线辣椒/玉米套作生理生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
套作是我国农民在长期生产实践中,逐步认识和掌握的一项耕作措施,选择合适作物种类进行套作,可提高作物的水、肥、光资源的利用效率,大幅度增加产量。线辣椒是我国农产品出口创汇的名优特产,主要以套作模式进行栽培,获得了明显的套作产量优势,因此越来越受到农学家和生态学家的关注。本论文通过盆栽和大田的单作和套作种植、种间根系分隔技术,系统研究了线辣椒/玉米套作复合群体内作物的生长发育、光合特性、作物群体的光截获和利用效率、作物干物质积累规律、作物养分吸收与利用效率、根际土壤微生物多样性、根际、非根际土壤酶活性及有效养分含量等生理生态机制,为提高套作体系生产力和资源利用效率提供科学依据。本论文研究主要获得以下结果。
     线辣椒/玉米套作不仅改变了复合群体内光的分布,也使线辣椒和玉米功能叶片的Chla、Chlb和Chla + Chlb含量明显提高。与单作种植的玉米、线辣椒相比,套作明显降低了它们功能叶的叶绿素含量随生育期的递减速率。线辣椒/玉米套作提高了玉米晴天和阴天的单叶最大净光合速率,提高幅度分别为20.6%、47.13%;但套作降低了线辣椒单叶最大净光合速率,尤其在阴天更明显,达55.65%。线辣椒/玉米套作有利于提高线辣椒的日平均光能利用率。PAR对线辣椒不同时期的光合作用的影响不一样,不同的生育期内两者具有不同的线性关系。
     套作种植的玉米、线辣椒的平均株高均分别大于单作种植玉米、线辣椒。与单作玉米相比,套作玉米的根体积、根表面积、根的平均直径、根尖数和根交叉数都有一定程度的提高。套作玉米的根冠比大于单作玉米,增加了37.77%。与单作线辣椒相比,套作线辣椒的根系形态指标有弱化趋势。套作提高了线辣椒的根冠比。套作使玉米和线辣椒的根系活力均有增加,线辣椒增加的幅度大于玉米。
     全生育期内线辣椒/玉米套作群体平均叶面积指数比单作线辣椒提高22.47%,比单作玉米减少2.46%。线辣椒/玉米套作使群体LAI≥3的日数分别比单作线辣椒、单作玉米提高1.13倍和19.32%。线辣椒/玉米套作具有明显的套作产量优势,生物学LER为1.29,经济产品产量LER为1.33,均大于1,但以经济产品产量的套作优势更明显。线辣椒/玉米套作模式中经济产品产量和生物学产量的套作优势来自于地上部种间相互作用和地下部种间相互作用两个方面,但主要来自地上部贡献,其相对贡献以地上部占75%、地下部占25%。
     线辣椒/玉米套作种植时,其粒(果)数/叶比、粒(果)重/叶比均高于单作种植。线辣椒/玉米套作群体PRA捕获效率高于单作种植的线辣椒、玉米。套作群体PRA截获效率比按套作比例对单作作物PRA截获效率加权平均值高46.5%。套作群体光能利用效率比按套作比例对单作作物的光能利用效率加权平均值下降了11.7%。线辣椒/玉米套作群体的产量优势是由于套作后光截获效率提高而非光能利用效率的提高所致。套作线辣椒地上部干物质积累速率与单作线辣椒相比,前者的速率绝对值大于后者;但其相对速率较低;套作玉米的干物质积累速率远大于单作玉米。
     套作群体中的线辣椒植株干物质向茎、枝的分配比例明显低于单作,而向果实、根的分配比例高于单作,向根的分配比例比单作高2.6%。套作玉米植株的干物质向各器官的最终分配比例与单作差异不显著,套作对玉米植株干物质在器官间的分配影响较小。套作使玉米植株干物质向茎的分配比例下降,根的分配比例增加。
     套作玉米植株的氮、磷吸收量在整个生育期均明显的高于单作。与玉米共生期间,线辣椒植株的氮、磷吸收受到限制,但玉米收获后,线辣椒植株有显著的氮、磷吸收恢复现象,最后套作线辣椒植株的氮、磷吸收量达到或超过单作种植。施氮肥降低了玉米相对线辣椒的氮、磷营养的竞争比率。套作对玉米、线辣椒植株的钾吸收量的影响不明显。套作群体中线辣椒对氮、磷营养竞争表现出一定的边行劣势,而对钾营养的竞争没有表现出明显的边行劣势。盆栽和大田试验结果都显示,与单作相比,套作能明显促进作物对氮、磷、钾的吸收量;施氮肥后,套作相对单作的养分吸收量增加的幅度减小。套作群体的氮、磷、钾的利用效率低于单作。
     整个生育期内,套作种植的线辣椒、玉米根际土壤中细菌、真菌、放线菌的数量均比单作多,套作体系中具有显著的套作根际效应。套作使作物根际土壤微生物生物量碳、氮含量也高于单作。套作体系中作物根际土壤微生物群落的AWCD值、Simpson多样性指数、Shannon多样性指数、种间相遇几率(Pie)、Alatalo均匀度均高于单作,作物的生物学产量与这些土壤微生物的多样性指数之间存在明显的正相关,且在一些生育期显著相关,说明土壤微生物的多样性对植物生长的存在显著的影响。
     套作种植的线辣椒、玉米根际与非根际土壤微生物数量、酶活性、有效养分含量均高于单作种植,体现了套作优势的土壤微生态机制。作物根际土壤的有效养分含量均低于非根际。土壤微生物主要类群数量是影响土壤酶活性主要因子,与土壤酶活性显著相关。有机质、碱解氮含量与土壤酶活性、微生物数量呈极显著相关,有效磷含量与土壤酶活性、微生物数量呈正相关。土壤真菌数量、脲酶活性与有效钾含量呈负相关。通径分析表明,促进有机质积存的主要生物因素是脲酶、过氧化氢酶、细菌、蛋白酶,蔗糖酶是影响碱解氮的最主要因子,脲酶是影响有效磷的最主要因子,细菌是影响有效钾的最主要因子,碱性磷酸酶、真菌只是选择性地对有机质的积存和氮、磷、钾有效养分的形成起作用。放线菌对土壤养分的直接作用系数为负,对土壤养分形成的作用较小。
Relay intercropping is a commonly used agronomic practice in China for many years. Suitable crop relay intercropping pattern can use nutrient, water and solar radiation resources efficiently and enhance crop yield enormously. Capsicum (Capsicum.annuum L.) is a unique export-oriented agriculture product in China, which is mostly planted by relay intercropping pattern and has achieved significant relay intercropping yield advantage. Therefore, capsicum relay intercropping pattern is attracting more and more agronomists′and ecologists′attention. In this paper, physiology and ecology mechanisms of capsicum/maize (Zea mays L.) relay intercropping system were studied by the way of pot culture experiments, field growth experiments and different interspecific root barriers technique. The objective of the work is to give scientific evidence for improving productivity and higher efficient resource utilization in relay intercropping system. The following main results were obtained in the experiments.
     Capsicum/maize relay intercropping not only altered solar radiation distribution in crop population, but also enhanced chlorophyll a and chlorophyll b content of capsicum and maize function leaves markedly. Compared to monoculture maize and capsicum, Capsicum/maize relay intercropping depressed the descending rate of function leaves chlorophyll content in the process of leaves senescence. Capsicum/maize relay intercropping improved the maximum net phointercropping reduced the maximum net photosynthesis rate of sloe growth capsicum leaf, especially in cloudy, reduced by 55.65%. In this relay intercropping system, diurnal average photo use efficiency of capsicum was enhanced. There was a different linear relationship between photosynthetic active radiation and photosynthesis in the different capsicum growth stage.
