2519A铝铜合金焊接性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强铝合金2519A是一种新型结构材料,具有较高的比强度、比刚度以及良好的加工和高低温力学性能,且在海水及盐雾环境下的抗应力腐蚀性能大大提高,在航空航天领域应用潜力极大。但2519A铝合金焊接工艺性及其接头组织性能的影响变化趋势,还未见明确的研究成果。本文针对2519A铝合金的氩弧焊、搅拌摩擦焊工艺性及其接头组织、力学性能进行了试验研究,并对焊接接头的耐腐蚀性能进行了分析。
     试验发现,2519A-T87铝铜合金氩弧焊接工艺性良好,优于2A12型铝合金,但较5A06铝合金焊接工艺性差。2519A铝铜合金具有焊接热裂纹倾向,焊接材料的选择应优选Al-Cu系,通过预热可降低热裂纹倾向。焊接过程需对焊接材料、焊接工艺参数严格控制才能减少焊接气孔、裂纹等缺陷的出现。
     2519A-T87/5A06-O异种铝合金熔焊时,焊核区凝固组织的枝晶间形成了1~10μm厚的Mg2Si与基体形成的非平衡共晶和游离状态的Al2CuMg(S相)圆形粒子。虽然焊核区是凝固组织,但仍获得了高于5A06-0态母材的硬度值,拉伸断口在5A06-O态母材侧。2519A-T87/5A06-O铝合金熔焊焊核区腐蚀主要沿枝晶间隙扩展,腐蚀的这种扩展方式会因枝晶的交叉错排特性方式而受到抑制,焊接件整体上可获得较好的耐剥落腐蚀性能。
     铝合金2519A-T87板材搅拌摩擦焊时,焊核区粗大的Al2Cu相与Fich-(Fe,Mn)相被破碎,且分布更加均匀。搅拌摩擦焊充分利用了基体晶粒细晶强化第二相弥散强化来提高接头的力学性能,其中热机影响区硬度值最低,约为母材的78%。而时效和固溶—时效等焊后热处理方式由于发生了复杂的机体组织和第二相析出等微结构演变,均未取得强化焊接接头力学性能的效果。
     铝合金2519A-T87的搅拌摩擦焊明显降低焊接头区域的耐剥落腐蚀性能,母材耐蚀等级为EB级,焊接头区域的焊接态耐蚀等级为EC+;焊后热处理会使母材与焊接头区域的耐蚀性能整体降为ED级。
High-strength aluminum alloy 2519A-T87 is a kind of new structure material. This material has high specific strength highspecific stiffness, and good processability, it also has good stress corrosion resistance in severe environments such as sea, salt atmosphere. So it has great potential in the aeronautical and astronautical field. However there are no clear cut research results about the weldability of 2519A-T87 aluminum alloy and the structure of welding joint.In this paper, the argon-arc welding processibility and friction stir welding processibility of 2519A-T87 aluminum alloy, the welding joint mechanical property were researched by experiments. The decay resistances of the welding joint were analyzed.
     The experiments results indicated argon-arc welding processibility of 2519A-T87 aluminum alloy was good, which is better than 2A12 aluminum alloy, but was not as good as 5A06 aluminum alloy.The 2519A-T87 aluminum alloy had the tendency of welding heating crack. The welding material ought to select Al-Cu series,By warming up,the tendency of welding heating crack could be reduced.In order to reduce welding blow hole and crack,the welding material,the welding parameters were strictly controled.
     When aluminum alloy 2519A-T87/5A06-O were fusion welded, the gross Al2CuMg phase (S phase) round particles and unequilibrium eutectic formed by Mg2Si and matrix 1~10μm thick were come in to being between dendrites of solidification structures.Though welding nuclear area were formed by solidification structures,its hardness was higher than 5A06-O.The stretching stracture was in 5A06-O material.Aluminum alloy 2519A-T87/5A06-O welding nuclear area corrosion diffused mainly along dendrites. This corrosion diffuse way could be restrained by dendrites across arrange.The whole welding structure could obtain good decay resistance.
