碳基纳米材料吸附溶解性有机物质的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳基纳米材料(CNMs)因有着比传统材料更加优异的性质,而被广泛应用于生产生活中。CNMs可以被释放到在环境中,在环境中迁移和转化,对环境和人类健康有潜在的风险。因此,研究CNMs的环境行为,进而评价CNMs的环境风险具有重要意义。已有研究表明,CNMs可以在水中稳定存在,特别是在天然水体中,CNMs可以通过吸附溶解性有机质(DOM)、有机污染物和生物大分子等而稳定悬浮。但DOM种类众多,环境行为复杂,影响CNMs吸附的因素多样,现有传统的实验和理论方法不仅无法直观地了解CNMs对DOM的吸附,而且难以揭示CNMs在水中吸附DOM的微观机理。抗生素作为一类新兴的有机污染物在水环境中也可以被CNMs吸附并存在与DOM同样的问题。本论文采用一种分子模拟方法——分子动力学(MD)方法,以C_(60)、单壁碳纳米管(SWNTs)、9种低分子量天然有机酸(LOAs)、单宁酸和磺胺甲恶唑为目标化合物,综合考虑了DOM和磺胺甲恶唑的种类、不同解离形态和浓度对CNMs吸附DOM和磺胺甲恶唑的影响,计算模拟了CNMs对DOM和磺胺甲恶唑的吸附作用,以此揭示CNMs与DOM和磺胺甲恶唑相互作用的微观机制,从而预测CNMs在水环境中对DOM和抗生素的吸附行为,为评价CNMs在水中的暴露行为提供理论依据。
     DOM是复杂的混合物,其中不仅有结构复杂的高分子量有机酸,也有结构相对简单的低分子量有机酸,而已有的研究缺乏低分子量有机酸对CNMs在水中稳定性影响的研究。本论文考察了真空和水中C_(60)与9种LOAs的相互作用,建立了C_(60)与LOAs相互作用能(Eint)的预测模型。MD模拟结果表明,真空和水中LOAs分子很好地吸附在C_(60)表面,芳香类LOAs与C_(60)的相互作用比脂肪类LOAs与C_(60)的强。LOAs分子量越大,C_(60)与LOAs的相互作用越强。水中不同解离形态的LOAs与C_(60)的相互作用不同,分子比离子的强。Eint模型有很好的拟合优度和稳健性,可用来预测LOAs与C_(60)的相互作用能。C_(60)和LOAs的主要相互作用是色散、诱导和疏水作用。
     为了考察MD模拟时真实水分子对C_(60)吸附LOAs的影响,本论文采用显性溶剂方法考察了水中柠檬酸和没食子酸在C_(60)上的吸附。结果表明,水中柠檬酸和没食子酸均能很好地被C_(60)吸附,柠檬酸和没食子酸与C_(60)的主要相互作用是范德华和疏水相互作用,没食子酸比柠檬酸更易吸附到C_(60)表面。吸附平衡后,柠檬酸和没食子酸可与水分子形成氢键,而氢键作用不是C_(60)吸附柠檬酸和没食子酸的主要作用。柠檬酸离子与C_(60)的作用比柠檬酸分子的弱。
     大分子的DOM与CNMs相互作用更强,它们是DOM影响CNMs在水中稳定性的关键成分。大分子DOM结构复杂,且其与CNMs的作用机制尚不清楚。本论文以单宁酸为DOM类似物,在充分考虑了单宁酸浓度和SWNTs直径对SWNTs吸附单宁酸影响的情况下,研究了SWNTs对单宁酸的吸附。结果发现,SWNTs可以很好地吸附水中的单宁酸,它们的主要相互作用是π-π和疏水相互作用,SWNTs还可以吸附多层单宁酸分子,它们的主要相互作用与SWNTs吸附单层单宁酸分子时相同。水分子可在同一个或多个单宁酸分子间起架桥作用。SWNTs与没食子酸的相互作用随SWNTs比表面积增大而增强,与SWNTs的直径无关。
     抗生素广泛存在于环境中,它们可能会与DOM一样,与环境中CNMs相互作用,影响彼此在环境中的行为。本论文选取一种抗生素——磺胺甲恶唑,分别研究了SWNTs和羧基修饰的SWNTs对磺胺甲恶唑的吸附,并在研究中考虑了不同解离形态磺胺甲恶唑、磺胺甲恶唑浓度和离子强度对SWNTs吸附磺胺甲恶唑的影响,羧基修饰SWNTs的氧质量百分比对羧基修饰的SWNTs吸附磺胺甲恶唑的影响。结果表明,不同解离形态磺胺甲恶唑与SWNTs的相互作用强弱为:阳离子>分子>阴离子。磺胺甲恶唑阴离子与SWNTs的主要相互作用为π-π和疏水相互作用。磺胺甲恶唑浓度和离子强度对SWNTs吸附磺胺甲恶唑阴离子的影响不大。羧基修饰的SWNTs与磺胺甲恶唑的相互作用比SWNTs与磺胺甲恶唑的弱,羧基修饰SWNTs的分子形态与磺胺甲恶唑分子的相互作用能和羧基修饰SWNTs的氧质量百分比成正相关关系,而羧基修饰SWNTs的离子形态与磺胺甲恶唑阴离子的相互作用能和羧基修饰SWNTs的氧质量百分没有此规律。羧基修饰SWNTs吸附磺胺甲恶唑时形成的氢键比SWNTs吸附磺胺甲恶唑时形成的多。SWNTs上的羧基只是减少了SWNTs的疏水表面,并没有减弱SWNTs与磺胺甲恶唑的相互作用。
Carbon nanomaterials (CNMs) are widely used in our daily production and life due totheir desirable characters. When released to the environment, CNMs can pose detrimentaleffects to both the environment and human health. To evaluate the environmental risks ofCNMs, it is important to investigate their environmental behaviors. Previous studies show thatCNMs can suspend in water, especially in natural water. Moreover, it has been reported thattheir suspensions are even more stable when they adsorb dissolved organic matter (DOM),organic contaminants or biomacromolecule in the water. However, due to the complexity ofthe DOM structure and component, with the existing experimental and theoretical methods,investigations on the morphology and mechanisms of the interactions between CNMs andDOM are rather difficult. In this study, a method for molecular modeling molecular dynamics(MD) was employed to simulate the adsorption of DOM on CNMs. Moreover, as an emergingorganic contaminant which can also be adsorbed by CNMs, the adsorption of antibiotics onCNMs was also demonstrated. C_(60), single-walled carbon nanotubes (SWNTs),9lowmolecular weight organic acids (LOAs), tannic acid and sulfamethoxazole were chosen as thetarget compounds. The effects of species, different dissociative forms and the concentrationsof DOM and sulfamethoxazole to their adsorptions on CNMs were elucidated. Theseinvestigations were dedicated to reveal the mechanisms of the interactions between CNMsand DOM/sulfamethoxazole, and to provide primary data for the evaluation of the exposedbehavior of CNMs in water.