     The average height of relay-intercropped maize and capsicum plant respectively exceeded that of monoculture maize and monoculture capsicum. Compared to monoculture maize, the volume, surface area, average diameter, tip number and chiasma number of relay-intercropped maize were improved. Root top ratio of relay-intercropped maize was increased by 37.77% as compare with monoculture. Morphological configuration characteristic of relay-intercropped capsicum took on weak current and root top ratio increasing as compare with monoculture capsicum. The root activity of relay intercropping components was enhanced in capsicum/maize relay intercropping system, and the increase extent of capsicum root activity exceeded that of maize root activity.
     In the whole grow stage, average LAI (leaf area index) of capsicum/maize relay intercropping system increased by 22.47% as compared with monoculture capsicum; reduced by 2.46% as compared with monoculture maize. The number of day, which LAI of capsicum/maize relay intercropping system exceeded 3, increased by 1.33 times as compared with monoculture capsicum; increased by 19.32% as compared with monoculture maize. There was a marked relay intercropping yield advantage in the capsicum/maize relay intercropping system, LER (Land equivalent ratio) of biological yield was equal to 1.29, and LER of economy production yield was equal to 1.33, economy production yield advantage more significant than biological yield advantage. Economy production yield and biomass yield advantage of capsicum/maize relay intercropping system not only resulted from crop interspecific interaction of above-ground but also below-ground interspecific root interaction, and furthermore, relative contribution of above-ground accounted for 75% and relative contribution of below-ground accounted for 25%.
     Grain (fruit) number to leaves number ratio and grain (fruit) weight to leaves number ratio of capsicum and maize crop in relay intercropping system exceeded those of monoculture capsicum and maize completely. Compared to monoculture capsicum and maize, there was a bigger PRA interception efficient in capsicum/maize relay intercropping system. PRA interception efficient of capsicum/maize relay intercropping system raised by 46.5% as compared with the weight average of PRA interception efficient of monoculture crop according to relay intercropping growth proportion. Photo-energy utilization efficiency of capsicum/maize relay intercropping system reduced by 11.7% as compared with the weight average of Photo-energy utilization efficiency of monoculture crop according to relay intercropping growth proportion. The yield advantage of capsicum/maize relay intercropping system resulted from the increase of PRA interception efficient, not from the increase of Photo-energy utilization efficiency. Shoot dry matter accumulation rate of relay-intercropped capsicum had bigger absolute value of rate, and smaller relation rate as compared with that of monoculture capsicum. The shoot dry matter accumulation rate of relay-intercropped maize exceeded far it or monoculture maize.
     The proportion, which relay-intercropped capsicum plant dry matter was allocated to stem and branch, was smaller, and which relay-intercropped capsicum plant dry matter was allocated to fruit and root, was bigger, as compared with those of monoculture capsicum. The proportion of relay-intercropped capsicum plant dry matter was allocated to root increase by 2.6% as compared with it of monoculture capsicum. Dry matter allocation proportion of different organ of maize plant had no distinct difference between relay-intercropped maize and monoculture. Compared to that of monoculture maize, the dry matter allocation proportion of stem of intercropped maize was reduced; however it increased in root of intercropped maize.
     In the whole grow stage, nitrogen (N), phosphorus (P) absorption quantity of relay-intercropped maize were always more than those of monoculture maize. During the symbiosis of maize and capsicum, N, P absorption of capsicum were inhibited, however, N, P absorption quantity of relay-intercropped capsicum plant showed marked recovery phenomena after maize harvest, finally N, P absorption quantity of relay-intercropped capsicum were attained or exceeded N, P absorption quantity of monoculture capsicum. N, P nutrition competition ratio of relay-intercropped maize relative to relay-intercropped capsicum decreased after application of N fertilizer. Relay intercropping growth pattern almost did not influence potassium (K) absorption of relay-intercropped capsicum and maize, compared to monoculture capsicum and maize. N, P nutrition absorption of capsicum showed side row disadvantage in capsicum/maize relay intercropping system. However, these phenomena did not happen in the K nutrition absorption of relay-intercropped capsicum. The result of pot culture and field culture experiments showed, relay intercropping growth pattern improved N, P, K nutrition absorption quantity of relay intercropping crop as compared with monoculture, the increase extent of relay intercropping crop nutrition relative to monoculture decreased after application of N fertilizer. Use efficient of N, P and K nutrition in the capsicum/maize relay intercropping system was less than monoculture.
     Bacteria, fungi and actinomycete number of rhizosphere and non- rhizosphere soil in the capsicum/maize relay intercropping system were generally more than monoculture capsicum and maize in the whole grow stage, there was a relay intercropping rhizosphere effect in the capsicum/maize relay intercropping system. Microbial biomass carbon and nitrogen content of rhizosphere soil of relay-intercropped crop was more than monoculture crop. Average well color development (AWCD) value, simpson diversity index, shannon diversity index, probability of interspecific encounter (Pie) and alatalo evenness of relay-intercropped crop were all more than these diversity indexes of monoculture. There was a positive correlation or significantly positive correlation between crop biological yield and these diversity indexes, this suggested that soil microbial diversity might play an important role in the process of crop growth.
     Microbial number, enzyme activity and effective nutrition content of rhizosphere and non-rhizosphere of relay-intercropped maize and capsicum were all more than monoculture, this indicated soil micro ecology mechanism of relay intercropping advantage. Rhizosphere soil effective nutrition content of crop was less than non-rhizosphere soil effective nutrition content of crop. Soil important microbe group number was main factor influencing soil enzyme activity; as well, there was a significant correlation between them (p<0.01). The content of organic matter and alkali-hydrolyzable nitrogen were also significantly correlated with soil microbe number and enzyme activity (p<0.01), available phosphor content was positively correlated with soil microbe number and enzyme activity. Soil fungi number and urease activity were negatively correlated with soil available potassium content. After the pathway analysis was done between soil nutrients content and biological factors, a conclusion was drawn, the urease, catalase, bacteria, protease were the main biological factors of deposit of organic matter; the surcease was the most important factor affecting alkali-hydrolyzable N; the urease was the most important factor affecting available P; the bacteria was the most important factor affecting available K; the alkaline phosphatase and fungi only selectively affected the deposit of organic matter and the forming of available nutrients of N, P and K. The direct path coefficients were negative between actinomycete and soil nutrient, which showed that actinomycete affected soil nutrient slightly.
引文
[1] Willey R.W. Intercropping: its impotence and research needs. Part II. Agronomy and research approaches [J]. Field Crop Abstracts, 1979b, 32: 73-85.
    [2] Willy R.W. Intercropping-its importance and research needs, PartⅠ. Competition and yield advantages [J]. Field Crops Abst., 1979a, 32: 1-10.
    [3] 蔡崇法, 王峰, 丁树文等. 套作及农林复合系统中植物组分间养分竞争机制分析 [J]. 水土保持研究, 2000, 7(3): 219-221.
    [4] 柴良植, 刘世铎, 李得举. 大力发展套作套种提高灌区综合效益 [M]. 干旱地区农业研究, 1997, 15(2): 37-43.
    [5] 陈国平. 间混套作的理论基础及其实践意义 [J]. 中国农业科学, 1961, (3): 53-61.
    [6] Ofori, F, Stern, W R. The combined effects of nitrogen fertilizer and density of the legume component on production efficiency in a maize/cowpea intercrop system. [J]. Field Crops Res. 1987, 16: 43-52.
    [7] 刘巽浩, 牟正国等. 中国耕作制度 [M]. 北京: 农业出版社, 1993.
    [8] Ae, N., Arihara, J., Okada, K., et al. Phosphorus uptake by pigeonpea and its role in cropping systems of the Indian subcontinent [J]. Science, 1990, 248: 477-480.
