40Cr表面多弧离子镀TiAlN/TiN复合膜层的工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械传动装置中,齿轮的失效占到失效总数的绝大部分,齿轮在传动过程中的受到弯曲应力、接触应力、冲击力等多种力的综合作用,产生的失效形式多种多样。传统的表面强化工艺(整体淬火、表面淬火、氮化等)逐渐不能满足工业生产的需要,新型表面强化技术(PVD、CVD)正受到越来越多人的关注。
     本文主要利用多弧离子镀技术在常用齿轮钢40Cr表面制备TiAlN/TiN膜层,研究不同工艺参数对膜层的表面形貌、内部组织结构、显微硬度、抗氧化性能及摩擦磨损性能的影响。制备TiAlN/TiN膜层所采用的靶材为纯度为99.99%纯铝靶和工业级纯钛靶,镀膜参数为基体负偏压0~500V,钛靶电流60A,铝靶电流40~80A,N_2分压0.3~1.3Pa,沉积温度200℃,镀制时间90min。
     研究结果表明:基体负偏压对膜层性能有很大的影响,过高或过低的基体偏压会使得膜层表面不平整,表面显微硬度降低。基体负偏压越高,膜层中Ti、Al原子的含量就越低;靶材电流对膜层性能也有显著影响,电流越高膜层表面越不平整。显微硬度则随着靶材电流的升高而先上升后降低。电流越高,膜层中Ti、Al原子的含量就越高;N_2分压的升高对改善膜层表面形貌起有利的影响,但是过高的N_2分压也会导致靶材表面“氮中毒”,使得膜层显微硬度下降,膜层中Ti、Al原子的含量下降。
     TiAlN/TiN膜层的抗氧化性能要大大优于40Cr基体和TiN膜层。在200℃空气环境中,40Cr基体表面已经出现十分明显的氧化痕迹。温度到700℃时,表面生成的氧化皮明显增厚并开裂脱落,完全不能保护基体。TiN膜层在200℃空气环境中显示出的抗氧化性能较好,但到700℃时,TiN薄膜被完全氧化,颜色从本来的金黄色变为棕色并且表面出现剥落,露出基体。TiAlN/TiN膜层无论在200℃还是700℃的环境中都表现出了优异的抗氧化性能,膜层完整,无开裂,无剥落。
     研究TiAlN/TiN膜层在干态旋转滑动条件下的摩擦磨损性能的主要试验参数为:法向载荷10~30N,线速度13188mm/min,持续时间10min。通过对比40Cr在相同条件下的试验结果我们发现,TiAlN/TiN膜层的摩擦系数和磨损量都要大大低于40Cr。同时我们还发现随着法向载荷的增大膜层的摩擦系数呈下降趋势。
Gear failure takes the most important part of the failure of mechanical drive. When the gear is transfering power, it has to bear bending stress, contact stress and impact stress. So, the gear has a lot of failure modes. The conventional surface strengthening techniques such as whole quenching, surface quenching and nitride can not meet the needs of industrial production. The new surface strengthening techniques such as PVD and CVD have been concerned by people.
     40Cr steel substrate is coated with TiAlN/TiN films by Multi-arc ion technology. We study surface morphology, internal structure, microhardness, oxidation resistance and friction and wear properties of TiAlN/TiN coating in different process parameters. The butt materials are 99.99% purity titanium and 99.99% purity aluminum. The deposition parameters are as follows: pushed biasing is 0~500V, current of titanium target is 60A, current of aluminum target is between 40A to 80A, N_2 pressure is from 0.3Pa to 1.3Pa, deposition temperature is 200℃and time of coating is 90min.
     The results show that: the pushed bias voltage has a great influence in performance of TiAlN/TiN films. The excessively high pushed bias voltage can make the surface of films out of flatness and reduce the micro hardness of films. The same to pushed bias voltage if it is excessively low. The content of Ti and Al in films becomes more and more lower if the pushed bias voltage becomes more and higher; the current of titanium target also has a great influence in performance of TiAlN/TiN films. The surface of coating becomes more and more out-of-flatness by increasing of arc. The microhardness of coating is increasing when arc is increasing. But if the arc is too high, it may make the microhardness fall down. The content of Ti and Al in films becomes more and higher by the arc increasing; The higher N_2 pressure is from a beneficial effect on improving the surface morphology of TiAlN/TiN films. But if N_2 pressure is too high, it can make a phenomenon which we called“Nitrogen poisoning”on the surface of aluminum target and titanium target. The content of Ti and Al in films and microhardness become lower.
     Oxidation resistance of TiAlN/TiN films is batter than 40Cr and TiN film. 40Cr has been oxidized at 200℃. At 700℃, the oxide scale of 40Cr becomes thickening, cracking and shedding. TiN film has good oxidation resistance at 200℃, but has been oxidized completely at 700℃. TiN film has begun to drop and its color from golden to brown. TiN film can not protect 40Cr steel substrate at 700℃. Oxidation resistance of TiAlN/TiN films is perfect at 700℃. The films are integrity, no cracking and no peeling.
