions-JIM, 1999. 40(12): p. 1376-1381.
    [65] Inoue, A., et al., Mechanical properties of bulk amorphous Zr-Al-Cu-Ni-Ag alloys containing nanoscale quasicrystalline particles. Materials transactions-JIM, 1999. 40(12): p. 1382-1389.
    [66] Busch, R., Y. Kim, and W. Johnson, Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 alloy. Journal of Applied Physics, 1995. 77(8): p. 4039-4043.
    [67] Wen, P., et al., Calorimetric glass transition in bulk metallic glass forming Zr-Ti-Cu-Ni-Be alloys as a free-volume-related kinetic phenomenon. Physical Review B, 2003. 67(21): p. 212201.
    [68] Haruyama, O., Thermodynamic approach to free volume kinetics during isothermal relaxationin bulk Pd-Cu-Ni-P20 glasses. Intermetallics, 2007. 15(5-6): p. 659-662.
    [69] Gao, Y., B. Yang, and T. Nieh, Thermomechanical instability analysis of inhomogeneous deformation in amorphous alloys. Acta Materialia, 2007. 55(7): p. 2319-2327.
    [70] Kanungo, B., et al., Characterization of free volume changes associated with shear band formation in Zr-and Cu-based bulk metallic glasses. Intermetallics, 2004. 12(10-11): p. 1073-1080.
    [71] Spaepen, F. and D. Turnbull, A mechanism for the flow and fracture of metallic glasses. Scripta Metallurgica, 1974. 8(5): p. 563-568.
    [72] Ruitenberg, G., et al., Pressure-Induced Structural Relaxation in Amorphous Pd_ {40} Ni_ {40} P_ {20}: The Formation Volume for Diffusion Defects. Physical review letters, 1997. 79(24): p. 4830-4833.
    [73] Steif, P., F. Spaepen, and J. Hutchinson, Strain localization in amorphous metals. Acta Metallurgica, 1982. 30(2): p. 447-455.
    [74] Argon, A., Plastic deformation in metallic glasses. Acta Metallurgica, 1979. 27(1): p. 47-58.
    [75] Wapner, K., M. Stratmann, and G. Grundmeier, Application of the Scanning Kelvin Probe for the study of the corrosion resistance of interfacial thin organosilane films at adhesive/metal interfaces. Silicon Chemistry, 2005. 2(5): p. 235-245.
    [76] Li, W. and D. Li, A study on the kinetic response of the electron work function to wear. Wear, 2003. 255(1-6): p. 333-340.
    [77] Wapner, K. and G. Grundmeier, Scanning Kelvin probe measurements of the stability of adhesive/metal interfaces in corrosive environments. Advanced Engineering Materials, 2004. 6(3): p. 163-167.
    [78]周强,等,铜铅合金的扫描开尔文探针显微镜研究.电子显微学报, 2006. 25(004): p. 348-352.
    [79] Fratila-Apachitei, L., I. Apachitei, and J. Duszczyk, Characterization of cast AlSi (Cu) alloys by scanning Kelvin probe force microscopy. Electrochimica Acta, 2006. 51(26): p. 5892-5896.
    [80] Wigner, E. and J. Bardeen, Theory of the work functions of monovalent metals. Physical Review, 1935. 48(1): p. 84-87.
    [81] Wright, W., T. Hufnagel, and W. Nix, Free volume coalescence and void formation in shear bands in metallic glass. Journal of Applied Physics, 2003. 93: p. 1432.
    [82] Leung, T., et al., Relationship between surface dipole, work function and charge transfer: Some exceptions to an established rule. Physical Review B, 2003. 68(19): p. 195408.
    [83] Iqbal, M., et al., Mechanical properties and ion irradiation of bulk amorphous Zr55Cu30Al10Ni5 alloy. Journal of Non-Crystalline Solids, 2007. 353(24-25): p. 2452-2458.
    [84] Lee, K., et al., Hardness and wear resistance of Zr-based bulk metallic glass/Ti surface composites fabricated by high-energy electron beam irradiation. Surface and Coatings Technology, 2006. 201(3-4): p. 1620-1628.
    [85] Lee, J., et al., Mechanical property and fracture behavior of strip cast Zr-base BMG alloy containing crystalline phase. Intermetallics, 2004. 12(10-11): p. 1125-1131.
    [86] Yoo, B.-G., et al., On the hardness of shear bands in amorphous alloys. Scripta materialia, 2009. 61(10): p. 951-954.
    [87]曹韩学,等,镁合金AM60B在不同压缩速度下塑性变形研究.材料导报, 2005. 19(F11): p. 448-450.
    [88]张志豪,周成,谢建新, Zr55Al10Ni5Cu30大块非晶合金的超塑性挤压成形性能.中国有色金属学报, 2005. 15(001): p. 33-37.
    [89]刘娜,等,三维连通网状SiC陶瓷/Zr基非晶复合材料动态变形特征.北京理工大学学报, 2007. 27(001): p. 77-81.
    [90] Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977. 25(4): p. 407-415.
    [91] Cohen, M. and G. Grest, Liquid-glass transition, a free-volume approach. Physical Review B, 1979. 20(3): p. 1077-1098.
    [92] Huang, R., et al., Inhomogeneous deformation in metallic glasses. Journal of the Mechanics and Physics of Solids, 2002. 50(5): p. 1011-1027.
    [93] Heggen, M., F. Spaepen, and M. Feuerbacher, Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics, 2005. 97: p. 033506.
    [94]曹庆平, Cu基块体非晶合金的玻璃形成能力,晶化机制及变形诱发的结构和力学性能变化. 2007,上海交通大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700