     DOM is a complex mixture, which includes high-molecular-weight organic acids andlow-molecular-weight organic acids. However, data on the effect of LOAs on the stability ofCNMs in water is rather limited. Hereby, the interactions of9LOAs with C_(60)in vacuum andwater were simulated. Predictive models on the interaction energy between LOAs and C_(60)were developed. MD simulations indicate that LOAs could be well adsorbed on C_(60)both invacuum and water conditions. Moreover, the aromatic LOAs have stronger interactions withC_(60)than the aliphatic LOAs, and the LOA molecules have stronger interactions with C_(60)thanthe corresponding LOA anions. The models of the interaction energy between LOAs and C_(60)show good goodness-of-fit and robustness. On the other hand, the dominating interactions ofLOAs with C_(60)are dispersion, induction and hydrophobic interactions.
     To evaluate the effect of real water molecules on the adsorptions of LOAs on C_(60), theadsorptions of citric acid and gallic acid on C_(60)in water were also simulated with MD. Theseresults show that both acids were also firmly adsorbed on C_(60), and the dominating interactionsare van der Waals and hydrophobic interactions. However, gallic acid has stronger interactions with C_(60)than citric acid. Furthermore, hydrogen bonds were formed when citric acid andgallic acid interacted with water. Nevertheless, hydrogen bonds are not the dominatinginteractions, besides citric anion has stronger interactions with C_(60)than citric molecule.
     The interactions of high-molecular-weight organic acids with CNM are stronger, whichlead to their significant higher stability on the CNMs in water. However, the mechanisms ofinteractions between DOM and CNMs are still unclear. Therefore, in this dissertation, theadsorptions of tannic acid at different concentrations on SWNTs were simulated, with thediameter of SWNTs as another influence factor. The results show that tannic acid could bewell adsorbed on SWNTs, and their dominating interactions are π-π and hydrophobicinteractions. Moreover, multilayer adsorption phenomena of several tannic acids on SWNTswere detected, and bridge effect was observed between the water molecule and the tannicacids. Furthermore, the sorption affinity of SWNTs for gallic acid was enhanced with anincreasing surface area of SWNTs, and shows no direct relation to the diameter of SWNTs.
     Antibiotics can be adsorbed by CNMs, hence, their environmental behavior should beevaluated together than individually. The adsorptions of sulfamethoxazole on SWNTs andcarboxylic SWNTs were simulated respectively, and the effects of different dissociative formsof sulfamethoxazole, concentration of sulfamethoxazole and ionic strength on the adsorptionswere considered. Moreover, the effect of oxygen mass percent of carboxylic SWNTs on theadsorptions was also investigated. The results show that the orders of interactions of differentdissociative forms of sulfamethoxazole with SWNTs were: cation> molecule> anion. Themain interactions of sulfamethoxazole with SWNTs are π-π and hydrophobic interactions.However, the effects of concentration of sulfamethoxazole and ionic strength on theadsorptions were no significant, while the interactions of sulfamethoxazole with SWNTs arestronger than with carboxylic SWNTs. Sorption affinity of the molecules of carboxylicSWNTs for sulfamethoxazol increases with an increasing oxygen mass percent of carboxylicSWNTs, and the sorption affinity of the dissociative form of carboxylic SWNTs is not relatedto the oxygen mass percent of carboxylic SWNTs. Hydrogen bonds betweensulfamethoxazole adsorbed by carboxylic SWNTs and water occurs more than those betweensulfamethoxazole adsorbed by SWNTs and water. Carboxyl group of SWNTs only reduce thesurface area of SWNTs, but it does not affect the adsorption affinity of SWNTs.
引文
[1]林道辉,冀静,田小利,等.纳米材料的环境行为与生物毒性[J].科学通报,2009,54(23):3590-3604.
    [2] Klaine S J, Alvarez P J J, Batley G E, et al. Nanomaterials in the environment: Behavior, fate,bioavailability, and effects[J]. Environ Toxicol Chem,2008,27(9):1825-1851.
    [3] Maynard A D, Aitken R J, Butz T, et al. Safe handling of nanotechnology[J]. Nature,2006,444(7117):267-269.
    [4] Wiesner M R, Lowry G V, Alvarez P, et al. Assessing the risks of manufactured nanomaterials[J].Environ Sci Technol,2006,40(14):4336-4345.
    [5] Kroto H W, Heath J R, Obrien S C, et al. C60-buckminsterfullerene[J]. Nature,1985,318(6042):162-163.
    [6] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [7] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [8] Jafvert C T, Kulkarni P P. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) andaqueous solubility[J]. Environ Sci Technol,2008,42(16):5945-5950.
    [9] Ruoff R S, Tse D S, Malhotra R, et al. Solubility of C60in a variety of solvents[J]. J Phys Chem,1993,97(13):3379-3383.
    [10] Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60-a new form of carbon[J]. Nature,1990,347(6291):354-358.
    [11] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes[J]. Nature,1992,358(6383):220-222.
    [12] Iijima S, Ichihashi T. Single-shell carbon nanotubes of1nm diameter[J]. Nature,1993,363(6430):603-605.
    [13] Bethune D S, Kiang C H, Devries M S, et al. Cobalt-catalyzed growth of carbon nanotubes withsingle-atomic-layerwalls[J]. Nature,1993,363(6430):605-607.
    [14] Fasolino A, Los J H, Katsnelson M I. Intrinsic ripples in graphene[J]. Nature Materials,2007,6(11):858-861.
    [15] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60-63.
    [16] Wiesner M R, Lowry G V, Jones K L, et al. Decreasing uncertainties in assessing environmentalexposure, risk, and ecological implications of nanomaterials[J]. Environ Sci Technol,2009,43(17):6458-6462.
    [17] Heymann D, Jenneskens L W, Jehlicka J, et al. Terrestrial and extraterrestrial fullerenes[J]. FullerNanotub Car N,2003,11(4):333-370.
    [18] Becker L, Poreda R J, Hunt A G, et al. Impact event at the Permian-Triassic boundary: Evidence fromextraterrestrial noble gases in fullerenes[J]. Science,2001,291(5508):1530-1533.
    [19] Velasco-Santos C, Martinez-Hernandez A L, Consultchi A, et al. Naturally produced carbonnanotubes[J]. Chem Phys Lett,2003,373(3-4):272-276.
    [20] Esquivel E V, Murr L E. A TEM analysis of nanoparticulates in a polar ice core[J]. Mater Charact,2004,52(1):15-25.
    [21] Ishiguro T, Takatori Y, Akihama K. Microstructure of diesel soot particles probed by electronmicroscopy: First observation of inner core and outer shell[J]. Combust Flame,1997,108(1-2):231-234.
    [22] Lee T H, Yao N, Chen T J, et al. Fullerene-like carbon particles in petrol soot[J]. Carbon,2002,40(12):2275-2279.
    [23] Murr L E, Bang J J, Esquivel E V, et al. Carbon nanotubes, nanocrystal forms, and complexnanoparticle aggregates in common fuel-gas combustion sources and the ambient air[J]. J Nanopart Res,2004,6(2-3):241-251.