     When aluminum alloy 2519A-T87 was FSW (Friction Stir Welding), the gross Al2Cu phase and Fich-(Fe, Mn) phase iand Fich-(Fe, Mn) phase in the welding nuclear area were broken into pieces and distributed. During FSW, mechanical properties of welded joint were improved by the fine grain strengthening and second phase dispersion strengthening. At the heat reflection area, hardness value was the minimum, order of 78% of the base mental. After the post welding heat treatment, the welded joint mechanical properties weren’t improved because of the complex base tissue and the second phase precipitation structural evolution.
     The break away corrosion resistant of 2519A-T87 aluminum alloy FSW welded joint was reduced. The corrosion resistant degree of base mental was EB and the degree of welded joint was EC+. After the post welding heat treatment, corrosion resistant degree of base mental and welded joint was reduced to ED.
引文
1 Carter H B , David H E , Ashok S , et al. Transient crack growth behavior in aluminum alloys C415-T8 and 2519-T87. Engineering Fracture Mechanics , 1999 , 62(1):1~22
    2 Fisher J , James J . Aluminum alloy 2519 in military vehicles. Advanced Materials and Processes , 2002 , 160(9) : 43~46
    3 Dymek S, Dollar M. TEM investigation of age 2hardenable Al 2519 alloy subjected to stress corrosion cracking tests. Materials Chemistry and Physics, 2003 , 81 (2/3) : 286~288
    4 Tsangarakis N. All modes fracture toughness of two aluminum alloys. Engineering Fracture Mechanics, 1987, 26(3) :313~321
    5 James J F , Lawrence S K, Joseph R P. Aluminum alloy 2519 in military vehicles. Advanced Materials and Processes , 2002 ,160(9) : 43~46
    6田荣璋,王祝堂.铝合金及其加工手册.长沙:中南大学出版社, 2000
    7黄佩武,刘友良.180℃形变热处理对2519A铝合金性能的影响.湖南冶金,2006,34(4):12~15
    8李慧中,张新明,陈明安等. 2519铝合金焊接接头的组织与性能.中国有色金属学报, 2004 , 14 (6):956~960
    9李慧中,张新明,陈明安,周卓平,龚敏如.预变形对2519铝合金组织与力学性能的影响[J].中国有色金属学报, 2004, 14(12): 1990~1994.
    10 Jack H.Devletian,Sandra M. Devincent, and Steven A. Gedeon. Weldability of 2519—T87 Aluminum Alloy,AD-A203 519
    11李勇.美国海军开发搅拌摩擦焊(Friction Stir Welding-FSW)用于先进两栖突击车AAAV的制造.http://www.zezhou.cn/zzmb/xnews/ShowArticle.asp?ArticleID=910,2003
    12 D. Hulbert, C. Fuller, M. Mahoney, B. London. The mechanical and thick section bending behavior of friction stir processed aluminum plate. Scripta Materialia, Volume 57, Issue 3, Pages 269-272
    13 L. S. Kramer, T. P. Blair, S. D. Blough et al.. Stress-corrosion cracking susceptibility of various product forms of aluminum alloy 2519. J. MaterialsEngineering and Performance, 2002, 11(6):645~650
    14 R. W. Fonda and S. G. Lambrakos. Microstructural Analysis and Modeling of the Heat Affected Zone in Al 2519 Friction Stir Welds, Proceedings of the 6th International Conference on Trends in Welding Research, ASM International, 241-246 (2003)
    15 Stanislaw Dymek, Marek Dollar. TEM investigation of age-hardenable Al 2519 alloy subjected to stress corrosion cracking tests, Materials Chemistry and Physics, 81 (2003) 286~288.
    16许良红,田志凌,彭云,肖荣诗,杨武雄.高强铝合金的激光焊接头组织及力学性能. Chinese Journal of Lasers,2008,(03)
    17周鹏展,钟掘,贺地求,舒霞云.2519厚板搅拌摩擦焊缝组织性能及断裂分析. Transactions of the China Welding Institution,2006,27(04):33~36.
