盐湖地区高性能混凝土的耐久性、机理与使用寿命预测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国大西北有4大盐湖区共上千个盐湖,其中,新疆盐湖区有102个,青海盐湖区有33个,内蒙古盐湖区有370多个,西藏盐湖区有220多个。盐湖地区的环境气候条件恶劣,混凝土耐久性问题异常严重。本文在现场调查研究的基础上,针对盐湖地区的(30%~50%)RH干燥条件,综合运用高性能混凝土(HPC)的配制原理、纤维的限缩阻裂和膨胀剂的补偿收缩等技术,研究了盐湖地区HPC的制备技术,同时制备出强度等级C30的普通混凝土(OPC)、C25的引气混凝土(APC)、C70的不掺活性掺合料的高强混凝土(HSC)、C70的三掺(硅灰+粉煤灰+矿渣)的HPC及其钢纤维增强HPC(SFRHPC)和高强高弹模聚乙烯纤维(PF)增强HPC(PFRHPC),分别研究了不同混凝土在4种盐湖地区的单一、双重和多重因素作用下损伤失效过程的规律、特点和氯离子吸附/结合规律,OPC、APC和HSC的损伤失效机理以及HPC高耐久性的形成机理。基于混凝土结构不同的失效机理,提出了混凝土结构损伤寿命的损伤演化方程预测方法,修正并完善了钢筋混凝土结构使用寿命的氯离子扩散理论预测方法。通过大量的室内外实验,初步建立了两种预测方法的理论体系及其基本参数数据,重点分析了影响盐湖地区混凝土使用寿命的因素和规律,对比了不同混凝土在典型盐湖卤水中的使用寿命,最后将HPC应用于青海盐湖地区的重点工程中,并探讨了我国大西北盐湖地区钢筋混凝土结构的耐久性参数设计问题。结果表明,高强度的非引气HPC同时具有抗卤水冻蚀、抗卤水腐蚀和长寿命的特性。本文提出混凝土使用寿命的两套预测方法具有普适意义。
     各章的主要研究内容与结果如下:
     第一章综述了混凝土在盐湖地区的耐久性和使用寿命预测方法的研究意义和最新研究进展,指出了当前研究存在的问题,在此基础上确定了本文的主要研究方向。
     第二章简要介绍了我国盐湖地区的环境气候条件,针对典型盐湖卤水中含有的对混凝土产生物理化学腐蚀的侵蚀性离子浓度,重新划分了盐湖卤水的类型,现场考察了混凝土与钢筋混凝土结构在青海盐湖地区的腐蚀与破坏现状。调查发现,混凝土和钢筋混凝土结构的腐蚀破坏非常严重。
     第三章重点研究了盐湖地区HPC的物理力学性能,运用XRD、DTA-TG、SEM-EDAX、IR和MIP等测试方法详细研究了HPC的水化产物、微观结构和孔结构。结果表明,HPC的主要水化产物是C/S比为0.97的非常致密的CSH凝胶和AFt晶体,在水化后期由于火山灰反应会形成一定数量的六方片状AFm,其孔结构以凝胶孔为主。纤维增强HPC在水化365d以后的微观结构发生了根本性转变,形成了一种异常致密的CSH凝胶板块结构——“类陶瓷结构”,对于提高混凝土在盐湖地区的耐久性具有十分重要的作用。
     第四章设计一种大尺寸混凝土棱柱体试件(100mm×100mm×400mm)的加载实验装置。研究了不同混凝土在盐湖地区的腐蚀、冻融循环、干湿循环和弯曲荷载等单一、双重和多重因素作用下损伤失效过程的规律和特点,探讨了干燥条件对混凝土损伤失效过程的影响。结果表明,在盐湖地区的严酷条件下,OPC和APC的耐久性不好,HSC具有优良的抗卤水冻蚀性,但是其抗卤水腐蚀性比较差,高强非引气HPC具有优异的抗卤水冻蚀性和抗卤水腐蚀性,纤维增强HPC的效果更佳。第五章采用XRD、DTA-TG、IR和SEM-EDAX方法研究了混凝土的腐蚀产物和微观结构的变化,探讨了OPC、APC和HSC等在盐湖地区单一、双重和多重因素作用下的损伤失效机理,提出混凝土冻融破坏的第三种机制——盐结晶压机制。将混凝土的Mg2+-Ca2+-Cl--SO42-复合型腐蚀机理扩展到Mg2+-Cl--SO42--CO32--HCO3-复合型腐蚀机理。结果表明,在单一冻融因素作用下,非引气HPC的冻融裂纹源于AFm向AFt转化时的膨胀压。在(冻融+盐湖卤水腐蚀)双因素作用下,OPC的抗卤水冻蚀性很差,其冻融破坏起因于Na2SO4·10H2O的结晶压作用。盐湖卤水对混凝土的冻融损伤作用,既有降低冰点、缓解冻融抑制损伤的正效应,又有促进盐类结晶、产生盐结晶压引起损伤的负效应。APC在西藏盐湖的抗卤水冻蚀性很差,在内蒙古盐湖卤水中会发生冻融破坏。在正常温度的单一腐蚀因素和(干湿循环+腐蚀)等双因素作用下,OPC、APC和HSC的腐蚀破坏以形成多种腐东南大学博士学位论文
     蚀产物的化学腐蚀为主,NaCl-KCl物理结晶腐蚀为辅。并且发现2种新的腐蚀产物——水化硅铝酸钙镁(C1-xMx)0.94(S1-yAy)H(x=0.4,y=0.13)球形晶体族和硅灰石膏CaCO3·CaSiO3·CaSO4·15H2O。第六章,运用XRD、DTA-TG、IR、SEM-EDAX和MIP分析了HSC-HPC的腐蚀产物、微观结构和孔结构,研究了高强非引气HPC在盐湖地区单一、双重和多重因素作用下的耐久性形成机理,提出了HPC结构的腐蚀优化机理。结果表明,非引气HSC-HPC因其细小孤立的湿胀或自收缩裂纹、过渡孔-凝胶孔为主的孔结构、强化的界面过渡区和致密的CSH凝胶等结构特征,造就其很高的抗卤水冻蚀性。HPC及纤维增强HPC在盐湖地区的腐蚀条件下,将发生水化产物的轻微腐蚀效应、基体CSH凝胶的腐蚀转化效应、FA等未水化活性掺合料颗粒的腐蚀诱导水化效应和微裂纹愈合效应等4个方面的有利作用。
     第七章根据不同混凝土在4种典型盐湖的单一、双重和多重因素作用下的大量数据,研究了混凝土对氯离子的吸附/结合规律,提出了线性氯离子结合能力和非线性系数的新概念。结果表明,在较低的自由氯离子浓度范围内,混凝土对氯离子的结合规律以线性吸附为主;在较高的自由氯离子浓度范围内,混凝土对氯离子的结合表现出Langmuir非线性吸附规律。通过实验确定了不同混凝土的线性氯离子结合能力及其非线性系数数值,可供应用。从化学结合与物理吸附方面探讨了混凝土的氯离子吸附/结合机理,其化学结合机理主要体现在AFt-AFm和CH分别与NaCl、KCl、CaCl2或MgCl2反应形成Friedels盐和含有MgCl2的络合物,其物理吸附机理包括CSH凝胶表面的吸附作用和水泥浆体孔隙内表面的吸附作用。
     第八章针对以冻融或腐蚀为主要失效特征的混凝土结构,研究了不同混凝土在单一冻融因素和(冻融+盐湖卤水腐蚀)双因素作用下的损伤失效规律,总结并提出了具有普适意义的损伤速度和损伤加速度的混凝土损伤演化方程。结果表明,混凝土在与冻融或腐蚀有关的耐久性因素作用下,开始时其损伤以一定的初速度产生,之后以一定的加速度发展。损伤初速度与损伤加速度取决于结构所处的环境、气候和受力状态,并与混凝土的原材料、配合比和养护条件密切相关。初步建立了一套基于损伤演化方程的预测混凝土结构使用寿命的基本方法与理论框架,并将这种预测方法应用于青海盐湖钾肥工程、南京地铁和润扬大桥等重大工程的混凝土结构使用寿命的预测。为今后解决非氯盐环境条件下重大混凝土工程的寿命设计和耐久性评估问题,提供了很好的借鉴作用。
     第九章在深入探讨当前混凝土氯离子扩散理论存在8个问题的基础上,对Fick第二定律进行了有效的理论修正,推导出综合考虑混凝土的氯离子结合能力、扩散系数的时间依赖性、结构微缺陷和荷载影响的氯离子扩散新方程,针对有限大体与无限大体、齐次边界条件与非齐次边界条件、线性氯离子结合与非线性氯离子结合问题的I维、II维与III维氯离子扩散新方程的解析解,得到适应不同条件的氯离子扩散理论新模型。提出了模型参数的测定方法,确定了关键参数的取值规律和建立初步数据库,分析了不同理论条件和实验因素对混凝土使用寿命的影响规律,对盐湖地区HPC的使用寿命进行耐久性设计,探索了不同盐湖地区HPC结构的耐久性设计参数问题。结果表明,采用高强非引气HPC,完全能够解决盐湖地区混凝土结构的寿命问题,适当增大保护层厚度,在盐湖地区则有可能实现西部混凝土结构百年寿命的设想。
     第十章归纳了全文结论和创新点,提出了进一步研究的建议和设立ChinaDuraCrete项目的设想。
Thousands of salt lakes are distributed in the four salt lake regions in Northwest of China, among which there are 102 belong to Xinjiang salt lake region, 33 to Qinghai salt lake region, 370 to Neimenggu salt lake region, and 220 to Xizang salt lake region. Corrosion resistance of concrete exposed to salt lakes is of special importance because of the extremely harsh weather in salt lake regions. Aiming at the desiccate environment of salt lake regions, in which the relative humidity ranges within 30%~50%, High Performance Concrete (HPC) accommodated to the circumstance were proportioned on bases of field investigations, incorporated with proportion principals of HPC, cracking prevention effects of fibers and shrinkage compensation functions of expansion agent. C30 ordinary Portland cement concrete (OPC), C25 air-entraining concrete (APC), C70 high strength concrete (HSC) without active additions, C70 HPC with the composites of silica fume, fly ash and slag additions, steel fiber reinforced HPC (SFRHPC), and polyethylene fiber (PF) with high Young’s modulus reinforced HPC (PFRHPC), were prepared. For concretes exposed to salt lakes, chloride absorption or binding isotherm, deterioration process and features of concretes subjected to the actions of single, double or multiple factors were investigated. Degradation mechanism of OPC, APC and HSC and the high durable mechanism of HPC were also explored. A service life predicting method based on damage development of concrete structure was proposed, and the service life predicting method based on chloride diffusion was modified and improved. Basic parameters in both models were determined based on a large number of field and laboratorial experiments. Influential factors and the principles on life expectancy were analyzed in specialty. Service life of concretes exposed to four kinds of salt lakes was compared in this paper, and the HPC has been applied to a key project in Qinghai salt lake region. Durability design of concrete structures constructed in salt lake regions was discussed. Results show that high strength HPC without air entraining is of excellent bittern-freezing-thawing durability and perfect bittern attack resistance, result in a long life expectancy. Both of the proposed predicting methods can be generally applied.
     Main contents of each chapter are mentioned as follows:
     In Chapter 1, durability of concretes exposed to salt lakes and service life predicting methods were summarized. Problems remaining to be investigated were also proposed, and outline of this contribution was sketched.
     In Chapter 2, environment and climate in salt lake regions were briefly introduced. Bitterns were reclassified according to concentrations of corrosive ions. Field investigations on reinforced concrete structures in Qinghai salt lake region discovered that corrosions of concrete and steel reinforced concrete were particularly serious and universal.
