铋层状结构无铅压电陶瓷的离子取代改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铋层状结构无铅压电陶瓷具有较高的居里温度和良好的抗疲劳性能,因此在高温压电应用及铁电存储方面具有广阔的应用前景。但是单一铋层状材料具有难以实用化的缺点,因此本文采用生成固溶体和离子取代两种方法改善材料的电学性能,系统研究了材料的结构特性与介电性能、铁电及压电性能的关系,对制备高性能且实用性的铁电材料具有一定的指导意义。
     本论文采用传统陶瓷制备工艺,成功制备了(SrBi_2Ta_2O_9)_x(Bi_3TiTaO_9)_(1-x)陶瓷体系。该体系形成了单一正交晶系铋层状结构,随着SBT引入量的增多,晶粒逐渐增大,结晶度逐步提高,晶粒尺寸趋于一致。当x=0.6mol时,室温下的介电性能最优,此时=131.6516,tan =0.01273。SBT含量的增多使晶体中A位加权离子半径增大,同时离子极化率减小,因此居里温度随之降低(x=0.6,Tc=450℃)。
     首次将钙钛矿结构与铋层状结构固溶制得(BaTiO_3)_x(SrBi_2Ta_2O_9)_(1-x)(0.05≤x≤0.3)陶瓷。当x≤0.2时为单相铋层状结构,当x=0.3时形成了四方相。由扫描电镜可知,陶瓷样品形成了铋层状结构与钙钛矿结构共存的固溶体。室温下BT-SBT陶瓷的介电常数在1kHz~100kHz范围内具有频率稳定性,tan维持在6.0×10~(-3)数量级以下。BT-SBT系列陶瓷具有弥散相变和频率色散特征,同时具有较大的弥散性指数(>1.6),具有典型弛豫型铁电体特征。随着BT含量的增加,陶瓷样品的居里温度T_c均为650℃,远高于BT(T_c=130℃)和SBT(T_c=335℃)的居里温度。当x=0.1mol时, =200,tan =0.00376,d_(33)=12 pC/N,表现出优异的综合性能。
     本文还采用了离子取代的方法对铋层状结构化合物进行改性研究。选用同主族的Ba~(2+)取代CaBi_4Ti_4O_(15)中A位的Ca~(~(2+)),所形成的Ca_(1-x)Ba_xBi_4Ti_4O_(15)体系为四层的铋层状结构,Ba~(2+)取代减小了正交畸变程度,降低了陶瓷样品的居里温度,提高了陶瓷在室温下的介电和铁电性能,还选用同主族的K~+取代Na_(0.5)Bi_(4.5)Ti_4O_(15)中A位的Na~+,样品均形成单一相的铋层状结构,K~+含量的增加,增大了晶格畸变,提了结晶度。由于烧结过程中K~+容易挥发,造成反应物配比中(K,Bi)空位的增加,使居里温度不随K~+含量的变化,四个样品的居里温度均为660℃。样品的介电损耗峰值在低温处出现了弛豫峰,根据Arrhenius公式拟合可知,该弛豫过程是由于氧空位的热运动引起的。
Bismuth layered-structure lead-free piezoelectric ceramics materials possess higher Curie temperature and favorable anti-fatigue performance, therefore, they have extensive application prospect in high-temperature piezoelectric and ferroelectric memory. As for the shortcoming that single bismuth layered materials have difficulty in practical utilization, this paper adopted solid solution and ionic substitution to improve the electrical properties of the materials, and did some research on the relation among material structure properties, dielectric properties, ferroelectric and piezoelectric properties, which provided guiding significance for preparing ferroelectric materials with high-performance and practicality.
     This paper adopted conventional ceramic fabrication process and successfully prepared the ceramic system of (SrBi_2Ta_2O_9)_x(Bi_3TiTaO_9)_(1-x). This system formed a single orthogonal crystal system with bismuth layer-structure, the more introduction of SBT, the bigger sizes of grain and the more highly improved of crystallinity, meanwhile, the grain size trends to be consistent. When x=0.6mol, the ceramics has =131.6516,tan =0.01273, showing excellent dielectric properties at room temperature. Because of the crystal ionic radius of A position increase and ionic polarization decrease, the Curie temperature of ceramics decreased with the increasing content of SBT(x=0.6,Tc=450℃).