    18舒霞云,贺地求,周鹏展,高强铝合金厚板搅拌摩擦焊可焊性分析,轻合金加工技术,2004,32(12):45-47
    19范成磊,杨春利,程士军,国旭明. 2519高强铝合金双丝MIG焊接接头时效弱化研究.焊接,2005,(11):24~27
    20魏占静.先进的TANDEM焊接技术.现代制造, 2003, (12) :32~33
    21洪张飞,国旭明,杨成刚,张劲松,张亚东.热处理对2519铝合金接头组织及性能的影响.材料研究学报,2006,20(2):171~175
    22 ZHANG Xin-ming(张新明), LI Hui-jie(李惠杰), LI Hui-zhong(李慧中), GAO Hui(高慧), GAO Zhi-guo(高志国), LIU Ying(刘瑛), LIU Bo(刘波). Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar. Traps. NonFerrous Met. Soc. China, 2008,18:1~5
    23 Devincent S M, Devletian J H. Weld properties of the newly developed 2519-T87 aluminum armor alloy.Welding Journal,1988,67(7):33~43
    24范成磊,梁迎春,杨春利等,2519高强铝合金双丝GMAW焊接工艺,焊接学报,2006,27(10):15~22
    25张盛海,陈铠,肖荣诗等,高强铝合金T型接头激光焊接的研究现状,激光杂志,2005,26(4):77~78
    26杨春利,刚铁,林三宝等,高强铝合金厚板双丝MIG焊工艺的初步研究,中国有色金属学报,2004,14(S1):259~264
    27 Thomas W M.Nicholas E D. Friction stir welding for the transportationindustries. Materials & Design, 1997, 18:269
    28 Murr L E,Liu G,McClure J C. Dynamic recrystallization in friction-stir welding of aluminum allay 1100. J Mater SciLett.1997.16 (22):1801
    29 Rhodnev C G,Mahonev M V.Bingel W H.et al. Effect of friction stir welding on microstructure of 7075 aluminum.Scripta Materialia.1997,37(1);69
    30 Oosterkamp L Djapic.Webster P J.Browne P A. Residual stress field in a friction stir welded aluminum extrusion. Mater Sci Forum, 2000, 347:678
    31 Nicoletto G. Moire interferometry determination of residual stresses in the presence of gradient. Exp Mech, 1991, 31(3):252
    32 Wu Z. Determination de contraintes residuelles par interferometrie de moire et methode de percage du trou incremental.Phd.Thesis of Univ. Technology of Troyes,1998.
    33 Chao Yuh J. Qi Xinhai. Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. Mater Proc Manuf Sci,1998.7(2):215
    34 Tang W.Gao X.Mc CLure J C.et al. Heat input and temperature distribution in friction stir welding.J Mater Proc Manuf Sci,1998,7(2):163
    35 Benavides S, Li Y. Murr L E, et al. Low-temperature friction-stir welding of 2024 aluminum. Scripta Materialia, 1999, 41(8):809
    36 Sajm Hianadi G,Reynolds Anthony P, et al. Macrostructure and retention of super plasticity of friction stir welded super plastic 2095 sheet,Scripta Materialia,2002,46(5):337
    37 Contreras F.Trillo E A.Murr L E. Friction-stir welding of a beryllium-aluminum Powder metallurgy alloy. J Mater Sci, 2002.37(1):89
    38 Murr L E. Li Ying, Trillo Elizabeth A, et a1. Fundamental issues and industrial applications of friction-stir welding.Mater Technol.2000, 15(1):37
    39王希靖.铝合金搅拌摩擦焊技术.中国有色金属学报, 2002,12(A1 Special):218
    40汪建华,姚舜,魏良武等.搅拌摩擦焊的传热和力学模型.焊接学报, 2002,21(4):61
    41张仓田,郭德伦,陈沁刚等.铝合金搅拌摩擦焊技术研究.机械工程学报.2002.38(2):127
    42 Thomas W M,N1cholas J C.et a1.Friction stir butt welding International patent application, No PCT/GB92/02203 and GB patentapplication,No.9125978.8.1991
    43 Dawes C J. Introduction to friction stir welding and its development. Weld Met Fabr.1995.63(1):13