    [24] Hebard A F, Rosseinsky M J, Haddon R C, et al. Superconductivity at18K in potassium-doped C60[J].Nature,1991,350(6319):600-601.
    [25] Murata Y, Murata M, Komatsu K.100%encapsulation of a hydrogen molecule into an open-cagefullerene derivative and gas-phase generation of H2@C60[J]. J Am Chem Soc,2003,125(24):7152-7153.
    [26] Lin H B, Shih J S. Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor fororganic vapors[J]. Sens Actuators B,2003,92(3):243-254.
    [27] Claridge J B, Douthwaite R E, Green M L H, et al. Studies on a new catalyst for the hydroformylationof alkenes using C60as a ligand[J]. J Mol Catal,1994,89(1-2):113-120.
    [28] Zhang G P. Optical high harmonic generation in C60[J]. Phys Rev Lett,2005,95(4):047401-1-4.
    [29] Yamakoshi Y, Umezawa N, Ryu A, et al. Active oxygen species generated from photoexcited fullerene(C60) as potential medicines: O-2versus1O2[J]. J Am Chem Soc,2003,125(42):12803-12809.
    [30] Ajayan P M, Stephan O, Redlich P, et al. Carbon nanotubes as removable templates for metal-oxidenanocomposites and nanostructures[J]. Nature,1995,375(6532):564-567.
    [31] Chan S P, Chen G, Gong X G, et al. Chemisorption of hydrogen molecules on carbon nanotubes underhigh pressure[J]. Phys Rev Lett,2001,87(20):205502-1-4.
    [32] Goldoni A, Larciprete R, Petaccia L, et al. Single-wall carbon nanotube interaction with gases: Samplecontaminants and environmental monitoring[J]. J Am Chem Soc,2003,125(37):11329-11333.
    [33] Frackowiak E, Gautier S, Gaucher H, et al. Electrochemical storage of lithium multiwalled carbonnanotubes[J]. Carbon,1999,37(1):61-69.
    [34] Wood J R, Zhao Q, Frogley M D, et al. Carbon nanotubes: From molecular to macroscopic sensors[J].Phys Rev B,2000,62(11):7571-7575.
    [35] Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors[J]. Science,2001,294(5545):1317-1320.
    [36] Sakhaee-Pour A, Ahmadian M T, Vafai A. Applications of single-layered graphene sheets as masssensors and atomistic dust detectors[J]. Solid State Commun,2008,145(4):168-172.
    [37] Patchkovskii S, Tse J S, Yurchenko S N, et al. Graphene nanostructures as tunable storage media formolecular hydrogen[J]. Proc Natl Acad Sci U S A,2005,102(30):10439-10444.
    [38] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
    [39] Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons[J]. Nature,2006,444(7117):347-349.
    [40] Oberdorster E, Zhu S Q, Blickley T M, et al. Ecotoxicology of carbon-based engineered nanoparticles:Effects of fullerene (C60) on aquatic organisms[J]. Carbon,2006,44(6):1112-1120.
    [41] Lyon D Y, Fortner J D, Sayes C M, et al. Bacterial cell association and antimicrobial activity of a C60water suspension[J]. Environ Toxicol Chem,2005,24(11):2757-2762.
    [42] Lovern S B, Klaper R. Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60)nanoparticles[J]. Environ Toxicol Chem,2006,25(4):1132-1137.
    [43] Usenko C Y, Harper S L, Tanguay R L. In vivo evaluation of carbon fullerene toxicity usingembryonic zebrafish[J]. Carbon,2007,45(9):1891-1898.
    [44] Sayes C M, Marchione A A, Reed K L, et al. Comparative pulmonary toxicity assessments of C60water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles[J].Nano Lett,2007,7(8):2399-2406.
    [45] Kang S, Herzberg M, Rodrigues D F, et al. Antibacterial effects of carbon nanotubes: Size doesmatter[J]. Langmuir,2008,24(13):6409-6413.
    [46] Roberts A P, Mount A S, Seda B, et al. In vivo biomodification of lipid-coated carbon nanotubes bydaphnia magna[J]. Environ Sci Technol,2007,41(8):3025-3029.
    [47] Warheit D B, Laurence B R, Reed K L, et al. Comparative pulmonary toxicity assessment ofsingle-wall carbon nanotubes in rats[J]. Toxicol Sci,2004,77(1):117-125.
    [48] Lin S J, Reppert J, Hu Q, et al. Uptake, translocation, and transmission of carbon nanomaterials in riceplants[J]. Small,2009,5(10):1128-1132.
    [49] Oberd rster E. Manufactured nanomaterials (Fullerenes, C60) induce oxidative stress in the brain ofjuvenile largemouth bass[J]. Environ Health Perspect,2004,112(10):1058-1062.
    [50] Yang S T, Wang X, Jia G, et al. Long-term accumulation and low toxicity of single-walled carbonnanotubes in intravenously exposed mice[J]. Toxicol Lett,2008,181(3):182-189.
    [51] Porter A E, Gass M, Muller K, et al. Visualizing the uptake of C60to the cytoplasm and nucleaus ofhuman monocyte-derived macrophage cells using energy-filtered transmission electron microscopy andelectron tomography[J]. Environ Sci Technol,2007,41(8):3012-3017.
    [52] Jia G, Wang H F, Yan L, et al. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wallnanotube, and fullerene[J]. Environ Sci Technol,2005,39(5):1378-1383.
    [53] Dhawan A, Taurozzi J S, Pandey A K, et al. Stable colloidal dispersions of C60fullerenes in water:Evidence for genotoxicity[J]. Environ Sci Technol,2006,40(23):7394-7401.
    [54] Tong Z H, Bischoff M, Nies L, et al. Impact of fullerene (C60) on a soil microbial community[J].Environ Sci Technol,2007,41(8):2985-2991.
    [55]晏晓敏,查金苗,石宝友,等.纳米富勒烯聚集体与阿特拉津复合体系对水生生物的毒性[J].科学通报,2009,54(23):3612-3618.
    [56] Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel[J]. Science,2006,311(5761):622-627.
    [57] Lyon D Y, Brunet L, Hinkal G W, et al. Antibacterial activity of fullerene water suspensions (nC60) isnot due to ROS-mediated damage[J]. Nano Lett,2008,8(5):1539-1543.
    [58] Spohn P, Hirsch C, Hasler F, et al. C60fullerene: A powerful antioxidant or a damaging agent? Theimportance of an in-depth material characterization prior to toxicity assays[J]. Environ Pollut,2009,157(4):1134-1139.
    [59] Batley G E, Kirby J K, McLaughlin M J. Fate and risks of nanomaterials in aquatic and terrestrialenvironments[J]. Acc Chem Res,2013,46(3):854-862.
    [60]徐磊.碳纳米材料的环境行为及其对环境中污染物迁移归趋的影响[J].应用生态学报,2009,20(1):205-212.
    [61] Petersen E J, Zhang L W, Mattison N T, et al. Potential release pathways, environmental fate, andecological risks of carbon nanotubes[J]. Environ Sci Technol,2011,45(23):9837-9856.