     In chapter 3, physical and mechanical properties of HPC exposed to salt lake regions were studied. The hydration products, microstructures and pore structure were investigated by means of XRD, DTA-TG, SEM-EDAX, IR, and MIP. Results show that hydration products of HPC are mainly compact CSH gels with a C/S ratio of 0.97, AFt crystals, and some hexagonal AFm plates, which are formed in the later hydration phase as results of pozzolanic reactions, and the pore structures are mainly gel pores. Essential transformation of microstructures in fiber reinforced HPC exceeding a age of 365 days were observed, namely a kind of highly compact plate-massive CSH gel, so called“ceramic structure similative”, formed, which brings favorable effect in concrete durability.
     In chapter 4, a loading system for 100mm×100mm×400mm prism samples was designed. Damage development and the degradation features of concrete subjected to single or combined action of salt attack, freezing-thawing cycles, wetting-drying cycles, and flexural stresses were investigated. Effect of desiccation on damage development was also discussed. Results show that when exposed to the severe environment of salt lakes, both OPC and APC display poor durability, though HSC shows excellent bittern-freezing-thawing durability, the corrosion resistance against bitterns is not so good, while non-air-entraining HPC shows outstanding performance in both bittern-freezing-thawing durability and corrosion resistance against bitterns, and the performance can be farther improved by adding fibers.
     In chapter 5, corrosion products and microstructures of concretes were investigated by using XRD, DTA-TG, IR, and SEM-EDAX. Based on damage development process, degradation mechanism of OPC, APC, and HSC subjected to the actions of single, double, or multiple factors were discussed, the third damage mechanism of concrete, viz. salt crystallization induced pressure, was presented. Corrosion mechanism of concrete exposed to bitterns containing Mg2+-Ca2+-Cl--SO42- was extended to bitterns containing Mg2+-Cl--SO42--CO32--HCO3-. Results show that freezing-thawing caused crackles in non-air-entraining HPC subjected to freezing-thawing cycling are resulted from pressure occurred as AFm transforms to AFt. When subjected to combined actions of freezing-thawing cycling and bittern attack, OPC shows poor bittern-freezing-thawing durability, due to pressure resulted from crystallization of Na2SO4·10H2O. Effects of bittern on concretes undergoing bittern-freezing-thawing cycling comprise both positive ones, including lowering ice point and abating freezing-thawing damage, and negative ones, such as accelerating salt crystallization and inducing concrete expansion cracks. APC exhibits poor bittern-freezing-thawing durability in bittern from Xizang salt lakes, and collapses while undergoing freeing-thawing cycles in Neimenggu bittern. When subjected to single action of bittern attack or combined actions of bittern attack and wetting-drying cycles, damage of OPC, APC, and HSC are mainly due to chemical corrosions, resulting in several attack products, and also due to crystallization of NaCl-KCl. Two attack products were firstly reported, viz. spherical crystals of (C1-xMx)0.94(S1-yAy)H (x=0.4,y=0.13) and CaCO3·CaSiO3·CaSO4·15H2O.
     In chapter 6, corrosion products, microstructures and pore structures of HSC-HPC were analysised by XRD, DTA-TG, IR, SEM-EDAX, and MIP methods. Long durability mechanism of high strength non-air-entrained HPC exposed to salt lakes under the actions of single, double or multiple factors, was investigated, and a corrosion induced strengthening mechanism of HPC was proposed. The experimental results show that the excellent bittern-freezing-thawing durability of high strength non-air-entrained HPC benefits from the isolated tiny crackles resulted from wetting swelling or autogenous shrinkage, the pore structures containing transitional pores and gel pores. So the interfacial zone was strengthened, and gel was compacted. When HPC and fiber reinforced HPC are exposed to salt lakes, 4 advantageous effects, viz. mild corrosion of hydration products, transformation of CSH gel subjected to bittern attack, corrosion induced hydration of the remaining active additives, and close of tiny crackles, will occur.
     In chapter 7, chloride absorption or binding isotherm of concretes was investigated, linear chloride binding capacity and a non-linear coefficient were firstly proposed, based on a large amount of experimental data of concretes under the actions of single, double, or multiple factors in four typical bitterns. Experimental results show that linear absorption of chloride is dominating while the free chloride concentration is in a low range. However, non-linear Langmuir isotherm shows itself when the free chloride concentration is in a high range. Linear and non-linear coefficients of chloride binding capacity were determined from a large number of experimental data. Chloride absorption or binding isotherm of concretes were discussed based on physical absorption or chemical binding respectively, among which the chemical binding includes mainly chemical reactions of AFt-AFm and CH reacting with NaCl, KCl, CaCl2, or MgCl2, resulting in Friedels salt and complex salt with MgCl2, and the physical absorption comprises of absorption of chloride ions by CSH gel surfaces and pore surfaces in cement pastes.
     In chapter 8, damage and degradation of concretes subjected to single factor of bittern attack, or to double factors of combined bittern attack and freezing-thawing cycles were investigated. A universal damage developing equation, which including initial damage velocity and damage acceleration was deduced. Results show that when concrete subjected to corrosion or freeing-thawing related durability factors, the damage initials at a certain initial damage velocity and then accelerates at damage acceleration. Both the initial damage velocity and damage acceleration are determined by the environment, climate and the loading state. Based on the damage developing equation, a service life predicting method was established. This equation had been applied to concrete structures of a fertilize plant located in Qinghai salt lake, subway of Nanjing city, and the Runyang Bridge across Yangtse River. It also provided a method for service life predicting of key concrete projects constructed in environments without chloride attack.