    [9] Hauggaard-Nielsen H., P. and Jensen, E. S. Interspecific competition, N use and interference with weeds in pea-barley intercropping [J]. Field Crops Res., 2001b, 70: 101-109.
    [10] Rao R., Rego, T. J., Willey. R.W. Response of cereals to nitrogen on sole cropping and intercropping with different legumes [J]. Plant and Soil, 1987, 101: 167-177.
    [11] Stern W R. Nitrogen fixation and transfer in intercrop systems [J]. Field Crops Research, 1993, 34: 335-356.
    [12] Vandermeer, J H. The ecology of intercropping [M]. Cambridge: Cambridge university press, 1989.
    [13] 张训忠, 李伯航. 高肥力条件下夏玉米大豆间混作互补与竞争效应研究 [J]. 中国农业科学, 1987, 20(2): 34-42.
    [14] 张训忠. 玉米大豆间混作效益研究进展 [J]. 河北农业大学学报, 1988, 11(3): 80-87.
    [15] 朱树秀, 季良, 阿米娜. 玉米单作及与大豆混作中氮来源的研究 [J]. 西北农业学报,1994, 3(1): 59-61.
    [16] Jagannathan N. T., Morachan Y. B., Ramiah S. Studies on the effect of maize and soybean association in different proportion on yield and grain [J]. Madras Agricultural Journal, 1979, 66: 719-721.
    [17] Lesoing, G. W., Francis, C. A. Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean [J]. Agron. J., 1999a 91: 807-813.
    [18] Lesoing, G. W., Francis, C. A. Strip intercropping of corn-soybean in irrigated and rainfed environments [J]. J. Prod. Agric. 1999b, 12: 187-192.
    [19] Waghmare, A.B., and Singh S.P. Sorghum-legume intercropping and the effects of nitrogen fertilization:ⅠYield and nitrogen uptake by crops [J]. Exp. Agric, 1984, 20: 251-259.
    [20] Chowdhury, M. K. and Rosario, E L. Comparison of nitrogen, phosphorus and potassium utilization efficiency in maize / mung bean intercropping [J]. J. Agri. Sci. Camb., 1994, 122: 194-199.
    [21] Mandal B K, Dhata M C, et al. Rice, mung bean, soybean, peanut, rice bean, and black bean yields under different intercropping systems [J]. Agron. J., 1990, 82: 1063-1066.
    [22] Reddy, M.S. and Willey, R.W. Growth and resource use studies in an intercrop of pearlmillet / groundnut [J]. Field Crops Res., 1981, 4: 13-24.
    [23] Willey R.W., Reddy, M.S. A field technique for separating above- and below-ground interactions in intercropping: an experiment with pearlmillet/groundnut [J]. Experimental Agriculture, 1981, 17: 257-264.
    [24] Thompson, D.J., Stout, D.G., Moore T., Mir Z. Yield and quality of forage from intercrops of barley and annual ryegrass [J]. Canadian Journal of Plant Science, 1992, 72(1): 163-172.
    [25] Li L., Zhang, F. S. Li, X. L. Christie, P., et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean [J]. Nutr. Cycl. Agroecosys., 2003, 65: 61-71.
    [26] Song, Y. N., Zhang, F.S. Marschner, P. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.) [J]. Biol Fertil Soils, 2007, in press.
    [27] 李隆, 李晓林等. 小麦大豆套作中作物种间的竞争作用和促进作用 [J]. 应用生态学报, 1999, 10(2): 197-200.
    [28] 李隆, 杨思存, 李晓林, 张福锁. 小麦大豆套作条件下作物养分吸收积累动态 [J]. 植物营养与肥料学报, 1999, 5(2): 164-171.
    [29] 李隆、李晓林、张福锁等. 小麦大豆套作条件下作物养分吸收利用对套作优势的贡献 [J]. 植物营养与肥料学报, 2000, 6(2): 140-146.
    [30] 李隆. 间作作物种间促进与竞争作用研究 [D]. 中国农业大学博士学位论文, 1999.
    [31] Li L., Sun J. H., Zhang R. S., et al. Wheat/maize or soybean strip intercropping. I. Yield advantage and interspecific interactions on nutrients [J]. Field Crops Research, 2001, 71: 123-137.
    [32] Francis C. A. Multiple cropping system [M]. New York: Macmillan Publishing Company, 1986.
    [33] 金绍龄, 李隆等. 小麦/玉米带田作物氮营养特点 [J]. 西北农业大学学报, 1996, 24(5): 35-41.
    [34] Ghosh, P.K., Mohanty, M. Bandyopadhyay, K.K., et al. Growth, competition, yields advantage and economics in soybean/pigeonpea intercropping system in semi-arid tropics of India II. Effect of nutrient management [J]. Field Crops Research, 2006, 96: 90–97.
    [35] 陈阜, 逄焕成. 冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨 [J]. 中国农业大学学报, 2000, 5( 5) : 12-16.
    [36] 逢焕成, 宋吉作等. 小麦玉米套种共生期的气候生态效应与小麦边际效应分析 [J]. 耕作与栽培, 1994: 4: 15-16.
    [37] 何贵文, 胡新元, 郭天文等. 河西绿洲灌区小麦/玉米带田高效种植方式研究 [J]. 甘肃农业科技, 2001, 5: 11-13.
    [38] Awal M. A., Koshi H., Ikeda T. Radiation interception and use by maize / peanut intercrop canopy [J]. Agricultural and Forest Meteorology, 2006, 139: 74-83.
    [39] Jahansooz, M.R., Yunusa, I.A.M., Coventry, D.R., et al. Radiation- and water-use associated with growth and yields of wheat and chickpea in sole and mixed crops [J]. Europ. J. Agronomy, 2007, 26: 275-282.
    [40] Keating B A, Carberry P S. Resource capture and use in intercropping: solar radiation [J]. Field Crop Research, 1993, 34: 273-301.
    [41] Sinclair, T.R., Shiraiwa, T., Hammer, G.L. Variation in crop radiation-use efficiency with increased diffuse radiation [J]. Crop Sci. 1992, 32, 1281-1284.
    [42] Watiki, J.M., Fukai, S., Banda, J.A. et al. Radiation interception and growth of maize / cowpea intercrop as affected by maize plant density and cowpea cultivar [J]. Field Crops Research, 1993, 35: 23-133.
    [43] 漆智平. 木薯-野花生套作对根系分布变化及土壤质量的影响 [J]. 华南农业大学学报,2000, 21 (1):26-29.
    [44] Caldwell, M.M. Competition between root systems in natural communities [M]. In: Root development. Cambridge :Cambridge University Press, 1987.
    [45] Martin M. P. and Snaydon, R. W. Root and shoot interactions between barley and field bean when intercropped [J]. J.Appl. Ecol., 1982, 19: 263-272.
    [46] Prasad R, Blaise. Soil Nitrogen dynamics in cropping systems. Roots and nitrogen in cropping systems of the semi-arid tropics [C]. Edited by Osamu Ito, Chris Johansen, Joseph J, Adu-Gyamfi, Katsuyuki Katayama, Jangala V D. Kumar Rao and Thomas J. Rego. Published by Japan International Research Center for Agricultural Science, Ohwashi, Tsukuba, Ibaraki Japan:, 1996, pp: 429-440.
    [47] Tofinga M.P. and Snaydon, R. W. The root activity of cereals and peas when grow in pure stands and mixtures [J]. Plant Soil, 1992, 42: 281-285.
    [48] Wilson J.B. Shoot competition and root competition [J]. Journal of Applied Ecology, 1988, 25(2): 279-296.
    [49] Hegde D.M., Saraf C.S. Growth anaysis of pigeonpea in pure and intercropped stands with different grain legumes in relation to phsphorus fertilization [J]. J. Agron. Crop Sci., 1982 a, 151: 49-61.