     For the first time, (BaTiO_3)_x(SrBi_2Ta_2O_9)_(1-x)(0.05≤x≤0.3) ceramics have been prepared by solid solution with bismuth layer structure and perovskite structure. When x≤0.2, a single phase of bismuth layered-structure was obtained, but when x=0.3, the tetragonal phase was formed. The ceramic samples formed solid solution with bismuth layer structure and perovskite structure coexistence by SEM. The has litter relation with frequence in 1 kHz~100 kHz and the tan was less than 6.0×10~(-3). All samples possessed the characteristic of diffuse phase transition, frequency dispersion and large degree of diffuseness , showing that the ceramics are typically relaxor ferroelectrics.With the content of BT increase, the Curie temperature of ceramic samples was up to 650℃, which are much higher than the Curie temperature of BT(T_c=130℃)and SBT(T_c=335℃).When x=0.1mol, the ceramics has =200, tan =0.00376,d_(33)=12pC/N at room temperature,showing excellent integrated properties.
     The method of ionic substitution was also adopted in this article. The Ca~(2+), in A position of CaBi_4Ti_4O_(15), was substituted by Ba~(2+) that in the same main group.And the formed system of Ca_(1-x)Ba_xBi_4Ti_4O_(15) was a four-layer bismuth layer-structure.With the substitution increase, the degree of orthogonal distortion and the Curie temperature of ceramic samples decreased, meanwhile the dielectric and ferroelectric properties were improved.The Na~+, in A position of Na_(0.5)Bi_(4.5)Ti_4O_(15), is substituted by K~+ which in the same main group, all the samples formed the single bismuth layered-structure, with the increasing content of K~+, the lattice distortion was enlarged and the crystallinity was improved. Due to the easy volatilization during sintering process, the vacancies of K and Bi in reactant ratio were increased, which prevent Curie temperature varies with the content of K+, all the four samples were at 660℃. The dielectric loss peaks appeared a relaxation peak at low temperature , according to the Arrhenius equation fitting,the relaxation process was caused by the thermal motion of oxygen vacancies.
引文
[1]张沛霖、钟维烈,压电材料与器件物理,山东科学技术出版社,1994年
    [2]钟维烈,铁电物理学,科学出版社,1996年
    [3]方俊鑫,殷之文,电解质物理学,科学出版社,1998年
    [4]许煜寰等编,铁电与压电材料,科学出版社,1978年
    [5]刘梅冬,许毓春,压电铁电材料与器件,华中理工大学出版社,1990年
    [6]Cross L E, Relaxor ferroelectric: an overview, J. Ferroelectrics,1994,151:305-320
    [7]Thomas N W, A new framework for understanding relaxor ferroelectrics,J. Phys Chem Solid, 1990, 51(12):1419-1431
    [8]Uchio K,Nomura S,Cross L E,Electro strictive effect in lead magnesium niobate single crystal,J.Appl.Phys,1980,51(2):1142-1145
    [9]郝俊杰,李龙土,王晓慧.无铅压电陶瓷材料研究现状.硅酸盐学报,2004, 32(2):189~194
    [10]Hamadi K, Annie S.Relaxor or classical ferroelectric behavior in ceramics with composition Ba1-xNaxTi1-xNbxO3.J. Phys Condens Matter,2000,12:5951~5959
    [11]Zhi Y,Ruyan G.Growth of Ba(Ti1-xZrx)O3 Single Crystals by the Laser Heated Pedestal Technique.J. Cryst Grow,2001,233:460~465
    [12]Kania A,Kwapulinski J.Ag1-xNaxNbO3 solid solutions:from disordered anti-ferroelectric AgNbO3 to normal antiferroelectric NaNbO3.J. Phys:Condens Matter II ,1999:8933~8946
    [13]Muhil R V.Pyroelectric and piezoecectric properties of new lead-free ceramics with composition Ba1-xNaxTi1-xNbxO3.J.Chim Sci Mat,2001,26:127~130
    [14]Takeuchi T.Unidirectionally textured CaBi4Ti4Ol5 ceramics by the reactive templated grain growth with extrusion. J. Appl Phys,2000,39:5577~5580
    [15]杨群保,荆学珍,李永祥等.无铅压电陶瓷研究的新进展.电子元件与材料,2004,23(11):58~61
    [16]晏海学,李承恩,周家光等.高Tc铋层状压电陶瓷结构与性能.无机材料学报, 2000, 15: 209~220
    [17]Newnham, R. E., Wolfe, R. W. and Dorrian, J. F., Structural basis of ferroelectricity in the bismuth titanate family. J.Mater. Res. Bull., 1971,6,1029–1039.