     In chapter 9, the 8 problems remained to be resolved on chloride diffusion of concretes was discussed, and theoretical modifications on Fick’s second law was proposed. A diffusion equation, which took account of effects of concrete chloride binding capacity, time dependence on diffusion coefficients, defects in microstructures and loading, was proposed. For both linear and non-linear chloride binding, analytic solutions for one, two, or three-dimensional diffusion in finite or infinite space with different boundary conditions either independent or dependent on time change, were deduced. A theoretical model of chloride diffusion was also presented. Parameters of the model could be determined by certain procedures, and the key parameters were evaluated, a basic database was established also. Effects of theoretical conditions and experimental factors on concrete service life were analyzed. Durability design of HPC exposed to salt lake regions was carried out, and determination of design parameters was discussed. Results show that concrete structures constructed by non air-entrained HPC, with sufficient strength and reasonable protective covers, could attain a service life of 100 years.
     A summarization of this contribution was presented in chapter 10. Propositions for further researches and schemes for ChinaDuraCrete were also listed.
引文
1)谷川恭雄.日本名古屋大学谷川恭雄教授来华讲学报告.沈阳,1999
    
    1)国家建材研究院水泥品种室.适用于盐湖地区使用的水泥试验室试验小结.1975
    2)铁道部科学研究院铁路建筑研究所.青藏铁路察尔汗盐湖及超盐渍土区段建筑材料防腐蚀研究.1976
    3)冶金部西安勘察公司.察尔汗盐湖卤水、盐渍土的化学特征及对混凝土的侵蚀性.1982
     1)阿达姆契克 K.A. 混凝土的腐蚀抗冻性. 混凝土抗冻性译丛. 1964
     1) Frohnsdorff G.,Masters L.W., and Martin J.W. “An approach to improved durability test for building materials and components”, NBS Technical Note 1120, National Bureau of Standards, Gaithersburg, Md, 1980
     1) Hooton R.D., McGrath P.F., Proceedings of RILEM Workshop on Chloride Penetration into Concrete, L.O. Nilsson, J.P. Ollivier (Eds.), 1997, p. 388.
    1) Bureau Reclamation U.S. The air-void systems of highway research board co-operative concrete [R]. Concrete Laboratory Report, No. C-824, Denver, Colarado, April 1956
    1 吴中伟.混凝土耐久性与碱—集料反应[A].见:北京兴发水泥有限公司·拉法基水泥编,低碱水泥应用研讨会论文集[C].北京,1998
    2 刘崇熙.三峡大坝混凝土耐久性寿命 500 年的设计构想[A].见:中国土木工程学会混凝土及预应力混凝土分科学会混凝土耐久性专业委员会编. 第四届全国混凝土耐久性学术交流会论文集[C].苏州:1996
    3 蒲心诚.论混凝土工程的超耐久性[J].混凝土,2000,(1):3-7
    4 张汉文.察尔汗盐湖卤水对水泥混凝土侵蚀问题的探讨[J].中国建材研究院院刊,1984,(1):15-26
    5 张三平,萧以德.应重视西部环境对材料的腐蚀——西部环境腐蚀状况调查[J],材料保护,2002,35(7):58-60
    6 Yair M.B. and Heller L.. Coll. RILEM sur le Comportement du Beton a l’Eau de Mer (Palerme) ,Cahier de la Rechercge , №27 ITBTP , Paris 1968
    7 余红发.抗盐卤腐蚀的水泥混凝土的研究现状与发展方向[J].硅酸盐学报,1999,27(4):237-245
    8 刘连新.察尔汗盐湖及超盐渍土地区混凝土侵蚀及预防初探[J].建筑材料学报,2001,4(4):395-400
    9 西宁水泥制管厂.抗盐卤水泥和混凝土[J].西宁城建,992(2):4-20
    10 Wang Fusheng. A Study on corrosion and destruction of concrete under natural condition of Caerhan[A], In: Wu Zhaoqi,Jiang Jiafen,Huang Shiyuan, et al. Eds.Proc. 3rd Beijing Int. Symp. On Cem. And Concr[C]. Beijing ,1993,(2) :811-815
    11 张汉文.高铝水泥混凝土抗盐湖卤水侵蚀问题的探讨[J].混凝土与加筋混凝土,1984,(3):33-40
    12 余红发.氯氧镁水泥及其应用[M].北京:中国建材工业出版社,1993,180-417
    13 刘光华,徐亚萍,陈鹤云,等.新型抗高浓度盐卤腐蚀材料[A].见:王媛俐,姚燕,主编.重点工程混凝土耐久性的研究与工程应用[M].中国建材工业出版社,北京:2001,376-380
    14 刘光华,苏慕珍,陈鹤云,等.硫铝酸盐水泥混凝土的耐腐蚀机理[A].见:王媛俐,姚燕,主编.重点工程混凝土耐久性的研究与工程应用[M].中国建材工业出版社,北京:2001,381-388
    15 Lea F.M.水泥和混凝土化学[M].第三版.唐明述,胡道和,闵盘荣译.北京:中国建筑工业出版社,1982,430-442
    16 Кинд В.В.水工建筑物中水泥和混凝土的腐蚀[M],郭成举译,北京:水利电力出版社,1960,106
    17 徐亚萍,陈鹤云.新型耐腐蚀的铁铝酸盐水泥[J].中国建材研究院院刊,1986,(4):20-28
    18 李乃珍,金国萱,刘兰计,等.抗海水水泥对高浓 SO42-、Mg2+、Cl-的耐腐蚀性能及机理[J].中国建材科技,1998,(5):7-13
    19 吴承宁,张燕迟,胡智农.碱-矿渣水泥性能研究及应用[J].硅酸盐学报,1993,21(2):176-181
    20 白瑞峰,韩玉兰.聚合物浸渍混凝土及其耐腐蚀性能[J].中国建材研究院院刊,1980,(1):29-31
    21 黄成毅,李德厚,郭树云.水银压入法及其在水泥石研究中的应用[A].见:建材研究院水泥所编.物化测试技术及其应用[M].北京:中国建筑工业出版社,1979,11-46
    22 Yu Hongfa, Zeng You, Zhao Shouping. Mechanism of bittern resistance of polymer impreganated concrete [A], In : Wang Peiming, ed. Proc. 3rd Asia Symp. on Polymers in Concr[C],Tongji University Press.Shanghai, November 20~23,2000,139-144
    23 Almeida I.R.,Resistance of high strength concrete to sulfate attack :soaking and drying test [A].In :Mathotra V.M. ed.. Durability of Concrete—2nd Int.Conf. Detroit :ACI SP-126,1991.1073
    24 Mehta P.K.,Shiessl P.,Raupach M..混凝土系统的性能与耐久性[A].见:南京化工学院材料科学与工程系编译.第九届国际水泥化学会议综合报告译文集[C],南京:南京化工学院,1993,240-345
    25 戴剑锋,刘晓红,郑克宇,等.盐湖地区混凝土的腐蚀和防治[J].甘肃工业大学学报,2002,28(2):100-102
    26 和德亮.SF 型高效增强剂提高水泥抗盐湖卤水侵蚀的试验研究.混凝土与水泥制品,1995(4):19-20
    27 和德亮.掺加改性硅灰高效增强剂配制高强混凝土的试验研究.硅酸盐建筑制品,1995(1):17-20
    28 王复生,孙瑞莲,秦晓娟.察尔汗盐湖条件下水泥混凝土耐久性调查研究[J].硅酸盐通报,2002,21(4):16-22
    29 王复生,秦晓娟,孙瑞莲.青海察尔汗盐湖条件下水泥混凝土侵蚀的试验研究[J].硅酸盐通报,2003,22(4):25-28
    30 赵筠.国外高强混凝土的生产与应用[J].混凝土,2000,(5):52-57
    31 Calleja J. 耐久性[A].见:薛君玕,唐明述,楼宗汉,等编译.第七届国际水泥化学会议论文选集[C].北京:中国建筑工业出版社,1980,606-662
    32 Woods H.. Durability of concrete construction. Detroit:ACI,1968.4
    33 Hongfa Yu, You Zeng, Dahai Yu. Mechanism of bittern resistance of high-density cement concrete containing silica fume [A].In: Christopher K.Y.L, Zongjin Li,Jian-Tong,Ding,eds. High Performance Concrete-Workability, Strength and Durability [C]. Proc. the Inter. Symp.Organized the Hong Kong University of Science and Technology and Shenzhen University, Hong Kong and Shenzhen,China, December 10-15,2000,325-330
    34 洪乃丰.盐渍土对建筑物的腐蚀与防护[J].工业建筑,1998,28(1):5-8
    35 郑喜玉,李秉孝,高章洪,等著.新疆盐湖[M],科学出版社,1995,26-140
    36 Tumidajski P.J.and Chan G.W., Durability of high performance concrete in magnesium brine [J], Cem. and Concr. Res., 1996,26(4): 557-565
    37 Wakeley L.D., Poole T.S., C.A., et al. Geochemical stability of cement based composites in magnesium brines[A], Proc. of Weiss the Fourteenth Inter. Conf. on Cem. Microscopy[C], Costa Mesa, California, International Cement Microscopy Association, April 5-9(1992),333-350
    38 Ftikos C. and Parissakis G., The combined action of Mg2+ and Cl- ions in cement pastes[J], Cem.Concr.Res., 1985,15:593-599
    39 Helmy I.M.,Amer A.A. and Didamony H.El.,Chemical attack on hardened pastes of blended cement,Part I: Attack of Chloride Ions[J], Zement-Kalk-Gipps,1991,(1):46-50
    40 Oberste-Padtberg R., Degradation of cement by magnesium brines[A], Proc. of the Seventh Inter. Conf. on Cem. Microscopy[C], Forth Worth, Texas, International Cement Microscopy Association, March 25-28(1985),24-36
    41 Regourd M., Homani M. and Montureux B., Microstructure of concrete in aggressive environments[S], Edited by Sereda P. and Litvan J.,ASTM STO 691,1978,253-268