    [62] Sanchís J, Berrojalbiz N, Caballero G, et al. Occurrence of aerosol-bound fullerenes in themediterranean sea atmosphere[J]. Environ Sci Technol,2011,46(3):1335-1343..
    [63] Schuster D I, Baran P S, Hatch R K, et al. The role of singlet oxygen in the photochemical formationof C60O[J]. Chem Commun,1998,(22):2493-2494.
    [64] Lecoanet H F, Bottero J Y, Wiesner M R. Laboratory assessment of the mobility of nanomaterials inporous media[J]. Environ Sci Technol,2004,38(19):5164-5169.
    [65] Jaisi D P, Saleh N B, Blake R E, et al. Transport of single-walled carbon nanotubes in porous media:Filtration mechanisms and reversibility[J]. Environ Sci Technol,2008,42(22):8317-8323.
    [66] Wang Y G, Li Y S, Fortner J D, et al. Transport and retention of nanoscale C60aggregates inwater-saturated porous media[J]. Environ Sci Technol,2008,42(10):3588-3594.
    [67] Li Y S, Wang Y G, Pennell K D, et al. Investigation of the transport and deposition of fullerene (C60)nanoparticles in quartz sands under varying flow conditions[J]. Environ Sci Technol,2008,42(19):7174-7180.
    [68] Lecoanet H F, Wiesner M R. Velocity effects on fullerene and oxide nanoparticle deposition in porousmedia[J]. Environ Sci Technol,2004,38(16):4377-4382.
    [69] Espinasse B, Hotze E M, Wiesner M R. Transport and retention of colloidal aggregates of C60inporous media: Effects of organic macromolecules, ionic composition, and preparation method[J]. EnvironSci Technol,2007,41(21):7396-7402.
    [70] Chen C Y, Jafvert C T. Sorption of buckminsterfullerene (C60) to saturated soils[J]. Environ SciTechnol,2009,43(19):7370-7375.
    [71] Hou W-C, Jafvert C T. Photochemistry of aqueous c-60clusters: Evidence of1O2formation and itsrole in mediating C60phototransformation[J]. Environ Sci Technol,2009,43(14):5257-5262.
    [72] Hou W-C, Kong L, Wepasnick K A, et al. Photochemistry of aqueous C60clusters: Wavelengthdependency and product characterization[J]. Environ Sci Technol,2010,44(21):8121-8127.
    [73] Saleh N B, Pfefferle L D, Elimelech M. Aggregation kinetics of multiwalled carbon nanotubes inaquatic systems: Measurements and environmental implications[J]. Environ Sci Technol,2008,42(21):7963-7969.
    [74] Sano M, Okamura J, Shikai S. Colloidal nature of single-walled carbon nanotubes in electrolytesolution: The schulze-hardy rule[J]. Langmuir,2001,17(22):7172-7173.
    [75] Deguchi S, Alargova R G, Tsujii K. Stable dispersions of fullerenes, C60and C70, in water. Preparationand characterization[J]. Langmuir,2001,17(19):6013-6017.
    [76] Li H, Jia X, Li Y, et al. A salt-free zero-charged aqueous onion-phase enhances the solubility offullerene C60in water[J]. J Phys Chem B,2005,110(1):68-74.
    [77] Andrievsky G V, Klochkov V K, Karyakina E L, et al. Studies of aqueous colloidal solutions offullerene C60by electron microscopy[J]. Chem Phys Lett,1999,300(3-4):392-396.
    [78] Brant J, Lecoanet H, Hotze M, et al. Comparison of electrokinetic properties of colloidal fullerenes(nC60) formed using two procedures[J]. Environ Sci Technol,2005,39(17):6343-6351.
    [79] Ma X, Bouchard D. Formation of aqueous suspensions of fullerenes[J]. Environ Sci Technol,2009,43(2):330-336.
    [80] Brant J A, Labille J, Bottero J Y, et al. Characterizing the impact of preparation method on fullerenecluster structure and chemistry[J]. Langmuir,2006,22(8):3878-3885.
    [81] Chen K L, Elimelech M. Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticlecharge and electrokinetic properties[J]. Environ Sci Technol,2009,43(19):7270-7276.
    [82] Brant J, Lecoanet H, Wiesner M R. Aggregation and deposition characteristics of fullerenenanoparticles in aqueous systems[J]. J Nanopart Res,2005,7(4-5):545-553.
    [83] Bouchard D, Ma X, Isaacson C. Colloidal properties of aqueous fullerenes: Isoelectric points andaggregation kinetics of C60and C60derivatives[J]. Environ Sci Technol,2009,43(17):6597-6603.
    [84] Chen K L, Elimelech M. Aggregation and deposition kinetics of fullerene (C60) nanoparticles[J].Langmuir,2006,22(26):10994-11001.
    [85] Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60)nanoparticles in monovalent and divalent electrolyte solutions[J]. J Colloid Interface Sci,2007,309(1):126-134.
    [86] Yang Y K, Nakada N, Nakajima R, et al. pH, ionic strength and dissolved organic matter alteraggregation of fullerene C60nanoparticles suspensions in wastewater[J]. J Hazard Mater,2013,244:582-587.
    [87] Hyung H, Fortner J D, Hughes J B, et al. Natural organic matter stabilizes carbon nanotubes in theaqueous phase[J]. Environ Sci Technol,2007,41(1):179-184.
    [88] Smith B, Wepasnick K, Schrote K E, et al. Colloidal properties of aqueous suspensions of acid-treated,multi-walled carbon nanotubes[J]. Environ Sci Technol,2009,43(3):819-825.
    [89] Smith B, Wepasnick K, Schrote K E, et al. Influence of surface oxides on the colloidal stability ofmulti-walled carbon nanotubes: A structure-property relationship[J]. Langmuir,2009,25(17):9767-9776.
    [90] Kennedy A J, Hull M S, Steevens J A, et al. Factors influencing the partitioning and toxicity ofnanotubes in the aquatic environment[J]. Environ Toxicol Chem,2008,27(9):1932-1941.
    [91] Yu J R, Grossiord N, Koning C E, et al. Controlling the dispersion of multi-wall carbon nanotubes inaqueous surfactant solution[J]. Carbon,2007,45(3):618-623.
    [92] Lin D H, Xing B S. Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions[J].Environ Sci Technol,2008,42(16):5917-5923.
    [93] Hyung H, Kim J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes:Effect of NOM characteristics and water quality parameters[J]. Environ Sci Technol,2008,42(12):4416-4421.
    [94] Zhou X, Shu L, Zhao H, et al. Suspending multi-walled carbon nanotubes by humic acids from a peatsoil[J]. Environ Sci Technol,2012,46(7):3891-3897.
    [95] Saleh N B, Pfefferle L D, Elimelech M. Influence of biomacromolecules and humic acid on theaggregation kinetics of single-walled carbon nanotubes[J]. Environ Sci Technol,2010,44(7):2412-2418.