    [50] Hegde, D.M., Saraf, C.S. Effects of intercropping and phosphorus fertilization on nitrogen, phosphorus and potassium concentration and uptake and productivity of pigeonpea [J]. J. Agron. Crop Sci., 1982 b, 151: 302-314.
    [51] Hulugalle N.R, Willatt. Seasonal variation in the water uptake and leaf water potential of intercropped and monocropped chillies [J]. Experimental Agriculture, 1987, 23: 273-282.
    [52] Inal, A., Gunes, A., Zhang, F. Cakmak, I. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots [J]. Plant Physiology and Biochemistry, 2007, in press.
    [53] Donald, C. M. The intercration of competion for light and for nutrients [J]. Aust. J. Agri. Res., 1985, 9: 421-435.
    [54] EL Dessougi H, zu Dreeele A. and N. Claassen. Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues [J]. Journal of Plant Nutrition and Soil Science, 2003, 166: 254-261.
    [55] Snaydon, R.W. and Harris. P.M. Interactions below ground-The use of nutrients and water proceeding of international workshop on intercropping [C]. Hyderabad, India. ICRISAT, l981.
    [56] Thorsted, M.D. Olesen, J.E., Weiner, J. Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping [J]. Field Crops Research, 2006, 95: 280-290.
    [57] Wardle, D.A., Bardgett, R.D., Klironomos J.N., et al. Ecological linkages between aboveground and belowground biota [J]. Science, 2003, 304: 1634-1637.
    [58] 李芳东, 傅大立, 王保平. 桐麦套作系统小麦群体光合量及其与产量的关系 [J]. 北京林业大学学报, 1998, 20(3) :108-114.
    [59] 李隆, 金绍龄, 张丽慧等. 小麦/玉米带田中光捕获、利用及干物质积累特点 [J]. 西北农业大学学报, 1996, 5(24): 42-48.
    [60] 李文学. 小麦/玉米/蚕豆套作系统中氮、磷吸收利用及其环境效应 [D]. 中国农业大学博士论文, 2001.
    [61] Chowdhury, M. K. and Rosario, E. L. Phosphorus utilization efficiency as affected by component population, rhizobial inoculation and applied nitrogen in maize / mung bean intercropping [J]. Exp. Agric., 1992, 28: 255-263.
    [62] Getachew Agegnehu, Amare Ghizaw, Woldeyesus Sinebo. Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands [J]. Europ. J. Agronomy, 2006, 25: 202-207.
    [63] Healey, K.D., Rickert, K.G., Hammer, G.L., Bange, M.P. Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade [J]. Aust. J. Agric. Res. 1998, 49, 665-672.
    [64] Horst W. J. Efficiency of soil nutrient use in intercropping systems [C]. 1995, In: Ecophysiology of tropical intercropping. Sinoquet and Cruzed. INRP, Paris.
    [65] Zhang, F.S. and Li, L. Using competitive and facilitative interactions in intercropping systems enhance crop productivity and nutrients-use efficiency [J]. Plant and Soil, 2003, 248: 305-312.
    [66] Allen, J.R, Sinclair L.H, Lemon, E.R. Radiation and microclimate relationships in multiple cropping systems [J]. In: Field Crops Res., 1976, (1): 171-200
    [67] 黄高宝. 集约栽培条件下间套作的光能利用理论发展及其应用 [J]. 作物学报, 1999, 25(1): 16-24.
    [68] 隋鹏, 陈阜, 高旺盛. 海河低平原区小麦玉米套种高产技术研究 [J]. 作物杂志, 2000, 2: 10-11.
    [69] Verhagen, A.M., et al. Plant production in relation to foliage illumination [J]. Ann. Bot. N. S. 1963, 27: 627-640.
    [70] 李增嘉, 李凤超, 赵秉强. 小麦玉米玉米间套作的产量效应与光热资源利用率的研究 [J]. 山东农业大学学报. 1998, 29(4): 419-426.
    [71] 刘巽浩, 韩湘玲, 孔扬庄. 华北平原地区麦田两熟的光能利用作物竞争与产量分析 [J]. 作物学报, 1981, 1: 63-71.
    [72] 赵延魁, 王大君. 玉米小麦间套作对光热资源利用效率的研究 [J]. 辽宁农业科学, 1994, 1: 11-14.
    [73] 刘巽浩. 论作物的叶日积及其应用, 耕作制度研究论文集 [C]. 北京: 农业出版社, 1981, pp: 146-153.
    [74] Natarajan M, Willey R W. Sorghum - pigeonpea intercropping and the effects of plant population density Ⅱ. Resource use [J]. Agric. Sci. Camb., 1980, 95: 59-65.
    [75] Trenbath B R. Resource use by intercrops [C]. In: Francis C A (ed). Multiple cropping systems. Macmillan, New York, 1986.
    [76] Loomis, R.S. et al. Community architecture and the productivity of terrestrial plant communities [M].New York: Harvesting the Sun. Acad. Press, 1967: 191-308.
    [77] 王兴祥, 张桃林, 张斌等. 低丘红壤花生南酸枣套作系统研究I. 生产力 [J]. 土壤, 2002, 34(6): 324-327.
    [78] 王兴祥, 张桃林, 张斌等. 低丘红壤花生南酸枣套作系统研究II.氮素竞争 [J]. 土壤, 2003, 35(1): 66-68.
    [79] 王兴祥, 张桃林, 张斌等. 低丘红壤花生南酸枣套作系统研究IV. 光能竞争与剪枝作用 [J]. 土壤, 2003, 35(4): 320-324.
    [80] 褚贵新, 沈其荣, 李奕林等. 用15N叶片标记法研究旱作水稻与花生套作系统中氮素的双向转移 [J]. 生态学报, 2004, 24(2): 278-282
    [81] Zhou, X.L., Angus, F., Mackenzie, C., et al. Management practices conserve soil nitrate in maize production system [J]. Journal of Environment Quality, 1997, 26: 1369-1374.
    [82] Stuelpnagel, R. Intercropping of faba bean (vicia faba L) with oats or spring wheat [C]. Proceedings of International Crop Science Congress, l4-22 July 1992, Iowa State University, Ames, lowa.
    [83] Karpenstein-Machan, M., Stuelpnagel, R. Biomass yield nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on a subsequent maize crop [J]. Plant and Soil, 2000, 218: 215-232.
    [84] Wilkson Makumba, Bert Janssen, Oene Oenema, et al. The long-term effects of a gliricidia–maize intercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties [J]. Agriculture, Ecosystems and Environment, 2006, 116: 85–92.
    [85] Adu-Gyamfi J.J, Katayama, K., Devi, G., et al. Improvement of soil and fertilizer nitrogen use efficiency in sorghum/pigeonpea intercropping [C]. Roots and nitrogen in cropping systems of the semi-arid tropics. Edited by Osamu Ito, Chris Johansen, Joseph J, Adu-Gyamfi, Katsuyuki Katayama, Jangala V.D.Kumar Rao and Thomas J.Rego.Published by Japan International Research Center for Agricultural Science,l-2, Ohwashi, Tsukuba,Ibaraki 305, Japan, 1996, pp: 493-506.
    [86] Wani S.P., Rego, T.J., Ito O. and KLee K. Nitrogen budget in soil under different cropping systems [C].Roots and nitrogen in cropping systems of the semi-arid tropics, Edited by Osamu Ito,Chris Johansen ,Joseph J,Adu-Gyamfi, Katsuyuki Katayama, Jangala V.D.Kumar Rao and Thomas J. Rego. Published by Japan International Research Center for Agricultural Science, 1-2, Ohwashi, Tsukuba, lbaraki 305, Japan, 1996, pp: 481-492
    [87] Brophy, L. S. Nitrogen transfer from forage legumes to grass in a systematic planting design [J]. Crop Sci., 1987, 27: 753-758.