    42 Bonen D. and Cohen M.D.,Magnesium sulfate attack on portland cement paste,Part I: Microstructureal Analysis[J], Cem. Concr. Res., 1992,22:169-180
    43 Moukwa M.,Characteristics of the attack of cement paste by MgSO4 and MgCl2 from the pore structure measurements[J], Cem. Concr. Res., 1990,20(1):148-158
    44 Gollop R.S. and Taylor H.F.W.,Microstructural and microanalytical studies of sulfate attack part I: ordinary portland cement paste[J], Cem. Concr. Res., 1992,22: 1027-1038
    45 Goria C. and Cusino L.. Coll. RILEM sur le Comportement du Beton a l’Eau de Mer (Palerme) ,Cahier de la Rechercge , №27 ITBTP , Paris 1968
    46 莫斯克文В.М.,伊万诺夫Ф.М.,阿列克谢耶夫 C.H.等著,倪志淼,何进源,孙昌宝等译.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988,160-161,112-123,208-392
    47 马保国,贺行洋,苏 英,等.内盐湖环境中混凝土硫酸盐侵蚀破坏研究[J].混凝土,2001,(4):11-15
    48 王潘劳,张伟勤,杨幼坤,梁义田.青海察尔汗盐湖地区水泥混凝土的腐蚀破坏调查分析[J].青海大学学报,2003,21(6):57-59
    49 Ramachandran V.S.,Feldman R.F,Beaudoin J.J.混凝土科学[M].黄土元,孙复强,王善拔译.北京:中国建筑工业出版社,1986,413-414
    50 Gabrisova A.,Havlica J.,Sahu S..Stability of calcium sulphoaluminate hydrates in water of solutions with various pH values [J]. Cem. Concr. Res., 1991,21(6):1023
    51 Maso J.C. The bond between aggregated and hydrated cement paste, Proc. of 7th Int. Symp. On Chem. Cem., Vol.I, Paris,1980,Ⅶ-1/3-1/15
    52 杨人和,刘宝元,吴中伟.水泥石与石灰石集料界面过渡区孔结构及其CH晶体亚微观结构的研究[J].硅酸盐学报,1989,17(4):302-307
    53 Moranville R.M. Microstructure of high performance concrete[A].In: Malier Y, ED. High Performance Concrete from Material to Structure[M], London: E & FN Spon,1993,542
    54 巴恒静,王 政.粉煤灰水泥石碳化反应机理的研究[J].哈尔滨建筑工程学院学报,1992,25(1):73-76
    55 Popovics S.海洋环境中钢筋混凝土耐久性的改进[J].王庆寿译.混凝土及加筋混凝土,1982,(6):2-15
    56 Mehta P.K. Chloride corrosion of steel in concrete[S], ASTM STP629,1977
    57 刘蕙兰,黄 艳,韩云屏.环境水对砂浆、混凝土的侵蚀性研究[J].混凝土与水泥制品,1997(6):12-15
    58 Reardon E.J. An ion interaction model for the determination of chemical equilibria in cement / water system [J]. Cem.Coner. Res., 1990, 20(2): 175-192
    59 Wakeley L.D., Poole T.S. and Burkes J.P.. Alteration of concrete by magnesium brine[A], ACI Symp. of committee 227 on concr. for radioactive disposal[C], March 17-21(1991),Boston, MA
    60 Feldman R.F. and Cheng-yi H.,Resistance of mortars containing silica fume to attack by a solution containing chlorides[J], Cem. Concr. Res., 1985, 15: 411-420
    61 Goldman A., Bentur A., Bond effects in high strength silica fume concrete[A], In: eddied by Gartner E., Advances in Cement Manufacture and Use[C], Engineering Foundation, New York,1989
    62 王复生.SF 混凝土高效强剂应用效果的试验研究[J],混凝土,1991,(1):30-35
    63 Bentur A. and Ben-Bassat M., Durability of high performance concretes in highly concentrated magnesium solutions[A], In: Edited by S.Nagataki, T.Nireki and F.Tomosawa, Proc. of the Inter. Conf. on Durability of Building Materials and Components 6[C], Japan (1992), E. &FN Spon.
    64 陈蔚凡.滨海盐渍地区抗强腐蚀性混凝土的研究与应用[A].见:阎培渝,姚燕,主编.水泥基复合材料科学与技术[M].中国建材工业出版社,1999,179-183
    65 慕儒.冻融循环与外部弯曲应力、盐溶液复合作用下混凝土的耐久性与寿命预测[D] ,南京:东南大学博士论文,2000
    66 Janssen D.J., Snyder M.B. Mass loss experience with ASTM C666: with and without deicing salt[A], Proc. the Inter. Workshop in the resistance of Con. to Scaling due to Freezing in the Presence of Deicing Salt[C], Quebec, Canada, 1997,247-258
    67 Changwen Miao, Ru Mu, Qian Tian, et. al. Effect of sulfate solution on the frost resistance of concrete with and without steel fiber reinforcement [J]. Cem. and Concr. Res., 2002,32 (1): 31-34
    68 关宇刚.单一和多重破坏因素作用下高强混凝土的寿命评估[D].南京:东南大学博士论文,2002
    69 Gunther M, Bier Th., and Hilsdorf H., In Concrete Durability[R], ed: Scanlon J.M., ACI, SP-100, 1987,877-900
    70 慕儒,严安,严捍东,等.冻融与荷载复合作用下高性能混凝土的损伤与损伤抑制[J],建筑材料学报,1999,2(4):359-364
    71 Zhou Yixia, Cohen M.D., Dolch L.W. Effect of external loads on the frost-resistant properties of mortarwith and withous silica fume [J]. ACI Mater. J., 1994, 91(6): 595-601
    72 W.Sun, Y.M.Zhang, H.D.Yan, and R.Mu. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles[J], Cem. and Concr. Res., 1999,29(9):1519—1523
    73 慕儒,严安,孙伟.荷载与冻融同时作用下 HSC 和 SFRHSC 的耐久性[J],工业建筑,1998,28(8):11-14
    74 慕儒,严安,孙伟.荷载作用下引气与非引气混凝土的抗冻性[J],东南大学学报,1998,28(4)138-144
    75 Zivica V., Szabo V. The behaviour of cement composite under compression load at sulphate attack [J]. Cem. Concr. Res., 1994, 24(8): 1475-1484
    76 Schneider U., Nagele E. Stress corrosion of cement mortars in ammonium sulfate solution [J]. Cem. and Concr. Res.,1993,23(1):13-19
    77 Schneider U., Chen S.W. Modeling and empirical formulas for chemical corrosion and stress corrosion of cementitious materials [J]. Mater. and Struct., 1998, 31(10): 662-668
    78 Schneider U., Chen S.W. The chemomechanical effect and the mechanochemical effect on high-performance concrete subjected to stress corrosion [J]. Cem. Concr. Res., 1998, 28(4): 509-522
    79 Schneider U., Chen S.W. Behaviour of high-performance concrete under ammonium nitrate solution and sustained load [J]. ACI Mater. J., 1999,96(1): 47-51
    80 慕儒,孙伟,缪昌文.荷载作用下高强混凝土的硫酸盐侵蚀[J].工业建筑,1999,29(8):52-55
    81 王爱勤,曹建国,李金玉,等.高浓度和荷载条件下混凝土硫酸盐侵蚀特性及抗侵蚀技术[A].见:阎培渝,姚燕,主编.水泥基复合材料科学与技术[M].中国建材工业出版社,1999,179-183
    82 李金玉,林莉,曹建国,等.高浓度和应力状态下混凝土硫酸盐侵蚀性的研究[A].见:王媛俐,姚燕主编.重点工程混凝土耐久性的研究与工程应用[M].中国建材工业出版社,2001,413-426
    83 Wei Sun, Ru Mu, Xin Luo, et.al. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete [J]. Cement and Concrete Research, 2002, 32 (12) : 1859–1864
    84 Ru Mu, Changwen Miao, Xin Luo,et.al. Interaction between loading, freeze–thaw cycles, and chloride salt attackof concrete with and without steel fiber reinforcement [J]. Cem. and Concr. Res., 2002, 32 (7) :1061-1066
    85 J.R.Clifton, D.J.Naus, S.L.Amey, et al. Service-life Prediction—State-of-the-Art Report [R]. ACI Committee 365, ACI 365.1R-00, January 10, 2000
    86 陈肇元,混凝土结构的耐久性设计[A],见:陈肇元,陈志鹏,江见鲸等编,第二届工程科技论坛·混凝土结构耐久性及耐久性设计论文集[C],清华大学,北京:2002,59-79
    87 DuraCrete BE95-1347, General guidelines for durability design and redesign [R]. The European Union-Brite EuRam, February 2000
    88 Clifton J.R. Prediction the service life of concrete [J]. ACI Mater. J., 1993, 90(6):611-617
    89 Vesikari E. Service life design of concrete structure with regard to frost resistance of concrete[R], Nordic Concr. Res., Publication No.5, Norske Betongforening, Oslo, Norway, 1986,215-228
    90 Kalousek G.L., Porter E.C., and Benton E.J., Concrete for long-term service in sulfate environment [J]. Cem. and Concr. Res., 1972, 2 (1) : 79–90
    91 李金玉,邓正刚,曹建国,等.混凝土抗冻性的定量化设计[A],见:王媛俐,姚燕,主编,重点工程混凝土耐久性的研究与工程应用[C],中国建材工业出版社,2001,265-272