    [96] Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphiticpotential[J]. Phys Rev B,2000,62(19):13104-13110.
    [97] Lin D, Liu N, Yang K, et al. The effect of ionic strength and pH on the stability of tannicacid-facilitated carbon nanotube suspensions[J]. Carbon,2009,47(12):2875-2882.
    [98] Karajanagi S S, Yang H, Asuri P, et al. Protein-assisted solubilization of single-walled carbonnanotubes[J]. Langmuir,2006,22(4):1392-1395.
    [99] Moore V C, Strano M S, Haroz E H, et al. Individually suspended single-walled carbon nanotubes invarious surfactants[J]. Nano Lett,2003,3(10):1379-1382.
    [100] Qu X, Hwang Y S, Alvarez P J J, et al. UV irradiation and humic acid mediate aggregation ofaqueous fullerene (nC60) nanoparticles[J]. Environ Sci Technol,2010,44(20):7821-7826.
    [101] Petosa A R, Jaisi D P, Quevedo I R, et al. Aggregation and deposition of engineered nanomaterials inaquatic environments: Role of physicochemical interactions[J]. Environ Sci Technol,2010,44(17):6532-6549.
    [102] Derjaguin B V, Landau L. Theory of the stability of strongly charged lyophobic sols and of theadhesion of strongly charged particles in solutions of electrolytes[J]. Acta Phys. Chim. URSS,1941,14:633-662.
    [103] Fuchs N. über die stabilit t und aufladung der aerosole[J]. Z Phys A: Hadrons Nucl,1934,89(11):736-743.
    [104] Su F S, Lu C S. Adsorption kinetics, thermodynamics and desorption of natural dissolved organicmatter by multiwalled carbon nanotubes[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng,2007,42(11):1543-1552.
    [105] Cheng X K, Kan A T, Tomson M B. Study of C60transport in porous media and the effect of sorbedC60on naphthalene transport[J]. J Mater Res,2005,20(12):3244-3254.
    [106] Lu C Y, Liu C T. Removal of nickel(II) from aqueous solution by carbon nanotubes[J]. J ChemTechnol Biotechnol,2006,81(12):1932-1940.
    [107] Li Y H, Wang S G, Luan Z K, et al. Adsorption of cadmium(II) from aqueous solution by surfaceoxidized carbon nanotubes[J]. Carbon,2003,41(5):1057-1062.
    [108] Li Y H, Ding J, Luan Z K, et al. Competitive adsorption of Pb2+, Cu2+and Cd2+ions from aqueoussolutions by multiwalled carbon nanotubes[J]. Carbon,2003,41(14):2787-2792.
    [109] Tuzen M, Soylak M. Multiwalled carbon nanotubes for speciation of chromium in environmentalsamples[J]. J Hazard Mater,2007,147(1-2):219-225.
    [110] Li Y H, Wang S G, Wei J Q, et al. Lead adsorption on carbon nanotubes[J]. Chem Phys Lett,2002,357(3-4):263-266.
    [111] Lu C Y, Chiu H S. Adsorption of zinc(II) from water with purified carbon nanotubes[J]. Chem EngSci,2006,61(4):1138-1145.
    [112] Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: Areview[J]. Sep Purif Technol,2007,58(1):224-231.
    [113] Lu C S, Chung Y L, Chang K F. Adsorption of trihalomethanes from water with carbon nanotubes[J].Water Res,2005,39(6):1183-1189.
    [114] Chin C J M, Shih L C, Tsai H J, et al. Adsorption of o-xylene and p-xylene from water bySWCNTs[J]. Carbon,2007,45(6):1254-1260.
    [115] Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbonnanomaterials[J]. Environ Sci Technol,2006,40(6):1855-1861.
    [116] Peng H, Pan B, Wu M, et al. Adsorption of ofloxacin and norfloxacin on carbon nanotubes:Hydrophobicity-and structure-controlled process[J]. J Hazard Mater,2012,233:89-96.
    [117] Pan B, Lin D H, Mashayekhi H, et al. Adsorption and hysteresis of bisphenol A and17alpha-ethinylestradiol on carbon nanomaterials[J]. Environ Sci Technol,2008,42(15):5480-5485.
    [118] Ghaedi M, Hassanzadeh A, Kokhdan S N. Multiwalled carbon nanotubes as adsorbents for the kineticand equilibrium study of the removal of alizarin red S and morin[J]. J Chem Eng Data,2011,56(5):2511-2520.
    [119] Wang Z Y, Zhao J, Li F M, et al. Adsorption and inhibition of acetylcholinesterase by differentnanoparticles[J]. Chemosphere,2009,77(1):67-73.
    [120] Peng X J, Li Y H, Luan Z K, et al. Adsorption of1,2-dichlorobenzene from water to carbonnanotubes[J]. Chem Phys Lett,2003,376(1-2):154-158.
    [121] Long R Q, Yang R T. Carbon nanotubes as superior sorbent for dioxin removal[J]. J Am Chem Soc,2001,123(9):2058-2059.
    [122] Yang K, Wu W H, Jing Q F, et al. Aqueous Adsorption of Aniline, Phenol, and their Substitutes byMulti-Walled Carbon Manotubes[J]. Environ Sci Technol,2008,42(21):7931-7936.
    [123] Lin D H, Xing B S. Adsorption of phenolic compounds by carbon nanotubes: Role of aromaticity andsubstitution of hydroxyl groups[J]. Environ Sci Technol,2008,42(19):7254-7259.
    [124] Liao Q, Sun J, Gao L. The adsorption of resorcinol from water using multi-walled carbonnanotubes[J]. Colloids Surf Physicochem Eng Aspects,2008,312(2-3):160-165.
    [125] Chen W, Duan L, Zhu D Q. Adsorption of polar and nonpolar organic chemicals to carbonnanotubes[J]. Environ Sci Technol,2007,41(24):8295-8300.
    [126] Wang X L, Lu J L, Xing B S. Sorption of organic contaminants by carbon nanotubes: Influence ofadsorbed organic matter[J]. Environ Sci Technol,2008,42(9):3207-3212.
    [127] Cheng X K, Kan A T, Tomson M B. Naphthalene adsorption and desorption from aqueous C60fullerene[J]. J Chem Eng Data,2004,49(3):675-683.
    [128] Lu C, Su F, Hu S. Surface modification of carbon nanotubes for enhancing BTEX adsorption fromaqueous solutions[J]. Appl Surf Sci,2008,254(21):7035-7041.
    [129] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecol Indicators,2008,8(1):1-13.
    [130] Ji L, Chen W, Zheng S, et al. Adsorption of sulfonamide antibiotics to multiwalled carbonnanotubes[J]. Langmuir,2009,25(19):11608-11613.
    [131] Zhang D, Pan B, Zhang H, et al. Contribution of different sulfamethoxazole species to their overalladsorption on functionalized carbon nanotubes[J]. Environ Sci Technol,2010,44(10):3806-3811.