    [88] Fujita, K., et al. Biological nitrogen fixation in mixed legume-cereal cropping systems [J]. Plant Soil, 1992, 141: 155-175.
    [89] Rerkasem B, Rerkasem K, Peoples M B , et al. Measurement of N2 fixation in maize (zea may L.) / ricebean (V igna umbellata [ Thumb. ] Ohwi and Ohasi) intercrops [J]. Plant and Soil, 1988, 108: 125-135.
    [90] 曹鸿鸣, 贺明荣, 王明友等. 麦棉套作条件下棉麦对氮素吸收规律的研究 [J]. 核农学报1996, 10(2):104 -108.
    [91] Morris, R. A., Garrity, D P. Resource capture and utilization in intercropping: non-nitrogen nutrients [J]. Field Crops Research, 1993, 34: 319-334.
    [92] Morris R A, Garrity D P. Resource Capture and utilization in intercropping: water [J]. Field Crop Res., 1993a, 34: 303-317.
    [93] Binkley D., C. Giardina and M. Bahskin. Soil phosphorus supply under the influence of Eucalyptus saligna and nitrogen-fixing Albizia facaltaria [J]. Forest Ecology of Management, 2000, 128:241-247.
    [94] Conpoton J. and. Cole, D.W. Phosphorus cycling and soil fractions in Douglas-fir and red alder stand [J]. Forest Ecology of Management, 1998, 110: 101-112.
    [95] Kaye J., Resh, P. S. C., Kaye, M.W., Chimner. R.A. Nutrient and carbon dynamics replacement species of Eucalypvus and Albizia trees [J]. Ecology, 2000, 81: 3267-3273.
    [96] 李清曼, 王化岑, 赵华等. 棉花-花生在不同套作模式下土壤养分的变化特点 [J]. 地域研究与开发,1998, 17(1): 65-68.
    [97] 张恩和, 胡华. 小麦玉米带田根系竞争和补偿效应研究 [J]. 甘肃农业大学学报, 1997, 32(4): 295-299.
    [98] 张恩和, 张福锁,黄鹏. 小麦大豆间套种植对磷素在土壤中的转化及有效性的影响 [J]. 土壤通报2000, 3l(3): 130-131.
    [99] 张福锁, 曹一平. 根际微生态系统养分有效性及植物适应性机理 [J]. 土壤.1993, 25(5): 260-270.
    [100] Chiariello N., Hickman, J.C., Monney. M. Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants [J]. Science, 1982, 217: 941-943.
    [101] Ashokan R. K., P. A. Wahid. Relative uptake of 32P by cassava banana, elephant foot yam and groundnut in intercropping systems [J]. Plant and Soil, 1988, 109: 23-30.
    [102] Barber, S. A. Soil Nutrient Bioavailability: A Mechanistic Approach [M]. NewYork: John Wiley, 1984.
    [103] Blaser, R. E. and Brady, N.C. Nutrient competition in plant association [J]. Agron. J., 1950, 42: 128-135.
    [104] Hall, R.L. Analysis of the nature of interference between plants of different species. II .Nutrient relations in a Nandi setaria and Green leaf Desmodium association with particular reference to potassium [J]. Australian Journal of Agricultural Research, 1974b, 25: 749-756.
    [105] Hall, R.L. Analysis of the nature of interference between plants of different species. I .concepts and extension of the de wit analysis to examine effects [J]. Australian Journal of Agricultural Research, 1974b, 25: 7-27.
    [106] Romheld V. Existence of two difference strategies for the acquisition of iron in higher plants [C]. Iron Transport in Microbes, Plant and Animals, VCH2Verlag, Weinheim. 1987.
    [107] Marschner H., Romheld V. Strategies of plants for acquisition of iron [J]. Plant Soil, 1994, 165: 261-274.
    [108] 左元梅, 李晓林, 王秋杰等. 玉米、小麦与花生套作改善花生铁营养机制的探讨 [J]. 生态学报, 1998, 18(5): 453-459.
    [109] 左元梅, 李晓林, 王永歧等. 玉米花生套作对花生铁营养的影响.植物营养与肥料学报,1997,3(2):153-159.
    [110] Buyer, J. S, Drinkwater, L E. Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities [J]. J.Microb. Methods, 1997, 30: 3-11.
    [111] Dhima, K.V, Lithourgidis, A.S., Vasilakoglou, I.B., et al. Competition indices of common vetch and cereal intercrops in two seeding ratio [J]. Field Crops Research, 2007, 100: 249-256.
    [112] 赵聚宝, 徐祝龄, 钟兆站等. 中国北方旱地农田水分平衡 [M]. 农业出版社, 2000.
    [113] 刘昌明, 王会肖著. 土壤-作物-大气界面水分过程与竹水调控 [M]. 科学出版社, 1999.
    [114] 王小彬, 高绪科, 蔡典雄..影响旱地作物水分利用效率的因素 [J]. 土壤学进展, 1995, 23 (5):16-20.
    [115] Olesantan F O. The Effect of soil temperature and moisture content and crop growth and yield of intercropping maize with melon (Colocynthis vulgaris) [J]. Experimental agriculture, 1988, 24: 67-74.
    [116] Singh, B. P. Effect of intercropping with pearlmillet on productivity, profitability and water use on aridisols [J]. Indian J. Agron., 1985, 30: 408-413.
    [117] Grema, A. K., Hess, T. M. Water balance and water use of millet-cowpea intercrops in north east Nigeria [J]. Agricultural Water Management, l994, 26: 169-185.
    [118] Shackel, K A, Hall, A E. Effect of intercropping on the water relations of sorghum and cowpea [J]. Field Crops Res., 1984, 8: 381-387.
    [119] Gallaher R.N. All out feed production by multiple cropping [C]. Multiple cropping proceeding feeds and feeding research. Bulletin Georgia Exp Sta, 1975.
    [120] Dongmei Wang, Petra Marschner, Zakaria Solaiman, Zed Rengel. Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate [J]. Soil Biology & Biochemistry, 2007, 39: 249-256.
    [121] Francis, D.D. et al. Immobilization and uptake of nitrogen applied to corn as starter fertilize [J]. Soil Science Society of America Journal, 1993, 57:1023-1026.
    [122] 成升魁. 中国北方麦田多熟种植系统阈限与潜力及其理论研究(博士学位论文)[D]. 北京: 北京农业大学, 1990.
    [123] 樊廷录, 王勇, 宋尚有. 陇东旱塬玉米根际供水效益及小麦套种玉米增产机理 [J]. 西北农业学报, 1997, 6(1): 18-21.
    [124] 李凤超, 李增嘉等. 种植制度的理论与实践 [M]. 北京: 中国农业出版社, 1995.
    [125] 杨春峰, 成升魁. 关中灌区套作套种的带型研究 [J]. 西北农业大学学报, 1986, 12(2): 35-38.
    [126] 李新平, 黄进勇. 黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究 [J]. 植物生态学报. 2001, 25(4): 476-482.
    [127] 李增嘉, 李凤超, 赵秉强. 小麦玉米玉米间套作种植模式经济效益的分析 [J].山东农业大学学报.1997,28(4):383-390.
    [128] 凌启鸿主编. 作物群体质量. 上海: 上海科学技术出版社, 2000.
    [129] 傅金和, 傅懋毅, 曹群根, 黄寿波. 桃茶人工复合生态系统小气候特征研究 [J]. 浙江农业大学学报, 1995, 21(3): 293-298.
    [130] 邹超亚主编. 中国高功能高效益种植技术研究进展 [M]. 贵州科技出版社, 1990.
    [131] 刘建国, 吕新, 王克如等. 小麦套种玉米吨粮田复合群体光合机制的研究 [J]. 新疆农业科学, 2001, 38(3): 119-122.