    92 林宝玉,蔡跃波,单国良.保证和提高我国港工混凝土耐久性措施的研究与实践[A],见:阎培渝,姚燕,主编,水泥基复合材料科学与技术[C],中国建材工业出版社,1999,16-23
    93 关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅰ:模型阐述和建立[J].硅酸盐学报,2001,29(6):509-513
    94 关宇刚,孙伟,缪昌文.基于可靠度与损伤理论的混凝土寿命预测模型Ⅱ:模型验证和应用[J]硅酸盐学报,2001,29(6):514-519
    95 Tang, L. and Nilsson, L.-O., Chloride Diffusivity in High Strength Concrete at different ages [J]. Nordic Concr. Res., 1992,11: 162-170,
    96 吴中伟,廉慧珍.高性能混凝土[M].中国铁道出版社,1999,224-227
    97 Collepardi M.. Marcialis A., Turrizzani R. The kinetics of penetration of chloride ions into the concrete [J]. Il Cem., 1970, (4):157-164
    98 Collepardi M. , Marcialis A., Turrizzani R. Penetration of chloride ions into cement pastes and concretes [J]. J. Am. Ceram. Soc., 1972, 55:534-535
    99 Verbeck G.J. Mechanisms of corrosion of steel in concrete, corrosion of metals in concrete[R]. ACI SP-49, 1987: 211-219.
    100 Garboczi E.J. Permeability, diffusivity and micro-structural parameters-A critical review [J]. Cem. Concr. Res., 1990, 20(4):591-601
    101 Martin-Perez B., Zibara H., Hooton R.D.,et al. A study of the effect of chloride binding on service life predictions [J]. Cem. and Concr. Res., 2000,30 (8) :1215-1223
    102 Tuutti K. Corrosion of steel in concrete [R]. Stockholm: Swedish Cement and Concrete Institute, 1982, (4):469-478
    103 Sergi W., Yu S.W., Page C.L., Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment [J], Mag Concr Res, 1992,44 (158):63- 69
    104 Nilsson L.O., Massat M., Tang L., The effect of non-linear chloride binding on the prediction of chloride penetration into concrete structures[A], In: Malhotra V.M. (Ed.), Durability of Concrete[C], ACI SP-145, Detroit, 1994, pp. 469-486
    105 Tang L., Nilsson L. -O., Chloride binding capacity and binding isotherms of OPC pastes and mortars [J], Cem Concr Res, 1993,23 (2):247- 253
    106 Tritthart J., Chloride binding in cement [J], Cem Concr Res, 1989,19 (5):683- 691
    107 Glass G.K., Stevenson G.M., and Buenfeld N.R.. Chloride-binding isotherms from the diffusion cell test [J], Cem. and Concr. Res., 1998,28(7): 939–945
    108 Arya C. and Newman J.B. An assessment of four methods of determining the free chloride content of concrete [J]. Mater. and Struct., Res. and Testing, 1990,23:319-330
    109 Mohammed T.U., Hamada H.. Relationship between free chloride and total chloride contents in concrete [J]. Cem. and Concr. Res., 2003, 33 (9): 1487-1490
    110 Wee T.H., Wong S.F., Swaddiwudhipong S.,et al. A prediction method for long-term chloride concentration profiles in hardened cement matrix materials[J],ACI Mater. J., 1997,94(6):565-576
    111 Ozisik, M.N. 著,热传导[M].俞昌铭主译,高等教育出版社,1983
    112 Mangat P.S., Limbachiya M.C. Effect of initial curing on chloride diffusion in concrete repair materials [J]. Cem. and Concr. Res., 1999,29(9): 1475-1485
    113 Amey S. L., Johnson D. A., Miltenberger M. A. et al. Predicting the service life of concrete marine structures: an environmental methodology [J]. ACI Struct. J., 1998,95(1): 27~36
    114 Thomas M.D.A., Bamforth P.B., Modelling chloride diffusion in concrete―effect of fly ash and Slag [J]. Cem. and Concr. Res., 1999,29(4): 487-495
    115 Maage M., Helland S., Poulsen E. et al. Service life predicition of existing concrete structures exposed to marine environment [J]. ACI Mate. J., 1996,93(6): 602-608
    116 Kassir M. K., Ghosn M. Chloride-induced corrosion of reinforced concrete bridge decks [J]. Cem. and Concr. Res., 2002,32 (1): 139-143
    117 Mejlbro L. The complete solution of Fick’s second law of diffusion with time-dependent diffusion coefficient and surface concentration[A], Durability of concrete in saline environment[C], Cement AB, Danderyd, 1996, 127-158
    118 Wang K., Igusa T., Shah S., Permeability of concrete — relationships to its mix proportion,microstructure, and microcracks[A], In: M. Cohen, S. Mindess, I. Skalny (Eds.), Materials Science of Concrete, Sidney Diamond Symp[C]. 1998 : 45-54
    119 Aldea C., Shah S., Karr A., Effect of cracking on water and chloride permeability of concrete [J], J. Mater. Civil Eng., 1999,11 (3): 181-187
    120 Saito M, Ishimori H. Chloride permeability of concrete under static and repeated compressive loading [J]. Cem. and Concr. Res., 1995,25(4): 803~808
    121 Lim C.C., Gowripalan N, Sirivivatnanon V. Microcracking and chloride permeability of concrete under niaxial compression [J]. Cem. and Concr. Comp., 2000,22 (5): 353~360
    122 Gowripalan N., Sirivivatnanon V., Lim C.C. Chloride diffusivity of concrete cracked in flexure [J]. Cem. and Concr. Res., 2000,30 (5): 725~ 730
    123 袁承斌,张德峰,刘荣桂,等.不同应力状态下混凝土抗氯离子侵蚀的研究[J].河海大学学报,2003,31(1):50-54
    124 Hong K., Hooton R.D. Effects of cyclic chloride exposure on penetration of concrete cover [J]. Cem. and Concr. Res., 1999,29 (9) : 1379-1386
    125 Gérard B., Marchand J. Influence of cracking on the diffusion properties of cement-based materials Part I: Influence of continuous cracks on the steady-state regime [J]. Cem. and Concr. Res., 2000, 30 (1):37-43
    126 洪定海.混凝土中钢筋腐蚀与保护[M].中国铁道出版社,1998,144~236,344
    127 张彭熹,张保珍,唐渊,等.中国盐湖自然资源及其开发利用[M].科学出版社,1999,3-251
    128 郑喜玉,唐渊,徐昶,等.西藏盐湖[M].科学出版社,1988,16-17
    129 蔡克勤,杨长辛.山西运城盐湖开发史及其古代制盐技术成就[J].化工地质,1993,15(4):261-267
    130 郑绵平.论中国盐湖[J].矿床地质,2001,20(2):181-189
    131 郑喜玉,张明刚,董继和,等.内蒙古盐湖[M].科学出版社,1992,137-194,219-285
    132 张彭熹,柴达木盆地盐湖[M],科学出版社,北京:1987
    133 刘崇熙,文梓芸.混凝土碱—骨料反应[M].广州:华南理工大学出版社,1995.358-383
    134 Larrard L, Ithurralde G, Acker P, et al. High-performance concrete for a nuclear containment [A].In: High Strength Concrete-2nd Symp[C], Berkely, 1990,541
    135 吴中伟.绿色高性能混凝土与科技创新[J].建筑材料学报,1998,1(1):1-7
    136 洪定海.大掺量矿渣微粉高性能混凝土应用范例[J].建筑材料学报,1998,1(1):82
    137 温 浩,区 杰,隋晓宏.澳门观光塔主体高性能混凝土的耐久性机理及评价指标分析[J].混凝土,2000,(9):33-37
    138 Abiola T.O.,Plastic shrinkage cracking of blended cement concretes under hot weather conditions [D]. King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, 2002
    139 Bloom R. and Bentur A., Free and restrained shrinkage of normal and high-strength concrete[J]. ACI Mater. J., 1995, 92(2):211-217
    140 Aǐtcin P.C., Neville A.M. and Acker P., Integrated view of shrinkage deformation[C], Concr. Int. 1997,19 (9): 35–41
    141 Tazawa E., Miyazawa S., Autogenous shrinkage of concrete and its importance in concrete technology [A],In: Z.P. Bazant, L. Carol (Eds.), Creep and Shrinkage of Concrete, Proc. of the 5th Inter. RILEM Symp.[C], E & FN Spon, London, 1993, pp. 159–168.