    [132] Ji L, Shao Y, Xu Z, et al. Adsorption of monoaromatic compounds and pharmaceutical antibiotics oncarbon nanotubes activated by KOHetching[J]. Environ Sci Technol,2010,44(16):6429-6436.
    [133] Ji L, Liu F, Xu Z, et al. Adsorption of pharmaceutical antibiotics on template-synthesized orderedmicro-and mesoporous carbons[J]. Environ Sci Technol,2010,44(8):3116-3122.
    [134] Ji L, Chen W, Bi J, et al. Adsorption of tetracycline on single-walled and multi-walled carbonnanotubes as affected by aqueous solution chemistry[J]. Environ Toxicol Chem,2010,29(12):2713-2719.
    [135] Oleszczuk P, Pan B, Xing B. Adsorption and desorption of oxytetracycline and carbamazepine bymultiwalled carbon nanotubes[J]. Environ Sci Technol,2009,43(24):9167-9173.
    [136] Kumar S A, Wang S-F. Adsorption of ciprofloxacin and its role for stabilizing multi-walled carbonnanotubes and characterization[J]. Mater Lett,2009,63(21):1830-1833.
    [137] Carabineiro S A C, Thavorn-amornsri T, Pereira M F R, et al. Comparison between activated carbon,carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin[J]. Catal Today,2012,186(1):29-34.
    [138] Carabineiro S A C, Thavorn-Amornsri T, Pereira M F R, et al. Adsorption of ciprofloxacin onsurface-modified carbon materials[J]. Water Res,2011,45(15):4583-4591.
    [139] Wang Z, Yu X, Pan B, et al. Norfloxacin sorption and its thermodynamics on surface-modified carbonnanotubes[J]. Environ Sci Technol,2009,44(3):978-984.
    [140] Atalay Y B, Carbonaro R F, Di Toro D M. Distribution of proton dissociation constants for modelhumic and fulvic acid molecules[J]. Environ Sci Technol,2009,43(10):3626-3631.
    [141] Leenheer J A, Croue J P. Characterizing aquatic dissolved organic matter[J]. Environ Sci Technol,2003,37(1):18-26.
    [142]梁艳红,陈寅儒,周达诚.碳纳米管对不同分区溶解有机物的吸附研究[J].安全与环境学报,2012,12(3):22-27.
    [143] Wang X L, Shu L, Wang Y Q, et al. Sorption of peat humic acids to multi-walled carbon nanotubes[J].Environ Sci Technol,2011,45(21):9276-9283.
    [144] Wang S G, Liu X W, Gong W X, et al. Adsorption of fulvic acids from aqueous solutions by carbonnanotubes[J]. J Chem Technol Biotechnol,2007,82(8):698-704.
    [145] Chen J Y, Chen W, Zhu D. Adsorption of nonionic aromatic compounds to single-walled carbonnanotubes: Effects of aqueous solution chemistry[J]. Environ Sci Technol,2008,42(19):7225-7230.
    [146] Zhang S J, Shao T, Karanfil T. The effects of dissolved natural organic matter on the adsorption ofsynthetic organic chemicals by activated carbons and carbon nanotubes[J]. Water Res,2011,45(3):1378-1386.
    [147] Gai K, Shi B Y, Yan X M, et al. Effect of dispersion on adsorption of atrazine by aqueous suspensionsof fullerenes[J]. Environ Sci Technol,2011,45(14):5959-5965.
    [148] Leach A R. Molecular Modelling Principles and Applications[M]. England: Pearson EducationLimited,2001.
    [149] Allen M P, Tildesley D J. Computer Simulation of Liquids[M]. Oxford: Clarendon Press,1987.
    [150] Frenkel D, Simit B. Understanding Molecular Simulation: From Algorithms to Applications[M]. SanDiego: Academic Press,1996.
    [151] Dirac P A M. On the analogy between classical and quantum mechanics[J]. Rev Mod Phys,1945,17(2-3):195-199.
    [152] Born M, Green H S. A general kinetic theory of liquids.4. Quantum mechanics of fluids[J]. Proc RSoc London A: Math Phys Sci,1947,191(1025):168-181.
    [153] Alder B J, Wainwright T E. Studies in molecular dynamics.1. General method[J]. J Chem Phys,1959,31(2):459-466.
    [154] Alder B J, Wainwright T E. Studies in molecular dynamics.2. Behavior of a small number of elasticspheres[J]. J Chem Phys,1960,33(5):1439-1451.
    [155] Metropolis N, Ulam S. The monte carlo method[J]. J Am Stat Assoc,1949,44(247):335-341.
    [156] Rosenbluth M N, Rosenbluth A W. Further results on Monte Carlo equations of state[J]. J Chem Phys,1954,22(5):881-884.
    [157] Woese C. Molecular mechanics of translation-a reciprocating ratchet mechanism[J]. Nature,1970,226(5248):817-820.
    [158] Allinger N L, Sprague J T. Calculation of structures of hydrocarbons containing delocalizedelectronic systems by molecular mechanics method[J]. J Am Chem Soc,1973,95(12):3893-3907.
    [159] Schlijper A G, Hoogerbrugge P J, Manke C W. Computer-simulation of dilute polymer-solutions withthe dissipative particle dynamics method[J]. J Rheol,1995,39(3):567-579.
    [160] Groot R D, Warren P B. Dissipative particle dynamics: Bridging the gap between atomistic andmesoscopic simulation[J]. J Chem Phys,1997,107(11):4423-4435.
    [161] Chen H D. Volumetric formulation of the lattice boltzmann method for fluid dynamics: Basicconcept[J]. Phys Rev E,1998,58(3):3955-3963.
    [162] Baaijens F P T. Mixed finite element methods for viscoelastic flow analysis: A review[J]. JNon-Newton Fluid,1998,79(2-3):361-385.
    [163] Alder B J, Wainwright T E. Phase transition for a hard sphere system[J]. J Chem Phys,1957,27(5):1208-1209.
    [164] Gibson J B, Goland A N, Milgram M, et al. Dynamics of radiation damage[J]. Phys Rev,1960,120(4):1229-1253.
    [165] Rahman A. Correlations in the motion of atoms in liquid argon[J]. Phys Rev,1964,136(2A):A405-A411.
    [166] Verlet L. Computer experiments on classical fluids.I. Thermodynamical properties of lennard-jonesmolecules[J]. Phys Rev,1967,159(1):98-103.
    [167] Andersen H C. Molecular-dynamics simulations at constant pressure and-or temperature[J]. J ChemPhys,1980,72(4):2384-2393.
    [168] Parrinello M, Rahman A. Polymorphic transitions in single-crystals-a new molecular-dynamicsmethod[J]. J Appl Phys,1981,52(12):7182-7190.
    [169] Nose S. A unified formulation of the constant temperature molecular-dynamics methods[J]. J ChemPhys,1984,81(1):511-519.
    [170] Witzke S, Duelund L, Kongsted J, et al. Inclusion of terpenoid plant extracts in lipid bilayersinvestigated by molecular dynamics simulations[J]. J Phys Chem B,2010,114(48):15825-15831.