    [18]Tadashin T, Takahiro G, et al. J. Appl Phys, 1995, 3(part19B):5384~5389
    [19]Yan Haixue, Li Chengen, et al. J. Appl Phys, 2000, 39(part11):6339~6342
    [20]M.Villegas,T.Jardiel,G.Farias,et al,Sintering and electrical properties of Bi4Ti2.95WxO11.9+3x piezoelectric ceramics,J.Eur.Cera.Soc,2004,24:1025-1029
    [21]Guorong Li,Liaoying Zheng,and Qingrui Yin,Microsturcture and ferroelectric properties of MnO2-doped bismuth-layer(Ca,Sr)Bi_4Ti_4O_(15) ceramics,J.Appl.Phys.,2005,98 :064108
    [22]Pardo,A.Castro,P.Millan et al, (Bi_3TiNbO_9)_x(SrBi_2Nb_2O_9)_(1-x) Aurivillus Type Structure Piezoelectric Ceramics Obtained From Mechanochemically Activated Oxides, 2000,48: 2421-2428
    [23]Frit B,Mercurio J P,The crystal chemistry and dielectric properties of the Aurivillius family of complex busmuth oxides with perovskites-like layered structures.J. Alloys Comp, 1992,188 :27-35
    [24]Subbarao E C.A family of ferroelectric bismuth compounds.J.Phys Chem Solids, 1962,23 :665-676
    [25]Yan H X,Li C E,Zhou J G,et al.A-site substitution effects on the structures and properties of CaBi_4Ti_4O_(15) ceramics.J. Appl Phys,2000.39:6339-6342
    [26]T.Takeuchi,T.Tani,and Y.Saito,J.Appl.Phys.,2000,39(9B) :5577
    [27]Rintaro A, Hiroaki T, et al. Ferroelectric and piezoelectric properties of bismuth layered-structure ferroelectric (Sr,Na,Bi)Bi2Ta2O9 ceramics.J. Materials Science and Engineering,2005,(16):156-160
    [28]L. PARDO, A. CASTRO, P. MILLAN, et al. (Bi_3TiNbO_9)_x(SrBi_2Nb_2O_9)_(1-x) Aurivillius Type Structure Piezoelectric Ceramics Obtained From Mechanochemically Activated Oxides.J.Acta mater, 2000, 48:2421-2428
    [29]K. Abe, H. Tomita, H. Toyoda, et al . J. Appl. Phys. 1991, 30: 2152~2155
    [30]C. V. Kumar, R. Pascual and M. Sayer, J.Appl. Phys. 1992, 71: 864~868
    [31]Araujo CA ,Cuchiaro JD ,McMillan LD , et al. Fatigue-free ferroelectric capacitors with platinum electrodes.J. Nature , 1995 ,374 :627~629.
    [32]Haixue Yan, Hongtao Zhang, et al. B-site donor and acceptor doped Aurivillius phase Bi3NbTiO9 ceramics. Journal of the European Ceramic Society,2006,(26):2785-2792
    [33]Huang Z. Z., Chan H. L. W., Kwok K. W., et al. Preparation and electrical properties of SrBi2Ta2O9 ceramic. Journal of Materials Science, 2000, 35(7): 1793~1797.