    142 Tazawa E., Miyazawa S. Influence of constituent and composition on autogenous shrinkage of cementitious materials [J]. Mag. Concr. Res., 1997,49(178):15-22
    143 Zhang M.H., Tam C.T., Leow M.P. Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete [J] , Cem. and Concr. Res. , 2003,33 (10) : 1687–1694
    144 Bissonnette B., Pierre P. and Pigeon M. Influence of key parameters on drying shrinkage ofcementitious materials[J], Cem. and Concr. Res.,1999,29 (10):1655–1662
    145 Barr B., Hoseinian S.B. and Beygi M.A. Shrinkage of concrete stored in natural environments[J], Cem. &Concr. Comp., 2003, 25 (1):19 –29
    146 F.Dlydon. Effect of coarse aggaregate and water/cement ratio on intrinsic permeability of concrete subject drying[J], Cem. and Concr. Res., 1995, 25(8):1737-1746
    147 Khatib J.M., Mangat P.S.. Influence of high-temperature and low-humidity curing on chloride penetration in blended cement concrete[J], Cem. and Concr. Res.,2002,32 (11) :1743–1753
    148 李 丽,孙 伟,刘志勇.用平板法研究高性能混凝土早期塑性收缩开裂[J].混凝土,2003,(12):33-36
    149 Balaguru PN., Shah SP., Fiber reinforced cement composites[M]. New York: McGraw-Hill,Inc, 1992,367-368
    150 黄源江,张宝兰,方晖.掺聚丙烯纤维控制混凝土塑性收缩裂缝的研究[J].水运工程,2000,(11):1-3
    151 李 悦,谈慕华,张 雄,等.混凝土的自收缩及其研究进展[J].建筑材料学报,2000,3(3):
    252-257
    152 Tazawa E.. Autogenous shrinkage of cement paste caused by hydration [J]. Cem. and Concr., 1994, (556):35-44.
    153 Paillere A.M. Effect of fiber addition on the autogenous shrinkage of silica fume concrete [J]. ACI Mater. J.1989, 86(2): 139-144.
    154 Tazawa E.,Miyazawa S., Influence of cement and admixture on autogenous shrinkage of cement paste [J].Cem. and Concr. Res., 1995, 25(2): 281-287
    155 Papadakis V.G., Fardis M.N. and Veyenas C.G. Hydration and carbonation of pozzolanic cement [J]. ACI Mater. J., 1992, 89(2): 119-130
    156 Hwang C.L., Young J.F. Drying shrinkage of portland cement pastes [J]. Cem. and Concr., 1984, 14(4): 585-593
    157 Lim S.N., Wee T.H. Autogenous shrinkage of ground granulated blast furnace slag concrete [J]. ACI Mater. J., 2000, 97(5): 587-593
    158 Rao G. A., Long-term drying shrinkage of mortar D influence of silica fume and size of fine aggregate [J]. Cem. and Concr. Res., 2001,31 (2) : 171-175
    159 孙 伟,钱红萍,陈惠苏.纤维混杂及其与膨胀剂复合对水泥基材料的物理性能的影响[J].硅酸盐学报,2000,28(2):95-99
    160 Wei Sun, Huisu Chen, Xin Luo, et. al. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete [J]. Cem. and Concr. Res., 2001, 31 (4) : 595-601
    161 耿飞,钱春香,樊建平.纤维和膨胀剂对混凝土收缩性能的影响[J].混凝土与水泥制品,2003,(5):33-35
    162 蔡忠龙,冼杏娟.超高模聚乙烯纤维增强复合材料[M],科学出版社,1997
    163 Breitenbücher R. Service life design for the Western Scheldt tunnel[A], Workshop on Design of Durability of Concrete[C], Berlin, June 1999
    164 袁润章主编.胶凝材料学[M].武汉:武汉工业大学出版社,1996,97-99
    165 杨南如,岳文海,主编.无机非金属材料图谱手册[M],武汉:武汉工业大学出版社,2000,338-341
    166 杨南如,无机非金属材料显微结构图册[M],武汉:武汉工业大学出版社,1994
    167 余红发,蔡 玲.白色釉面石膏陶瓷墙地砖的研究[J],房材与应用,1999,27(2):16-19
    168 Power T C. Void spacing as a basis for producing air-entrained concrete [J], ACI J., 1954,50(9): 741-760
    169 Hammer T A, Sellevold E J. Frost resistance of high strength concrete[A]. In: High-Strength Concrete: Second Inter. Symp.[C]. ACI SP-121,1990,457 –488
    170 A?tcin P C, Pigeon M, Pleau R, et al. Freezing and thawing durability of high performance concrete[A]. In: Proc. of the Inter. Symp. on High-Performance Concrete and Reactive Powder Concretes[C]. Sherbrooke , vol.4,1998, 383 –391.
    171 A?tcin P C.The durability characteristics of high performance concrete: a review[J],Cem Concr Compos,2003,25 (4-5):409 –420.