    [171] Adrjanowicz K, Zakowiecki D, Kaminski K, et al. Molecular dynamics in supercooled liquid andglassy states of antibiotics: Azithromycin, clarithromycin and roxithromycin studied by dielectricspectroscopy. Advantages given by the amorphous state[J]. Mol Pharm,2012,9(6):1748-1763.
    [172] Bedrov D, Smith G D, Li L W. Molecular dynamics simulation study of the role of evenly spacedpoly(ethylene oxide) tethers on the aggregation of C60fullerenes in water[J]. Langmuir,2005,21(12):5251-5255.
    [173] Shushkov P, Li R, Tully J C. Ring polymer molecular dynamics with surface hopping[J]. J ChemPhys,2012,137(22).
    [174] Choudhury N. A molecular dynamics simulation study of buckyballs in water: Atomistic versuscoarse-grained models of C60[J]. J Chem Phys,2006,125(3):034502-1-7.
    [175] Elliott I G, Kuhl T L, Faller R. Compression of high grafting density opposing polymer brushes usingmolecular dynamics simulations in explicit solvent[J]. J Phys Chem B,2013,117(15):4134-4141.
    [176] Hunter G, Gray B F, Pritchar.Ho. Born-Oppenheimer separation for3-particle systems.I. Theory[J]. JChem Phys,1966,45(10):3806-3016.
    [177]陈正隆,徐为人,汤立达,等.分子模拟的理论与实践[M].北京:化学工学出版社,2007.
    [178] Wentorf R H, Buehler R J, Hirschfelder J O, et al. Lennard-Jones and devonshire equation of state ofcompressed gases and liquids[J]. J Chem Phys,1950,18(11):1484-1500.
    [179] Casewit C J, Colwell K S, Rappe A K. Application of a universal force-field to organic-molecules[J].J Am Chem Soc,1992,114(25):10035-10046.
    [180] Mayo S L, Olafson B D, Goddard W A. Dreiding-a generic force-field for molecular simulations[J].J Phys Chem,1990,94(26):8897-8909.
    [181] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-Overviewwith details on alkane and benzene compounds[J]. J Phys Chem B,1998,102(38):7338-7364.
    [182] Sun H, Mumby S J, Maple J R, et al. An ab-initio cff93all-atom force-field for polycarbonates[J]. JAm Chem Soc,1994,116(7):2978-2987.
    [183] Sun H. Ab-initio calculations and force-field development for computer-simulation of polysilanes[J].Macromolecules,1995,28(3):701-712.
    [184] Wang J M, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field[J].J Comput Chem,2004,25(9):1157-1174.
    [185] MacKerell A D, Bashford D, Bellott M, et al. All-atom empirical potential for molecular modelingand dynamics studies of proteins[J]. J Phys Chem B,1998,102(18):3586-3616.
    [186] Hagler A T, Huler E, Lifson S. Energy functions for peptides and proteins.1. Derivation of aconsistent force-field including hydrogen-bond from amide crystals[J]. J Am Chem Soc,1974,96(17):5319-5327.
    [187] Lifson S, Hagler A T, Dauber P. Consistent force-field studies of inter-molecular forces inhydrogen-bonded crystals.1. Carboxylic-acids, amides, and the c=o...H-hydrogen-bonds[J]. J Am ChemSoc,1979,101(18):5111-5121.
    [188] Van Gunsteren W F, Berendsen H J C. A leap-frog algorithm for stochastic dynamics[J]. Mol Simul,1988,1(3):173-185.
    [189] Palmer B J. Direct application of shake to the velocity verlet algorithm[J]. J Comput Phys,1993,104(2):470-472.
    [190] Beeman D. Some multistep methods for use in molecular-dynamics calculations[J]. J Comput Phys,1976,20(2):130-139.
    [191] Berendsen H J C, Postma J P M, Vangunsteren W F, et al. Molecular-dynamics with coupling to anexternal bath[J]. J Chem Phys,1984,81(8):3684-3690.
    [192] Liu J, Wang X L, Zhao L, et al. The absorption and diffusion of polyethylene chains on the carbonnanotube: The molecular dynamics study[J]. J Polym Sci Pol Phys,2008,46(3):272-280.
    [193] Lin S C, Blankschtein D. Role of the bile salt surfactant sodium cholate in enhancing the aqueousdispersion stability of single-walled carbon nanotubes: A molecular dynamics simulation study[J]. J PhysChem B,2010,114(47):15616-15625.
    [194] Tummala N R, Striolo A. Sds surfactants on carbon nanotubes: Aggregate morphology[J]. Acs Nano,2009,3(3):595-602.
    [195] Wallace E J, Sansom M S P. Carbon nanotube/detergent interactions via coarse-grained moleculardynamics[J]. Nano Lett,2007,7(7):1923-1928.
    [196] Wallace E J, D'Rozario R S G, Sanchez B M, et al. A multiscale simulation study of carbon nanotubeinteractions with designed amphiphilic peptide helices[J]. Nanoscale,2010,2(6):967-975.
    [197] Pang J Y, Xu G Y, Bai Y, et al. Molecular dynamics simulations of the interactions betweenbeta-cyclodextrin derivatives and single-walled carbon nanotubes[J]. Comp Mater Sci,2010,50(2):283-290.
    [198] Wallace E J, Sansom M S P. Carbon nanotube self-assembly with lipids and detergent: a moleculardynamics study[J]. Nanotechnology,2009,20(4):045101-1-6.
    [199] Panczyk T, Rudzinski W, Jagusiak A. Adsorption of colloid nanoparticles on carbon nanotubesstudied by means of molecular dynamics simulations[J]. Colloids Surf Physicochem Eng Aspects,2012,409:149-158.
    [200] Jalili S, Jaberi A, Mahjani M G, et al. Molecular dynamics simulations of hydrogenadsorption/desorption by palladium decorated single-walled carbon nanotube bundle[J]. Mol Phys,2012,110(6):361-368.
    [201] Foroutan M, Nasrabadi A T. Molecular dynamics simulation study of neon adsorption onsingle-walled carbon nanotubes[J]. Physica E,2010,43(1):261-265.
    [202] Wang L, Tang Y, Wang C, et al. Molecular dynamics simulations on hydrogen adsorption in Li dopedsingle walled carbon nanotube[J]. Adv Mater Res,2012,550-553:2712-2718.
    [203] Hooper J B, Bedrov D, Smith G D. Supramolecular self-organization in PEO-modified C60fullerene/water solutions: Influence of polymer Molecular weight and nanoparticle concentration[J].Langmuir,2008,24(9):4550-4557.
    [204] Zhao X, Striolo A, Cummings P T. C60binds to and deforms nucleotides[J]. Biophys J,2005,89(6):3856-3862.
    [205] Hadad A, Azevedo D L, Caetano E W S, et al. Two-level adsorption of ibuprofen on C60fullerene fortransdermal delivery: Classical molecular dynamics and density functional theory computations[J]. J PhysChem C,2011,115(50):24501-24511.