    [132] Tripathi S.N. Mixed cropping of forage species in relation to herbage yield and quality [J]. Indian Journal of Dryland Agricultural Research and Development, 1989, 4(2): 68-72.
    [133] Azim, A., Khan A. G., Nadeem, M. A., Muhammad, D. Influence of maize and cowpea intercropping on fodder production and characteristics of silage [J]. Asian Australasian Journal of Animal Sciences. 2000, 13(6): 781-784.
    [134] Ramachandra C., Shivaraj B., Gowda A. Studies on the influence of intercrops grown for forage and seed on the seed yield and quality of fodder maize [J]. Farming Systems, 1993, 9(3-4): 87-92.
    [135] Eweida M. H., Osman M. S., Shams S., et al. Effect of some intercropping treatments of soybean with sugarcane on growth, yield and quality of both components [J]. Annals of Agricultural Science, 1996, 34(2): 473-486.
    [136] Abate Tedla, Tekalign Mamo, Klaij M.C. The performance of wheat and wheat/clover intercropping on drained vertisol in the Ethiopian highlands. Addis Adeba (Ethiopia). 1998:55-61.
    [137] Juskiw, P. E., Helm J. H., Salmon, D.F. Forage yield and quality for monocrops and mixtures of small grain cereals [J]. Crop-Science, 2000, 40(1):138-147.
    [138] Lithourgidis, A.S., Vasilakoglou, I.B., Dhima, K.V., et al. Forage yield and quality of common vetch mixtures with oat and triticale in two seeding ratios [J]. Field Crops Research, 2006, 99: 106-113.
    [139] Sistachs M., Gonzalez I., Padilla C., et al. Intercropping of forage sorghum, maize and soyabean during the establishment of different grasses in a vertisol soil. I.King grass (Pennisetum purpureum) [J]. Cuban Journal of Agricultural Science, 1990, 24(1): 123-129.
    [140] 韩友文主编. 饲料与饲养学 [M]. 北京: 中国农业出版社, 1998.
    [141] Harlapur S.I., Hunshal C. S., Moorty T.D. Effect of maize intercropping on yield and quality of sugarcane [J]. Farming-Systems. 1996, 12(3-4): 47-49.
    [142] Kingsley K., Daniel H., Putnam, H. T. et al. Strip Intercropping and Nitrogen Effects on Seed, Oil, and Protein Yields of Canola and Soybean [J]. Agronomy Journal, 1997, 89: 23-29.
    [143] Bonde, A.T., Schniiret, J. Microbial biomass as a fraction of potentially mineralizable in soil from long field experiments [J]. Soil Biol. Biochem., 1988, 20(4): 447-453.
    [144] Dick, R. P. Soil enzyme activities as indicators of soil quality [C]. In: Defining Soil Quality for a Sustainable Environment (eds Doran J W, Coleman D C, Bezdicek D F, Stewart B A), Soil Science Society of America, Madison, 1994.
    [145] Franchini, J.C. Crispino, C.C. Souza, R.A., et al. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil [J]. Soil & Tillage Research, 2007, 92: 18-29.
    [146] 孙秀山, 封海胜, 万书波, 左学青. 连作花生田主要微生物类群与土壤酶活性变化及其交互作用 [J]. 作物学报, 2001, 27(5): 617-621.
    [147] 牟金明, 李万辉. 根系分泌物及其作用 [J]. 吉林农业大学学报, 1996, 18(4): 114-118.
    [148] 陈锡时、郭树凡、汪景宽、张健. 地膜覆盖栽培对土壤微生物种群和生物活性的影响 [J]. 应用生态学报, 1998, 9(4): 435-439.
    [149] 章家恩, 刘文高, 胡刚. 不同土地利用方式下土壤微生物数量与土壤肥力的关系 [J]. 土壤与环境, 2002, 11(2): 140-143.
    [150] 张成娥, 杜社妮, 白岗栓等. 黄土塬区果园套作对土壤微生物及酶活性的影响 [J]. 土壤与环境, 2001, 10(2): 121-123.
    [151] 赵林森, 王九龄. 杨槐混交园中土壤酶活性和土壤养分与生长特性的相互关系研究 [J]. 北京林业大学学报, 1995, 17(4): 1-8.
    [152] 赵秉强, 张福锁, 李增嘉. 间套作条件下作物根系数量与活性的空间分布及变化规律研究 [J]. 作物学报, 2001, 27(6): 274-279.
    [153] 黄高保, 张恩和. 禾本科、豆科作物间套种植对根系活力影响的研究 [J]. 草业学报, 1998, 70: 18-22.
    [154] 刘芷宇. 根际微域环境的研究 [J]. 土壤, 1993, 25 (5): 225-230.
    [155] 施卫明. 根系分泌物与养分有效性 [J]. 土壤, 1993, 25(5): 252-256.
    [156] 逄焕成, 陈阜. 黄淮海平原同多熟模式生产力特征与资源利用效率研究 [J]. 自然资源学报, 1998, 13(3): 198-205.
    [157] 赵尊练, 史联联, 谭根堂, 严小良. 陕西省辣椒主产区辣椒病毒病病原种类鉴定及其分布研究[J]. 中国农业科学, 2004, 37(11): 1738-1742.
    [158] Arnon, D. I. Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris [J]. Plant Physical, 1949, 24:1-15.
    [159] Lichtenthaler, H. K, Wellbuen A. R. Determinations of total carotenoids and chlorophylls a and b leaf extracts in different solvents [J]. Biochem Soc Trans, 1983, 11(5):291-592.
    [160] 焦念元, 宁堂原, 赵春等. 玉米花生间作复合体系光合特性的研究 [J]. 作物学报, 2006, 32(6): 917-923.
    [161] 王靖,于强,李湘,孙晓敏,朱治林.用光合-蒸散耦合模型模拟冬小麦CO2 通量的日变化 [J].生态学报,2004,24(12):2781-2788.
    [162] Ball. J, T, Wooddrow, I E, Berry, J. A. A model predicting stomata conductance and its contribution to the control of photosynthesis under different environmental conditions [C]. Progress in Photosynthesis Research ad I Biggins, Martinus Nijhoff Publishers Netherlands, 1987, 221-224.
    [163] 高俊凤. 植物生理学实验技术 [M]. 西安: 世界图书出版社, 2000.
    [164] 刘玉华, 张立峰. 土地当量比的实质及应用分析 [J]. 耕作与栽培, 1999, 4: 64-65.
    [165] 张振贤, 周绪元, 陈利平.主要蔬菜作物光合与蒸腾特性研究 [J]. 园艺学报, 1997, 24 (2): 155-160.
    [166] Graham, R D. Breeding for nutritional characteristics in cereals [J]. Adv. Plant Nutr., 1984,1: 57-102.
    [167] Tilman D. Resource competition and community structure [M]. Princeton :Princeton University Press,1982.
    [168] Jensen E. S. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea-barley intercropping [J]. Plant Soil, 1996, 182: 25-38.
    [169] Bohm, W. Methods of studying root systems [M]. New York: Springer-Verlag, 1979.
    [170] 刘广才, 李隆, 黄高宝等. 大麦/玉米间作优势及地上部和地下部因素的相对贡献研究 [J]. 中国农业科学, 2005, 38(9): 1787-1795.
    [171] 鲍士旦. 土壤农化分析( 第三版) [M]. 北京: 中国农业出版社, 2000.
    [172] Dalal, R. C. Effects of intercropping with pigeonpeas on grain yield and nutrient uptake [J]. Exp. Agric., 1974, 10: 219- 224.
    [173] Manson S. C., Leihner, D. E. andVorst. J. J. Cassava-Cowpea and cassava-peanut intercropping. III. Nutrient concentrations and removal [J]. Apron. J., 1986, 78: 441-444.