    172 黄孝蘅.高性能混凝土的抗冻性[J].中国港湾建设,2002(5):1-2
    173 Marchand J, Pigeon M, Bager D, et al. Influence of chloride solution concentration on deicer salt scaling deterioration of concrete [J]. ACI Mater. J., 1999,96(4): 429-435
    174 王玲,田培,姚燕等.西直门旧桥混凝土破坏原因分析[A],见:阎培渝,姚燕主编.水泥基复合材料科学与技术 [M],北京:中国建材工业出版社,1998,79~82
    175 杨全兵,吴学礼,黄士元.去冰盐对混凝土剥蚀的物理机理[J].上海建材学院学报,1991,(4):34-36
    176 罗骐先,Bungey J H.用纵波超声换能器测量砼表面波速和动弹性模量[J].水利水运科学研究,1996(3):264-270
    177 Ababneh A.N. The coupled effect of moisture diffusion, chloride penetration and freezing-thawing on concrete durability [D]. Denver: University of Colorado, 2002
    178 刘惠兰,黄艳,韩云屏.环境水对砂浆、混凝土的侵蚀性研究[J].混凝土与水泥制品,1997,(6):12-15
    179 Romualdi J.P. and Baston G.B. Mechanics of Crack Arrest in Concrete[J]. J. Eng. Mech. ASCE, 1963, 147-172
    180 Powers T.C., Helmuth R.A. Theory of volume changes in hardened Portland cement pastes during freezing. Proc. Highway Research Board, 1953, 32: 285-297
    181 Powers T.C. The air requirement of frost-resistant concrete. Proc. Highway Research Board 1949; 29: 184-202
    182 Powers T.C. Void spacing as a bisis for producing air-entrained concrete[J]. ACI J., 1954;50(9): 741-760
    183 Chatterji S., Freezing of air-entrained cement-based materials and specific actions of air-entraining agents [J]. Cem. &Concr. Comp., 2003, 25 (7): 759-765
    184 鞠 健,韩迎祝,冯明月.高强混凝土抗冻性几个现象的讨论[J].低温建筑技术,2002,(2):
    94
    185 游有鲲,缪昌文,慕儒.粉煤灰高性能混凝土抗冻性研究[J].混凝土与水泥制品,2000,(5):
    14-15
    186 Stark J., Chelouan N. 高性能混凝土的抗冻性与抗除冰盐侵蚀性[A].见:冯乃谦,等译.高性能混凝土——材料特性与设计[M].中国建筑工业出版社,1998.106-112
    187 Mindess S., Young J.F. and Darwin D. Concrete [M]. Pearson Education, Inc., New Jersey, U.S.A., 2nd ed., 2003, 70 页, 431 页,487-488 页
    188 孙 伟,余红发.混凝土结构工程的耐久性与寿命研究进展[A],见:陈肇元,钱稼茹,谷书娥,编.工程科技论坛·土木结构工程的安全性与耐久性论文集[C],北京:清华大学,2001,274-285
    189 朱蓓蓉,杨全兵,黄士元.除冰盐对混凝土化学侵蚀机理研究 [J].低温建筑技术,2000,(1):3-5
    190 Taylor H.F. Cement Chemistry [M]. Thomas Telford Publishing, Thomas Telford Services Ltd., London, UK, 2nd ed., 1997, 164-377
    191 廉慧珍,童良,陈恩义.建筑材料物相研究基础[M],清华大学出版社,1996,27-36
    192 Regourd M.M. and Hornain H. Microstructure of reactive products [A]. Proc. 7th Int. Conf. Ottawa[C], Canada, 1986, 375-380
    193 Bensted J. Problems arising in the identification of Thaumasite[J], Il,Cem., 1977, 74: 81-90
    194 Barnett S.J., Adam C.D., Jackson A.R.W. Solid solutions between ettringite, Ca6Al2(SO4)3 (OH)12·26H2O, and thaumasite, Ca3SiSO4CO3 (OH)6·12H2O[J], J. Mater. Sci., 2000, 35: 4109-4114
    195 Crammond N.J. The thaumasite form of sulfate attack in the UK [J]. Cem. &Concr. Comp. , 2003, 25 (8): 809-818
    196 Hartshorn S.A., Sharp J.H. and Swamy R.N. Thaumasite formation in Portland-limestone cement pastes[J].Cem Concr Res, 1999,29(8):1331-1340
    197 Hartshorn S.A., Sharp J.H. and Swamy R.N. Reply to the discussion by J.Bensted and J.Munn of the paper ‘‘Thaumasite formation in Portland-limestone cement pastes ’’ [J].Cem Concr Res, 2001, 31(3): 513-514
    198 Hartshorn S.A., Swamy R.N. and Sharp J.H. Engineering properties and structural implications of Portland limestone cement mortar exposed to magnesium sulphate attack [J]. Adv Cem Res, 2001, 13: 31-46
    199 Hartshorn S.A., Sharp J.H. and Swamy R.N. The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution [J]. Cem Concr Compos, 2002, 24(3-4):351-359
    200 Torres S.M., Sharp J.H., Swamy R.N., et al. Long term durability of Portland-limestone cement mortars exposed to magnesium sulfate attack [J]. Cem. &Concr. Comp., 2003, 25 (8): 947-954
    201 Bensted J. Scientific background to thaumasite formation in concrete [J], World Cem, 1998, 29 : 102-105
    202 Bensted J. Thaumasite—background and nature in deterioration of cements, mortars and concretes [J], Cem. Concr. Compos., 1999,21 (2): 117-121.
    203 Barker A.P., Hobbs D.W. Performance of Portland limestone cements in mortar prisms immersed in sulfate solutions at 5℃ [J], Cem. Concr. Compos., 1999, 21 (2): 129–137
    204 Collepardi M. Thaumasite formation and deterioration in historic buildings [J], Cem. Concr. Compos. , 1999, 21 (2) : 147-154.
    205 Gaze M.E., Crammond N.J. The formation of thaumasite in a cement: lime:sand mortar exposed to cold magnesium and potassium sulfate solutions [J], Cem. Concr. Compos., 2000, 22 (3) : 209–222.
    206 Crammond N.J., Halliwell M.A., The thaumasite form of sulfate attack in concretes containing a source of carbonate ions—a micro-structural overview [A],In: Malhotra V.M. (Ed.), Advances in Concrete Technology, Proc. of 2nd CANMET/ACI Inter. Symp.[C], Las Vegas. ACI International, Farmington Hills, USA, 1995.
    207 Vuk T., Gabrov?ek R. and Kau?i? V. The inf luence of mineral admixtures on sulfate resistance of limestone cement pastes aged in cold MgSO4 solution[J]. Cem. and Concr. Res., 2002, 32 (6) : 943-948
    208 Igarashi S., Kubo H.R., Kawamura M. Long-term volume changes and microcracks formation in high strength mortars[J]. Cem. and Concr. Res., 2000, 30 (6): 943-951
    209 Hillemeier B., Schr?der M. 水灰比≤0.3 的高性能混凝土的耐久性差吗?[A].见:Sommer H. 主编,冯乃谦、丁建彤,张新华,等译.高性能混凝土的耐久性[M].科学出版社,北京:1998,40-43
    210 沈 威,黄文熙,闵盘荣编.水泥工艺学[M].武汉:武汉工业大学出版社,1991,188-189
    211 Shehata M.H., Thoms M.D.A., Bleszynski R.F. The effect of fly ash composition on the chemistry of pore solution in hydrated cement pastes [J]. Cem Concr Res, 1999, 29(12): 1915-1920
    212 Rayment P.L. The effect of pulverized-fuel ash on the C/S molar ratio and alkali content of calcium silicate hydrates in cement [J]. Cem Concr Res, 1982, 12: 133-140
    213 Glasser F.P., Marr J., The alkali binding potential of OPC and blended cements [J]. Il Cem, 1985, (2): 85
    214 Kukko H. 冰冻对高强混凝土微结构的影响[A].见:Sommer H. 主编,冯乃谦、丁建彤,张新华,等译.高性能混凝土的耐久性[M].科学出版社,北京:1998,59-64
    215 孙伟,高建明.路面钢纤维混凝土特性及路面结构形式的研究[J].中国公路学报,1995,8(1):30-37
    216 Scrivener K.L., Bentur A. and Pratt P.L. Quantitative characterization of the transition zone in high strength concretes [J]. Adv. Cem. Res., 1988, 1(2): 230-237
    217 孙 伟,严 云.钢纤维高强水泥基复合材料的界面效应及其疲劳特性的研究[J].硅酸盐学报,1994,22(2):107-116
    218 Yang C.C. and Su J.K. Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar [J]. Cem Concr Res., 2002,32(10): 1559-1565
    219 Xie P., Beaudoin J. and Brousseau R. Flat aggregate-Portland cement paste interfaces-Part I: Electrical conductivity models[J]. Cem Concr Res., 1999,21(4): 515-522
    220 Lambert P., Page C.L. and Short N.R., Pore Solution Chemistry of the Hydrated System Tricalcium Silicate/Sodium Chloride/Water[J], Cem. Concr. Res., 1985,15 :675-680
    221 Arya C., Buenfeld N.R. and Newman J.B., Factors Influencing Chloride-binding in Concrete[J], Cem. Concr. Res., 1990,20 :291-300
    222 Suryavanshi A.K., Scantlebury J.D., Lyon S.B., The Binding of Chloride Ions by Sulphate Resistant Cement[J], Cem. Concr. Res., 1995,25 (3) :581-592
    223 Jensen H.-U. and Pratt P.L., The Binding of Chloride Ions by Pozzolanic Product in Fly Ash Cement Blends[J], Adv.Cem. Res., 1989,2 (7) :121-129