    [206] Lv C, Xue Q Z, Xia D, et al. Effect of chemisorption on the interfacial bonding characteristics ofgraphene-polymer composites[J]. J Phys Chem C,2010,114(14):6588-6594.
    [207] Tummala N R, Striolo A. Role of counterion condensation in the self-assembly of SDS surfactants atthe water-graphite interface[J]. J Phys Chem B,2008,112(7):1987-2000.
    [208] Raffaini G, Ganazzoli F. Molecular dynamics simulation of the adsorption of a fibronectin module ona graphite surface[J]. Langmuir,2004,20(8):3371-3378.
    [209] Burress J, Kraus M, Beckner M, et al. Hydrogen storage in engineered carbon nanospaces[J].Nanotechnology,2009,20(20)204026-1-10.
    [210] Xie B, Xu Z, Guo W, et al. Impact of natural organic matter on the physicochemical properties ofaqueous C60nanoparticles[J]. Environ Sci Technol,2008,42(8):2853-2859.
    [211] Lacerda L, Bianco A, Prato M, et al. Carbon nanotubes as nanomedicines: From toxicology topharmacology[J]. Adv Drug Del Rev,2006,58(14):1460-1470.
    [212] O'Driscoll N J, Messier T, Robertson M D, et al. Suspension of multi-walled carbon nanotubes (CNTs)in freshwaters: Examining the effect of CNT size[J]. Water Air Soil Pollut,2010,208(1-4):235-241.
    [213] Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-areview[J]. Geoderma,2001,99(3-4):169-198.
    [214] Wang Z, Chen J, Sun Q, et al. C60-DOM interactions and effects on C60apparent solubility: Amolecular mechanics and density functional theory study[J]. Environ Int,2011,37(6):1078-1082.
    [215] Michalkova A, Gorb L, Hill F, et al. Can the gibbs free energy of adsorption be predicted efficientlyand accurately: An M05-2X DFT study[J]. J Phys Chem A,2011,115(11):2423-2430.
    [216] Jiang J W, Wagner N J, Sandler S I. A monte carlo simulation study of the effect of carbon topologyon nitrogen adsorption on graphite, a nanotube bundle, C60fullerite, C168schwarzite, and a nanoporouscarbon[J]. Phys Chem Chem Phys,2004,6(18):4440-4444.
    [217] Wang X-L, Lu Z-Y, Li Z-S, et al. Molecular dynamics simulation study on adsorption and diffusionprocesses of a hydrophilic chain on a hydrophobic surface[J]. J Phys Chem B,2005,109(37):17644-17648.
    [218] Rigby D, Sun H, Eichinger B E. Computer simulations of poly(ethylene oxide): force field, pvtdiagram and cyclization behaviour[J]. Polym Int,1997,44(3):311-330.
    [219] Yang J, Ren Y, Tian A-m, et al. COMPASS force field for14inorganic molecules, He, Ne, Ar, Kr, Xe,H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases[J]. J Phys Chem B,2000,104(20):4951-4957.
    [220] Chandler D. Introduction to modern statistical mechanics. New York: Oxford University Press;1987.
    [221] Baber J C, Thompson D C, Cross J B, et al. GARD: A generally applicable replacement for RMSD[J].J Chem Inf Model,2009,49(8):1889-1900.
    [222] Becke A D. Density-functional thermochemistry.3. the role of exact exchange[J]. J Chem Phys,1993,98(7):5648-5652.
    [223] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09, Revision A.01. Gaussian, Inc., WallingfordCT.2009.
    [224] Cances E, Mennucci B, Tomasi J. A new integral equation formalism for the polarizable continuummodel: Theoretical background and applications to isotropic and anisotropic dielectrics[J]. J Chem Phys,1997,107(8):3032-3041.
    [225] Wei C Y, Srivastava D, Cho K. Structural ordering in nanotube polymer composites[J]. Nano Lett,2004,4(10):1949-1952.
    [226] Yeh I C, Hummer G. System-size dependence of diffusion coefficients and viscosities from moleculardynamics simulations with periodic boundary conditions[J]. J Phys Chem B,2004,108(40):15873-15879.
    [227] Dawson R M C, Elliott D C, Elliott W H. Data for biochemical research[M]. Oxford: ClarendonPress;1959.
    [228] Braude E A, Nachod F C. Determination of organic structures by physical methods[M]. New York:Academic Press;1955.
    [229] Martell A E, Smith R M. Critical stability constants[M]. New York: Plenum Press;1989.
    [230] Dean J A. Lange's handbook of chemistry[M]. New York: McGraw-Hill;1973.
    [231] Sandmann B J, Chien M H, Sandmann R A. Stability constants of calcium, magnesium and zincgallate using a divalent ion-selective electrode[J]. Anal Lett,1985,18(2):149-159.
    [232] Borges F, Lima J L F C, Pinto I, et al. Application of a potentiometric system with data-analysiscomputer programs to the quantification of metal-chelating activity of two natural antioxidants: caffeicacidand ferulic acid[J]. Helv Chim Acta,2003,86(9):3081-3087.
    [233] Aruoma O I, Murcia A, Butler J, et al. Evaluation of the antioxidant and prooxidant actions of gallicacid and its derivatives[J]. J Agric Food Chem,1993,41(11):1880-1885.
    [234] Hilding J, Grulke E A, Zhang Z G, et al. Dispersion of carbon nanotubes in liquids[J]. J DispersionSci Technol,2003,24(1):1-41.
    [235] Aelenei N, Popa M I, Novac O, et al. Tannic acid incorporation in chitosan-based microparticles andin vitro controlled release[J]. J Mater Sci-Mater Med,2009,20(5):1095-1102.
    [236] Kraal P, Jansen B, Nierop K G J, et al. Copper complexation by tannic acid in aqueous solution[J].Chemosphere,2006,65(11):2193-2198.
    [237] Perez S, Eichhorn P, Aga D S. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole,sulfathiazole, and trimethoprim at different stages of sewage treatment[J]. Environ Toxicol Chem,2005,24(6):1361-1367.
    [238] Thiele-Bruhn S, Seibicke T, Schulten H R, et al. Sorption of sulfonamide pharmaceutical antibioticson whole soils and particle-size fractions[J]. J Environ Qual,2004,33(4):1331-1342.
    [239] Zhao J, Park H, Han J, et al. Electronic properties of carbon nanotubes with covalent sidewallfunctionalization[J]. J Phys Chem B,2004,108(14):4227-4230.
    [240] Al-Aqtash N, Vasiliev I. Ab Initio Study of Boron-and Nitrogen-Doped Graphene and CarbonNanotubes Functionalized with Carboxyl Groups[J]. J Phys Chem C,2011,115(38):18500-18510.
    [241] Zhao Y, Schultz N E, Truhlar D G. Design of density functionals by combining the method ofconstraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalentinteractions[J]. J Chem Theory Comput,2006,2(2):364-382.
    [242] Wu W, Chen W, Lin D, et al. Influence of surface oxidation of multiwalled carbon nanotubes on theadsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase[J]. Environ SciTechnol,2012,46(10):5446-5454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700