    [174] Jensen, E. S. Rhizodeposition of N by pea and barley and its effects on soil N dynamics [J]. Soil Biol. Biochem., 1996, 28: 65-71.
    [175] Soundarajan D. Studies on intercropping in redgram under rainfed condition [D]. Tamil Nadu Agricultural University. Coimbatore, India, 1978.
    [176] Wahua, T.A. Nutrient uptake by intercropped maize and cowpeas and a concept of nutrient supplementation index (NSI) [J]. Exp. Agric., 1983, 19: 263-275.
    [177] Wallace S.U., Bacanamwo M, Palmer J H and Hull S A. Yield and yield components of relay -intercropped wheat and soybean [J]. Field Crops Research, 1996, 46: 161-168.
    [178] H?rdter, R., Horst, W. J. Nitrogen and phosphorus use in maize sole cropping and maize / cowpea mix cropping systems on an alfisol in the northern Guinea savanna of Ghana [J]. Biol. Fertil. Soil. 1991, 10: 267-275.
    [179] Anne, C. L., Hans, P. Effects of freezing of rhizosphere and root nutrient content using two soil sampling method [J]. Plant and soil, 1992, 139: 39-45.
    [180] Wardle D.A., Yeates, G.W., Nicholson, K.S., et al. Response of soil microbial biomass dynamics activity and plant litter decomposition to agricultural intensification over seven-year period [J]. Soil Biol. Biochem., 1999, 31(12): 1707-1720.
    [181] Jacek K, Jan, K E. Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches [J].Soil Biol. Biochern., 2000, 32 (10): 1405-1417.
    [182] 何振立. 土壤微生物量的测定方法: 现状和展望 [J]. 土壤学进展, 1994, 22 (4): 36-44.
    [183] Sparing G P. A comparison of soil and microbial carbon, nitrogen and phosphorus contents and macroaggregate stability of a soil under native forest and after clearance for pastures and plantation forest [J]. Biol Fertl Soils, 1994, 17: 91-100.
    [184] Bradley, L., Fyles, J.W. A kinetic parameter describing soil available carbon and its relationship to rate increase in C mineralization [J]. Soil Biol. Biochem., 1994, 22 (2): 167-172.
    [185] Insam, H. Relationship of soil microbial biomass and activity with fertilizer practice and crop yield of three Lutisols [J]. Soil Biol. Biochem. 1991, 23: 459-464.
    [186] Srivastava, S C, Singh, J S. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux [J]. Soil Biol. Biochem., 1991, 23 (2): 117-124.
    [187] 骆世明, 彭少麟主编. 农业生态系统分析 [M]. 广东科技出版社, 1996.
    [188] Choi, K, Dobbs, F. C. Comparison of two kinds of Biolog micro plate (GN and ECO) in their ability to distinguish among aquatic microbial communities [J]. J. Microb. Methods, 1999, 36: 203-213.
    [189] Garland J L. Analysis and interpretation of community level physiological profiles in microbial ecology [J]. FEMS Microbial. Ecol., 1997, 24: 289-300.
    [190] Garland, J.L, Mills, A.L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization [J]. Appl. Environ. Microb., 1991, 57: 2351-2359.
    [191] Garland, J. L., Mills, A. L. A community-level physiological approach for studying microbial communities [C]. In: Ritz K, Dighton J, Giller K E. eds. Beyond the Biomass: Composition and Functional Analysis of Soil Microbial Communities. London: Wiley-Sayce Publications, 1994.
    [192] Hollibaugh J.T. Relationship between thymidine metabolism, bacteri-oplankton community metabolic capabilities, and sources of organic matter [J]. Microb. Ecol., 1994, 28: 117-131.
    [193] Jellette J F, Li W K W, Dickie P M, et al. Metabolic activity of bacterioplankton communities assessed by flow cytometric and single carbon substrate utilization [J]. Mar. Ecol. Prog. Ser., 1996, 136: 213-225.
    [194] Preston Mafham J, Boddy L, Randerson P F. Analysis of microbial community functional diversity using sole-carbon-source utilization profiles a critique [J]. FEMS Microb. Ecol., 2002, 42: 1-14.
    [195] Frankenberger, W. T., Dick, W. A. Relationships between enzyme activities and microbial growthand activity indices in soil [J]. Soil Science Society of America, 1983, 47: 945-951.
    [196] Zak J.C, Willig M.R, Moorhead D.L, et al. Functional diversity of microbial communities: a quantitative approach [J]. Soil Biol. Biochem., 1994, 26: 1101-1108.
    [197] Bossio, D. D., Scow, K. M. Impact of carbon and flooding on the metabolic diversity of microbial communities in soils [J]. Appl. Environ. Microb., 1995, 61: 4043-4050.
    [198] Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere [J]. Soil Biol. Biochem., 1998, 30: 369-378.
    [199] 许光辉, 郑洪元. 土壤微生物分析手册 [M]. 北京: 农业出版社. 1986.
    [200] 亚历山大. 土壤微生物学导论 [M]. 北京: 北京出版社, 1983.
    [201] 沈 宏, 曹志洪, 徐本生. 玉米生长期间土壤微生物量与土壤酶变化及其相关性研究 [J]. 应用生态学报, 1999., 10(4): 471-474.
    [202] 沈其荣, 余 铃等. 有机无机肥料配合施用对滨海盐土壤微生物量态氮及土壤供氮特征的影响 [J]. 土壤学报, 1994, 31 (3): 287-294.
    [203] 孔维栋, 刘可星, 廖宗文. 有机物料种类及腐熟水平对土壤微生物群落的影响 [J]. 应用生态学报, 2004 , 15 (3) : 487-492.
    [204] Schutter, M. E, Dick, R. P. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates [J]. Soil Biol. Biochem., 2001, 33 (11): 1481-1491.
    [205] Taylor T.P., Wilson B., Mills M.S., Burns R.G. Comparison of microbial numbers and enzymatic activities in surface soils and sub-soils using various techniques [J]. Soil Bio. and Bioch., 2002, 34: 387-401.
    [206] Kennedy A C, Smith, K L. Soil microbial diversity and the sustainability of agricultural soils [J]. Plant Soil, 1995, 170: 75-86.
    [207] 李春格, 李晓明, 王鸣国. 大豆连作对土体和根际微生物群落功能的影响 [J]. 生态学报, 2006, 26(4): 1144-1149.
    [208] 柴强, 黄鹏, 黄高宝. 套作对根际土壤微生物和酶活性的影响研究 [J]. 草业学报, 2005, 14 (5): 105-110.
    [209] Arunachalam K, Arunachalam A, Melkania N P. Influence of soil properties on microbial populations, activity and biomass in humid subtropical mountainous ecosystems of India [J]. Biology and Fertility of Soils, 1999, 30, 217-223.
    [210] Ding, M. M., Yi, W. M., Liao, L.Y., et al. Effects of afforestation on microbial biomass and activity in soils of tropical China [J]. Soil Biology and Biochemistry, 1992, 24, 865-872.
    [211] Jenkinson D S, Powlson D S. The effects of biocidall treatment on metabolism in soil. V. A method for measuring soil biomass [J]. Soil Biology and Biochemistry, 1976, 8, 209-213.
    [212] 任天志, Stefano G. 持续农业中的土壤生物指标研究 [J]. 中国农业科学, 2000, 33: 68-75.
    [213] 愈慎, 李勇, 王俊华等. 土壤微生物生物量作为红壤质量生物指标的探讨 [J]. 土壤学报, 1999, 36, 413–422.
    [214] Staben, M.L., Bezdicek, D.F., Smith, J.L., Fauci, M.F. Assessment of soil quality in conservation reserve program and wheat fallow soils [J]. Soil Sci. Soc. Am. J. 1997, 61: 124-130.