    [34]黄平,徐廷献,孙清池.铋层状化合物Sr0.3Ba0.7Bi4-xLaxTi4O15陶瓷材料的介电性能.硅酸盐学报, 2004, 32(7): 808~81
    [35]Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamigama, H. Asano, Phys.Rev. B 61 (2000) 6559–6564
    [36] M.Q. Cai, Z. Yin, M.S. Zhang, Solid State Commun. 2005,133 : 663–666.
    [37]Haoshuang Gu, Tianjin Zhang, Wanqiang Cao, et al . Structure characterization of BiFeO3-SrBi2Nb2O9 ceramics by mechanical activation.J. Materials Science and Engineering, 2003, 99 (B): 116~120.
    [38] A. Srinivas, Dong-Wan Kim, and Kug Sun Honga. J.Applied Physics Letters Volune, 2003, 83:1602~1604
    [39]顾豪爽,宋蕊,周小元,BiFeO3-SrBi2Nb2O9铁电陶瓷的结构及性质.哈尔滨理工大学学报,2003, 8: 6~8
    [40]Sanson A.,Whatmore R.W.,Phase Diagram of the Bi4Ti3O12–BaTiO3–(Na1/2Bi1/2)TiO3 System. J.Am. Ceram.Soc. 2005 , 88: 3147~3153
    [41] Y .Yao,C.Song,P.Bao,D.Su,X.Lu,J.Zhu and Y Wang,Doping effect Oil the dielectric property in bismuth titanate.J. Appl.Phys.2004,95
    [42]Zhao Ming-Lei ,WuQing-Zao, WangChun-Lei Dielectric and piezoelectric properties of Na0.5Bi4.5Ti4O15-(x?1)Na0.5Bi0.5TiO3 composite ceramics .Journal of Alloys and Compounds, 2008,39
    [43]Smolenskii G A,Isupov V A,Agranovskayy A I,et al. Ferroelectrics with diffuse phase transitions.Sov Phys Solid State,1961,2:2584~2594
    [44]Y. Shimakawa, Y. Kubo, Y. Nakagawa, S. Goto, T. Kamiyama, H. Asano and F.Izumi,―Crystal structure and ferroelectric properties of ABi2Ta2O9 (A=Ca, Sr, andBa)‖. J.Phys. Rev. 2000, B 61: 6559~6564
    [45] A. L. Kholkin, M. E. V. Costa, J. L. Baptista and S. N. Dorogovtsev,―Dielectric relaxation in Ba-Based layered perovskites‖. J. Appl. Phys. Lett. 2001, 79: 662~664
    [46] C. Miranda, M. E. V. Costa, M. Avdeev, A. L. Kholkin and J. L. Baptista,―Relaxor properties of Ba-Based layered perovskites‖. J.Euro. Ceram. Soc. 2001, 21: 1303~1306
    [47] A.L. Kholkin, M. Avdeev, M.E.V. Costa, et al. Dielectric relaxation in Ba-based layered perovskites. Applied Physics Letters, 2001, 79: 662~664
    [48] Ismunandar, B.J. Kennedy. Structure of ABi2Nb2O9 (A = Sr, Ba). Journal of Solid State Chemistry, 1996, 127: 135~141
    [49] R. Macquart, B. J. Kennedy, Y. Shimakawa. Cation Disorder in the Ferroelectric Oxides ABi2Ta2O9, A=Ca, Sr, Ba. J. Solid State Chemistry, 2001, 160: 174~177
    [50] A.C. Palanduz, D.M. Smyth. Defect Chemistry and Charge Transport. in SrBi2Nb2O9. J. Electroceramics. 2003, 11: 191~206
    [51]Hui-dong Li,Chu-de Feng Wen-long Yao.Some effects of different additives on dielectric and piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 morphotropic-phase-boundary composition.J.Materials Leters,2004,58:1194-1198
    [52]Kazumi Kato, Desheng Fu, Kiyotaka Tanaka, et al. Crystal phase and orientation control in integrated ferroelectric CaBi_4Ti_4O_(15) using a tailored liquid of alkoxides. International of Journal of Applied Ceramic Technoloy, 2005, 2(1): 64~72