     The main experimental parameters of reciprocating sliding dry friction experiment are as follows: normal load is between 10N and 50N, linear velocity is 13188mm/min and each time is 10min. After comparing the friction properties of 40Cr and TiAlN/TiN films we find that both friction coefficient and wear loss of TiAlN/TiN films are lower than 40Cr. Meantime we also find that the friction coefficient of TiAlN/TiN films is reducing as the normal load increases.
引文
[1]曲敬信,汪泓宏.表面工程手册[M].北京:化学工业出版社, 1998.
    [2]文峰,黄楠,孙鸿,等.磁过滤弧源沉积合成不同N分压下的N掺杂金刚石薄膜性能研究[A].第五届全国表面工程学术会议论文集[C].西安, 2004.
    [3]中国机械工程学会材料分会.齿轮的失效分析[M].北京:机械工业出版社, 1992.
    [4]何奖爱,王玉伟.材料磨损与耐磨材料[M].长春:东北大学出版社, 2001.
    [5] D IN3979, Zahnschaden an Zhnradgetrieben [Z].何德芳译.东北工学院出版社, 1979.
    [6]日本机械学会技术资料《齿轮强度设计资料》出版分科会编.李茹贞,赵清慧,译.姜勇校订[M].北京:机械工业出版社, 1984.
    [7]徐滨士,朱绍华.表面工程的理论与技术[M].北京:国防工业出版社, 1999.
    [8]张津,程晓萍.齿轮材料及齿轮表面工程技术发展现状[J].机械工艺师, 1999, (2):36-39.
    [9]黄华,蒙必胜.钢齿轮表面合金涂层的显微结构和接触疲劳强度研究[J].机械传动, 2000, 24 (4):23-27.
    [10] J.W.Blake, H.S.Cheng. A Surface Pitting Life Model for Spur Gears[J]. Tribology. 1991, (113):712-718.
    [11] T.E.Tallian. Simplified Contact Fatigue Life Prediction Model[J]. Journal of Tribology. 1992, (2):207-220.
    [12]张俊华,王丹,皮亚南.闭式齿轮传动齿面疲劳点蚀和剥落的分析[J].江西科技. 2003, (1):1-3.
    [13]刘宏. 650轧机齿轮座人字齿轴断齿原因分析[J].甘肃冶金. 1997, (3):33-37.
    [14]丁守祥.重载齿轮齿面疲劳损坏及预防[J].兵器材料科学与工程. 2002, 25(1):49-53.
    [15] Y.Ding, R.Jones, B.Kuhnell. Elastic-Plastic Finite Element Analysis of Spall Formation inGears[J]. Wear. 1996, (1-2):197-205.
    [16] Y.Ding, N.F.Rieger. Spalling Formation Mechanism for Gears[J]. Wear. 2003, (12):1307-1317.
    [17]边新孝,张君彩,谈嘉祯.航空齿轮齿面失效分析[J].机械传动. 2002, (2):55-56.
    [18]刘宏. 650轧机齿轮座人字齿轴断齿原因分析[J].甘肃冶金. 1997, (3):33-37.
    [19]龚小平,张丹峰.高速齿轮传动可靠性优化设计[J].机械设计与制造. 2000, (4):1-2.
    [20]邵正宇.渐开线圆柱齿轮抗胶合可靠性计算[J].机械设计与制造. 1995, (5):9-11.
    [21]唐大放.渐开线斜齿轮齿面动态闪温研究[J].机械工程学报. 1996, 32(4):17-23.
    [22] J.Castro, J.Seabra. Scuffing and Lubricant Film Breakdown in FZG Gears PartⅡ:New PV Scuffing Criteria, Lubricant and Temperature Dependent[J]. Wear. 1998. 134-135.
    [23] L. Magalh?esa, J. Seabrab. Wear and Scuffing of Austempered Ductile Iron Gears[J]. Wear. 1998, (1-2):237-246.
    [24] Q.Y.Jiang, G.C.Barber. Modeling of Reaction Film Failure in Gear Lubrication[J]. Wear. 1999, 231(1):71-76.
    [25]冯益华,万金领.机械设计中的磨损和磨损失效[J].山东轻工业学院学报. 1997, (3):24-27.
    [26] J.Brauer, A.S.Andersson. Simulation of Wear in Gears With Flank Interference-A Mixed FE and Analytical Approach[J]. Wear. 2003, (254):1216–1232.
    [27] H.Tong. Gear Wear Life Model by Noise Property and Its Statistical Inference[J]. Mathe-matical and Computer Modelling. 1994, 20(7):13-18.
    [28] T.Tevruz. Experiments of scoring and the calculation of scoring on gears by heat method[J]. Wear. 1997, (1-2):204-213.
    [29] T.Tevruz. Experimental Investigations on Scoring of Gears and Calculation by Temperature Method[J]. Wear. 1998, 217(1):81-94.
    [30] J.Wojnarowski, V.Onishchenko. Tooth Wear Effects on Spur Gear Dynamics[J]. Mechanism and Machine Theory. 2003, 38(2):161-178.