    224 Al-Hussaini M.J., Sangha C.M., Plunkett B.A. and Walden P. J., The Effect of Chloride Ion Source on the Free Chloride Ion Percentages in OPC Mortars[J], Cem. Concr. Res., 1990,20:739-745
    225 Suryavanshi A.K., Scantlebury J.D., Lyon S.B., Pore Size Distribution of OPC & SRPC Mortars in Presence of Chlorides[J], Cem. Concr. Res., 1995,25 (5):980-988
    226 Jolan C., Gyorgy B. and Ferenc D. T., Chloride Ion Binding Capacity of Aluminoferrites[J], Cem. Concr. Res. 2001,31(4):577-588
    227 Mangat P.S. and Molley B.T., Chloride Binding in Concrete Containing PFA, GBS or Silica Fume under Sea Water Exposure[J], Mag.Concr. Res., 1995,47 (171) :129-141
    228 Delagrave A., Marchand J., Ollivier J.-P., Julien S. and Hazrati K., Chloride Binding Capacity of Various Hydrated Cement Paste Systems[J], Adv. Cem. Bas. Mat., 1997,6 (1) :28-35
    229 Byfors K., Chloride Binding in Cement Paste[R], Nordic Concr. Res., Publication No.5, Norske Betongforening, Oslo, Norway, 1986, pp.27-38
    230 Byfors K., Hansson C.M. and Tritthart J., Pore Solution Expression as a Method to Determine the Influence of Mineral Additives on Chloride Binding[J], Cem. Concr. Res., 1986,16:760-770
    231 中华人民共和国交通部标准,水运工程混凝土试验规程[S].1998,JTJ270-98,202-207
    232 Midgley H.G. and Illston, J.M., Effect of Chloride Penetration on the Properties of Hardened Cement Pastes[A], Proc. 8th Inter. Symp. on Chem. of Cem.[C], Rio de Janeiro, 1986, Part VII, pp.101-103
    233 Tr?tteberg A., The Mechanism of Chloride Penetration in Concrete[C], SINTEF Report STF65 A77070, 1977-12-30, pp 51
    234 Lambert P., Page C.L. and Short, N.R., Diffusion of Chloride Ions in hardened Cenment Pastes Containing Pure Cement Minerals[A], Br. Ceram. Proc.,[C] 1984,35:267-276
    235 Theissing E.M., Mebius-Van De Laar T., De Wind G., The Combining of Sodium Chloride and Calcium Chloride by the Hardened Portland Cement Compounds C3S, C2S, C3A and C4AF[A], Proc. 8th Inter. Symp. on Chem. of Cem.[C], Rio de Janeiro, 1986, pp.823-828
    236 Smolczyk, H.G., Chemical Reactions of Strong Chloride-Solutions with Concrete[A], Proc. 5th Inter. Symp. on Chem. of Cem.[C], Tokyo, 1969, Supplementary paper III-31, pp.274-280
    237 Ramachandran V.S., Mater. and Struct., 1971,4 (19): 3-12
    238 Markova O.A., Physiochemical Study of Calcium Hydroxide Chlorides[J], Zh. Fiz. Khim., 1973,47(4) : 1065
    239 Babushkin V.I., Mokritskaya L.P., and Novikova S.P., et. al. Study of physico-chemical processes during hydration and hardening of expansive cements [A]. 6th Inter. Con. on the Chem. of Cem.[C], Moscow, Supplementary paper, Section III-5, Sept. 1974
    240 Goto S. and Daimon M. Ion diffusion in cement paste [A]. 8th Inter. Con. on the Chem. of Cem.[C], Rio de Janeiro, 1986, V.6, 405-409
    241 Funahashi M. Predicting corrosion――free service life of a concrete structure in a chloride environment [J]. ACI Mater. J., 1990,87(6): 581-587
    242 Helland S. Assessment and predication of service life of marine structures—A tool for performance based requirement?[J] Workshop on Design of Durability of Concrete[C], Berlin, June, 1999
    243 李兆霞.损伤力学及其应用[M].科学出版社,2002,2-20
    244 黄 海,罗友丰,陈志英,等.SPSS10.0 for Windows 统计分析[M].人民邮电出版社,北京,2001
    245 高建明,王边,朱亚菲,等.掺矿渣微粉混凝土的抗冻性试验研究[J].混凝土与水泥制品,2002,(5):3-5
    246 曹建国,李金玉,林 莉,等.高强混凝土抗冻性的研究[J].建筑材料学报,1999,2(4):292-297
    247 黄士元.按服务年限设计混凝土的方法[J].混凝土,1994,(6):24-32
    248 Somerville G. The design life of concrete structures [J]. The Struct. Eng., 1986, 64A(2):60-71
    249 刘西拉,苗柯.混凝土结构中的钢筋腐蚀及其耐久性计算[J].土木工程学报,1990,23(4):69-78
    250 冷发光,冯乃谦.高性能混凝土渗透性和耐久性及评价方法研究[J].低温建筑技术,2000,(4):14-16
    251 惠云玲.混凝土结构钢筋锈蚀耐久性损伤评估及寿命预测方法[J].工业建筑,1997,27(6):19-22
    252黄玉龙,潘智生,胥亦刚,等.火灾高温对PFA混凝土强度及耐久性的影响 [A],见:阎培渝,姚燕编.水泥基复合材料科学与技术[M],中国建材工业出版社,北京:1999,87~90
    253 Pigeon M., Garnier F., Pleau R. et al. Influence of drying on the chloride ion permeability of HPC [J]. Concr. Inter., 1993, 15(2): 65~69
    254 Mangat P.S., Molloy B.T. Prediction of long term chloride concentration in concrete [J]. Mater. And Struct., 1994, 27: 338-346
    255 Weyers R.E., Fitch M.G., Larsen E.P., et.al. Concrete Bridge Protection and Rehabilitation: Chemical and Physical Techniques. Service Life Estimates, Strategic Highway Research Program, National Research Council, Washington, DC, 1994 (SHRP-S-668)
    256 Clear K.C. Time-to-corrosion of reinforcing steel in concrete slabs [A]. Performance after 830 daily salt applications (3)[C]. Report No. FHWA/RD-76/70, Federal Highway Administration, Washington, D.C.,1976: 59
    257 Crank J., The Mathematics of Diffusion, 2nd edn., Oxford Univ. Press, London, 1975.
    258 赵筠.钢筋混凝土结构的工作寿命设计——针对氯盐污染环境[J].混凝土,2004,(1):3-16
    259 Berman H.A. Determination of chloride in hardened cement paste, mortar and concrete [J]. J. Mater., 1972,7: 330-335
    260 Dhir R.K., Jones M.R., and Ahmed H.E.H. Determination of total and soluble chloride in concrete [J]. Cem. and Concr. Res., 1990, 20(4): 579-590
    261 林宝玉,单国良.南方海港浪溅区钢筋混凝土耐久性研究[J].水运工程,1998,(1):1-5
    262 林宝玉,吴绍章主编.混凝土工程新材料设计与施工[M].北京中国水利水电出版社,北京:1998,113,125-127
    263 Fluge F. Marine chlorides-a probabilistic approach to derive provisions for EN 206-1[A]. 3rd Workshop on Service Life Design of Concrete Structure-from Theory to Standardisation[C], Tromsф, Norway, June 2001
    264 Bamforth P.B. Predicting the risk of reinforcement corrosion in marine structures[R], Corrosion Prevention Control, Aug. 1996
    265 Suryavashi A.K. Pore solution analysis of normal portland cement and sulphate resistance portland cement mortars and other influence on corrosion behaviour of embedded steel [A]], In: ed. by Smamy R.N., Proc. on Corrosion and Corrosion Protection of Steel in Concrete[C], Univ. of Shellield ,UK,1994,482~490
    266 Sagüés . Corrosion forecasting 75-year durability design of reinforces concrete[A]. Final Report to Florida Department of Transportation, Dec.2001
    267 Fluge F. Environmental loads on coastal bridges[A]. Proc. from Inter. Conf. On Repair of Con.Stru.[C], Svolvaer, Norway, May 1997
    268 Bamforth P.B. A new approach to the analysis of time-dependent changes in chloride profiles to determine effective diffusion coefficients for use in modelling chloride ingress[A]. Porc. Inter. RILEM Workshop: Chloride Penetration Into Conerete[C], October 15-18, Saint-Remy-Les-Chevreuse, 1995, 195-205
    269 Boddy A., Hooton R.D.,Gruber K.A. Long-term testing of the chloride-penetration resistance of concrete containing high-reactivity metakaolin [J]. Cem.Concr. Res., 2001,31(5): 759-765
    270 Stanish K., Thomas M.. The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients[J]. Cem.Concr.Res.,2003, 33(1): 55-62
    271 Maage M., Helland St., Carlsen J.E., 暴露于海洋环境的高性能混凝土中的氯化物渗透[A],见:Sommer H.编,冯乃谦,丁建彤,张新华,等译.高性能混凝土的耐久性[M].科学出版社,北京:1998,118~127
    272 Zhang T., Gjorv O.E. Effect of ionic interaction in migration testing of chlorode diffusivity in concrete [J]. Cem.Concr.Res., 1995, 25(7): 1535-1542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700