    [53]C. Moure, V. Gil, J. Tartaj, et al. Crystalline structure, dielectric and piezoelectric properties of bismuth-layer CaxBi4Ti3+xO12+3x (x=1,2) compound. Journal of the European Ceramic Society, 2005, 25: 2447~2451
    [54]R.Z. Hou, X.M. Chen. Neodymium substituted CaBi_4Ti_4O_(15) bismuth layered compound. Journal of the European Ceramic Society, 2006, 26: 1379~1383
    [55]Jiangtao Zeng, Yongxiang Li, Qunbao Yang. Ferroelectric and piezoelectric properties of vanadium-doped CaBi_4Ti_4O_(15) ceramics. Materials Science and Engineering B. 2005, 117: 241~245
    [56]R. Z. Hou, X. M. Chen, Y. W. Zeng, et al. Diffuse ferroelectric phase transition and relaxor behaviors in Ba-based bismuth layer-structured compounds and la-substituted SrBi_4Ti_4O_(15). Jounal of American Ceramic Society, 2006, 89(9): 2839~2844
    [57]Darko Makovec, Irena Pribos ic, Zoran Samardz jia, et al. Incorporation of aliovalent dopants into the Bismuth-layered perovskite-like structure of BaBi_4Ti_4O_(15). Jounal of American Ceramic Society, 2001, 84 (11): 2702~704
    [58]X. Du and I. W. Chen, J. Am. Ceram. Soc., 1998,81 [12] :3253
    [59]单连伟铌酸锶钡/钛酸锶钡复相陶瓷制备、结构和性能研究:[学位论文]哈尔滨:哈尔滨理工大学,2009
    [60]C.H.Hervoches,A.Anedden,R.Riggs,et al.Structural behavior of the four-layer phase ferroelectrics SrBi_4Ti_4O_(15) and Bi3Ti3FeO15,J.Solid State.Chem.2002,164:280-291
    [61]C.H.Hervoches,J.T.S et al,Two high-temperature paraelectric phases in Sr0.85Bi2.1Ta2O9, Phy.Rew.2001,64:100102
    [62]Y.Shimakawa,Y.Kubo,et.al. J.Phy.Rew.B.2000,61:6559
    [63]R.D.Shannon,Acta.Cryst.1976,A32:751
    [64]E.C. Subbarao, A family of ferroelectric bismuth compounds, J.Phys. Chem.Solids, 1962,23(6): 665-676
    [65]E. C. Subbarao, J. Phys. Chem. Solids, 1962,23 (6):665
    [66]S. Ikegami and I. Ueda, Jpn. J. Appl. Phys., 1974,13 (10): 1572
    [67]C.-M.Wang and J.-F.Wang.Aurivillius Phase Potassium Bismuth Titanate: K0.5Bi4.5Ti4O15, J.Am.Ceram,Soc,2008,91(3):918-923
    [68]C.-M.Wang and J.-F.Wang,Ferroelectric,dielectric and piezoelectric properties of potassium lanthanum bismuth titanate K0.5La0.5Bi_4Ti_4O_(15) ceramics.J.Materials Chemistryand Physics,2008,110:402-405
    [69]Z.-G.Wang andJ.-F.Wang,The effect of (Li,Ce) doping in aurivillus phase material Na0.25K0.25Bi4.5Ti4O15.J.Scripta Materialia,2008,59:115-118
    [70]Chen TC, Thio CL, Desu SB.J.Mater Res,1997,12(10):2628
    [71]R.A.Armstrong and R.E.Newnham,Bismuth titanate solid solutions.Mat.Res.Bull.1972,7:J1025-1034
    [72]L.He and D.Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3,Phys.Rev.B,2003,68(13):1314
    [73]E.C.Subbarao,A family of ferroelectric bismuth compounds.J.Phys Chem Solids,1962,23[6]:665-676
    [74]D.Y.Suarez,I.M.Reaney,Relation between tolerance factor and Tc in Aurivillius compounds.J.Mater.Res,2001,11:3139-3149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700