    [31] A.Flodin,S.Anderson. Wear Simulation of Spur Gears[J]. Tribotest Journal. 1999, (3):225-250.
    [32] S.Glodez, H.Winter, H.P.Stiwe. A Fracture Mechanics Model for the Wear of Gear Flanks by Pitting[J]. Wear. 1997, (208):177-183.
    [33] S.Glodez, M.Sraml, J.Kramberger. A Computational Model for Determination of Service Life of Gears[J]. International Journal of Fatigue. 2002, (24):1013-1020.
    [34]张恒华,许珞萍.整体淬火和感应淬火[J].国外热处理. 2002, 21(3):13-17.
    [35]郑润娥.齿轮渗碳及渗碳材料应用[J].机械制造. 2001, 39(4):36-38.
    [36]张津,黄奇.离子渗氮与离子镀复合处理研究[J].现代制造工程. 2002, (10):9-11.
    [37]王丽莲.渗氮技术及其进展[J].热处理. 2001, (2):6-9.
    [38]王忠凯.汽车齿轮碳氮共渗工艺的研究[J].金属热处理. 1998, (3):41-42.
    [39] Long Lu, Sung Ki Lyu. A study on the friction and wear characteristics of C-N coated spur gear[J]. Journal of KSTLE. 2004, 20(5):272-277.
    [40] Y.Terauchi, H.Nadanot, M.Kohnot, Y.Nakamoto. Scoring resistance of TiC and TiN coated gears[J]. Tribology international. 1987, 20(5):248-254.
    [41]闻立时,黄荣芳.离子镀硬质膜技术的最新进展和展望[J].真空. 2000, (1):1-11.
    [42]钱文富,曹兴进,卢龙,等.表面处理和涂层技术在齿轮上的应用初探[J].重庆大学学报. 2005, 28(2):1-4.
    [43]王茂祥,吴宗汉,孙承休.多弧离子镀技术中的真空放电过程[J].物理. 1997, 26 (7):431-432.
    [44] Veprek S , Peiprich S. A concept for the design of novel super-hard coatings[J]. Thin Solid Films, 1995,(268):64-71.
    [45] D. S. Rickerby and S. J. Bull. Engineering with Surface Coatings: The Role of Coating Microstructure [J]. Surf. Coat. Technol, 1989, 36(1):39-40.
    [46]周福堂,易人泉,王劲茹,等.离子沉积氮化钛工艺的研究[J].材料保护. 1990, 19(6):11-15.
    [47]吴玉广,离子镀膜中的弧电流对膜层质量的影响[J].真空科学与技术. 1999, 19(5):392-394.
    [48]孙伟,宫秀敏,叶卫平,张覃轶等.多弧离子镀沉积温度对TiN涂层性能的影响[J].电加工与模具. 2000, (5):26-28.
    [49] P.W.Gold, J.Loos. Wear Resistance of PVD-Coating in Roller Bearings[J]. Wear. 2002, 25(3):465-472.
    [50] R.Wei, et al. Aspects of Plasma-Enhanced Magnetron-Sputtered Deposition of Hard Coatings on Cutting Tools[J]. Surface and Coatings Technology. 2002, (158-159):465-472.
    [51] K.B.Muller. Deposition of Hard Films on Hot-Working Steel Dies for Aluminium[J]. Journal of Materials Processing Technology. 2002, (130-131):432-437.
    [52]陈维喜.刀具涂层技术的现状与展望.工具技术, 2000, 34(6):3-6.
    [53]赵海波.国内外切削刀具涂层技术发展综述.工具技术, 2002, 36(2):3-7.
    [54] Molarrius J M, Skorhoner A S. Comparison of cutting performance of ion-plated NbN, ZrN, TiN and(TiA1)N coatings[J]. Surf.Coat, 1987, 33:117-132.
    [55] Randawa H, Johnson P C. A Review of Cathodic Arc Plasama Deposition Process and Their Applications[J]. Surf & Coating Teeh, 1987, 31:303-318.
    [56]王永康,熊仁章,雷廷权,等. Til-xAlxN涂层的组织结构及Al元素的作用机理[J].宁波大学学报(理工版), 2001, 14(4):48.
    [57] Walalstrom U, Hultman L, Sundgren J E. Crystal growth and microstructure of polycrystalline Til-xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering[J]. ThinS0lid Films, 1993, 235:62.
    [58] Konter O, Murlz W D. Industrial deposition of binary, ternary, and quaternary nitrides of titanium, zirconium, and aluminum[J]. J Vae Sci Technol, 1987, A5(4):2173.
    [59]李明升,王福会,王铁钢,等.电弧离子镀(Ti,A1)N复合膜的结构和性能研究[J].金属学报, 2003, 39(1):55-60.
    [60]张德元,邓鸣,彭文屹,等.离子镀TiAIN超硬膜耐磨性研究[J].金属热处理学报, 1997, 18(2):43.
    [61]张德元,邓鸣.多弧离子镀(TiXAlYN)系超硬膜中Al的作用.材料科学与工程, 1997, (58):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700