    44 Dawes C J,Thomas W M. Friction stir process welds aluminum alloys. Weld J, 1996, 75(3):41
    45姜澜,魏绪钧,姚广春,王德全.铝合金搅拌摩擦焊研究现状及应用.材料导报,2003,13(6):70~72
    46 Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zonein AA6061 aluminum alloy.Materials and design,2008 ,29 ( 3 ) :362~373
    47 Colligan K. Material flow behavior during friction stir welding of aluminum. Welding journal ,1999: 229~237
    48 Ouyang J H, Jandric D, Kovacevic R et at. Visualization of material flow during friction stir welding(FSW) of the same and dissimilar aluminum alloys. Proceedings of 6th international trends in welding research, New York; Academic Press, 2002:229~240
    49 Ying Li. Murr LE , McClure J C. Solid state flow visualization in the friction stir welding of 2024Al to 6061Al.Scripts Mater,1999,40( 9 ) ;1041~1046
    50 Oosterkamp A, Djapic Oosterkamp L, Nordeide A. Kissing bond phenomena in solid state welds of aluminum alloys . Weld J, 2004:225~231
    51 Kumar K, Satish V, Kailas. On the role of axial load and the effect of interface position on the tensile strength of a friction stir welded aluminum a11oy.Materials and deaign, 2008; 29 (3):791~797
    52 Shitong Wei, Chuanyong Hao, Jichun Chen. Study of friction stir welding of 01420 aluminum-lithium alloy. Materials science and engineering,2007,452-453;170~177
    53 Ren S R , Ma Z Y , Chen L Q. Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded A-Zn-Mg-Cu alloy. Materials science and engineering,2008,479:293~299
    54 Tomotake Hirata, Taizo Oguri, Hideki Hagino et al. Influence of friction stir welding parameters on sin size and formability in 5083 aluminum alloy. Materials science and engineering, 2007, 456:344~349
    55 Elangovan K, Balasubramattian V. Influences of postweld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints.Material characterization, 2007, 27 (3); 220~226
    56 Oman Hatamleh.Effects of peeving on mechanical properties in friction stir welded 2195 aluminum alloy joints. Materials science and engineering A, 2008, 481:356~360
    57 Sauvage X, Jata, Cabello A et al. Precipitate stability and recrystallisation in the weld nuggets of friction stir Al-Mg-Si and Al-Mg-Sc alloys. Materials science and engineering, 2008, 491:364~371
    58 Moreira P M G P, de Oliveira F M F, de Castro P M S T. Fatigue behavior of notched specimens of friction stir welded aluminum alloy 6063-T6. Journal of materiah; processing technology, 2008
    59 Ali A, An X, Rodopoulos C A et al. The effect of controlled shot peening on the fatigue behavior of 2024-T3 aluminum friction stir welds. International journal of fatigue, 2007, 29 (3):1531~1545
    60史耀武,唐伟,搅拌摩擦焊的原理与应用.电焊机. 2000,30(1):6
    61姜澜,魏绪钧,姚广春,王德全.铝合金搅拌摩擦焊研究现状及应用.材料导报,2003,13(6):70~72
    62周鹏展.搅拌摩擦焊工艺参数对2519厚板焊接性能的影响.热加工工艺,2005, (4) : 33~35
    63李慧中. 2519铝合金焊接接头的组织与性能.中国有色金属学报,2004,(6) :956~960
    64邱寿昆,贺地求,周古昕. 2519铝合金搅拌摩擦焊焊缝组织与性能.科苑论坛,2006,(总167):5~8
    65邱寿昆,贺地求,周古昕,2519铝合金搅拌摩擦焊焊缝组织与性能,铝加工,2006,No.2:5~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700