    [215] Gardner, W. K., Boundy, K. A. The acquisition of phosphorus by Lupinus albus L. IV. The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species [J]. Plant and Soil, 1983, 70: 391-402.
    [216] 熊明彪, 何建平, 宋光煌. 根分泌物对根际微生物生态分布的影响 [J]. 土壤通报, 2002, 33 (2): 145-148.
    [217] Ong C. K. The "dark side" of intercropping: manipulation of soil resources [C]. In: Ecophysiology of tropical intercropping. Sinoquet and Cruzed. INRP, Paris. 1995.
    [218] ф.X.哈兹耶夫. 土壤酶活性 [M]. 北京: 科学出版社, 1980.
    [219] 关松荫. 土壤酶及其研究法 [M]. 北京: 农业出版社, 1986.
    [220] 周礼恺. 土壤酶学 [M]. 北京: 科学出版社, 1987.
    [221] 宋日, 吴春胜, 牟金明等. 玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响 [J]. 应用生态学报, 2002, 13(l): 303-306.
    [222] 汪远品, 何腾兵. 贵州主要耕作土壤的脉酶活性研究 [J]. 热带亚热带土壤科学.1994, 3(4): 226-232.
    [223] Acosta-Mart?′nez, V., Tabatabai, M.A. Tillage and residue management effects on arylamidase activity in soils [J]. Biol Fertil. Soils, 2001, 34: 21-24.
    [224] Acosta-Mart?′nez, V., Zobeck, T.M., Gill, T.E., et al. Enzyme activities and microbial community structure of agricultural semiarid soils [J]. Biol. Fertil. Soils, 2003b, 38: 216-227.
    [225] Kandeler E, Palli S, Stemmer M, Gerzabek M H. Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem [J]. Soil Bio. and Bioch., 1999, 31, 1253–1264.
    [226] Ekenler, M., Tabatabai, M. A. β-Glucosaminidase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization [J]. Biol. Fertil. Soils 2002, 36: 367-376.
    [227] Bandick, A. K., Dick, R. P. Field management effects on soil enzyme activities [J]. Soil Biol. Biochem., 1999, 31:1471-1479.
    [228] Klose, S, Moore, J. M., Tabatabai, M. A. Arylsulfatase activity of microbial biomass in soils as affected by cropping systems [J]. Biol. Fertil. Soils1999, 29, 46-54.
    [229] Ndiaye, E.L, Sandeno, J.M., McGrath, D., et al. Integrative biological indicators for detecting change in soil quality [J]. Am. J. Alter. Agric. 2000, 15: 26–36.
    [230] Lupwayia, N.Z., Hansonb, K.G. Harkerc, K.N. Soil microbial biomass, functional diversity and enzyme activity in glyphosate-resistant wheat–canola rotations under low-disturbance direct seeding and conventional tillage [J]. Soil Biology & Biochemistry, 2007, in press.
    [231] Alvey, S, Yang, C H, Buerkert A, et al. Cereal-legume rotation effects on rhizosphere bacterial community structure in West African soils [J]. Biol . Fertil .Soils, 2003, 37: 73-82.
    [232] Mersi W, Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride [J]. Bio.and Ferti. of Soils, 1991,11: 216–220.
    [233] Miller, M, Dick R P. Thermal stability and activities of soil enzymes as influenced by crop rotations [J]. Soil Biology and Biochemistry, 1995, 27, 1161–1166.
    [234] 郭继勋, 林海俊, 姜世成等. 不同草原植被碱化草甸土的酶活性 [J]. 应用生态学报, 1997, 8(4): 412-416.
    [235] 李松. 豆科牧草对土壤酶活性及肥力影响研究 [J]. 草业科学, 1993, 10(5): 20-23.
    [236] 杨万勤, 王开运. 土壤酶研究动态与展望 [J]. 应用与环境生物学报, 2002, 6 (5): 56-45.
    [237] Burns R G, Dick, R. P. Enzymes in the Environment: Ecology, Activity and Applications [M]. New York: Marcel Dekker, Inc., 2001.
    [238] 邱莉萍, 刘军, 王益权等. 土壤酶活性与土壤肥力的关系研究 [J]. 植物营养与肥料学报, 2004, 10(3): 277-280.
    [239] Kandeler E, Palli S, Stemmer M, Gerzabek M H. Tillage changes microbial biomass and enzyme activities in particle-size fractions of a Haplic Chernozem [J]. Soil Bio. and Bioch., 1999, 31, 1253–1264.
    [240] 王敬国. 微生物与根际中物质的循环 [J]. 北京农业大学学报, 1993, 19 (4): 98-105.
    [241] Aon, M. A., Colaneri, A. C. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil [J]. Applied Soil Ecology, 2001,18: 255-270.
    [242] Marschner, P, Yang, C H., Lieberei R., et al. Soil and plant specific effects on bacterial community composition in the rhizosphere [J]. Soil Biol. Biochem., 2001 , 33 :1437-1445.
    [243] Marschner, P., Baumann, K. Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize [J]. Plant Soil, 2003, 251: 279-289.
    [244] 周礼恺. 土壤酶活性的总体在评价土壤肥力水平中的作用 [J]. 土壤学报, 1983, 20 (4): 413-417.
    [245] Tiwari M.B., Tiwari B.K., Mishra R.R. Enzyme activity and carbon dioxide evolution from upland and wetland rice soils under three agricultural practices in hilly regions [J]. Biology and Fertility of Soils, 1989, 7: 359-364.
    [246] 孟亚利, 王立国, 周治国等. 麦棉两熟复合根系群体对棉花根际非根际土壤酶活性和土壤养分的影响 [J]. 中国农业科学, 2005, 38(5): 904-910.
    [247] Kessel C V, et al. Row spacing effects on N2 fixation, N-yield and soil N uptake of intercropped cowpea and maize [J]. Plant Soil, 1988, 111: 17-23.
    [248] Klemedtsson L, Berg P, Clarholm M. Microbial nitrogen transformation in the root environment of barley [J]. Soil Biol. Biochem., 1987, 19: 551-558.
    [249] 胡海波, 康立新, 梁珍海. 泥质海岸防护林土壤酶活性与理化性质关系的研究. 东北林业大学学报, 1995, 23 (5): 37-45.
    [250] Zantua M.I, Bremner J.M. Preservation of soil samples for assay of urease activity [J]. Soil Biol. Biochem., 1975, 7(4) :297-299.
    [251] 关松荫. 土壤酶及其研究法 [M]. 北京: 农业出版社, 1986.
    [252] 严昶升. 土壤肥力研究方法 [M]. 北京: 农业出版社, 1988.
    [253] 施卫明, 徐梦熊, 刘芷宇. 土壤-植物根系微区养分状况的研究 [J]. 土壤学报. 1987, 24(3): 286-290.
    [254] 苏宝玲, 韩十杰, 王建国. 根际微域研究中土样采集方法的研究进展 [J]. 应用生态学报, 2000, 11(3): 477-480.
    [255] 约翰逊, 库贝. 基础统计学 [M]. 北京: 科学出版社, 2003.
    [256] Tilman, D. Plant strategies and the structure and dynamics of plant communities [M]. Princeton: Princeton University Press, 1998.
    [257] 张建林, 陆欣, 王申贵. 有机物料配比施用对土壤碱性磷酸酶活性的影响 [J]. 土壤通报, 2001, 32(2): 79-81.
    [258] 韩晓日, 郭鹏程. 土壤微生物对施入肥料氮的固持及其动态研究 [J]. 土壤学报, 1998, 35(3): 412-418.
    [259] 陈恩凤. 土壤肥力物质基础及调控 [M]. 北京: 科学出版社, 1990.
     [260] Yang, C.H., Crowley, D.E. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status [J]. Appl. Environ. Microbiol, 2000, 66: 345-351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700