水压双缸位置同步控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压同步控制系统具有结构简单、组成方便、易于实现自动控制、适宜较大功率场合等优点,在许多领域具有广泛的应用。传统的液压同步控制系统均以矿物油作为工作介质,在安全和环保要求严格的场合其应用受到限制。水液压技术具有绿色环保、抗燃安全等突出优点,是当前国际上流体传动领域的研究前沿。在某些安全和环保要求高的场合,如食品机械、水上舞台、海洋工程等,用水压驱动取代油压驱动进行同步控制,具有广泛的应用前景。
     本文基于目前国内外水压技术发展的状况,特别是相关水压比例/伺服控制元件的选择受到限制的情况下,搭建了一种水压比例调速阀控制的位置同步系统,并对该系统的控制、测量方法进行了研究,论文的主要研究内容如下:
     分析了双缸位置同步控制系统的类别和各自的特点。选定控制策略为串联型控制。该系统是带反馈的位置同步控制系统,主动缸由手动型单向水压节流阀控制,从动缸由水压比例调速阀控制。通过分析得出从动缸进出口双阀的控制信号之比等于活塞两端的面积之比。
     研制了同步控制系统的执行元件——水压缸。为了保证同步系统的控制性能,减小水压缸的摩擦力是一个关键问题。本文在分析水压缸摩擦机理的基础上,提出了减小摩擦力,防止低速爬行的措施;对水缸的泄漏,腐蚀及工艺等问题,提出了防范措施。水压缸的样机试验表明,上述减小摩擦力的措施行之有效,缸的性能达到了设计指标要求。
     对水压比例调速阀、水压缸以及由它们组成的同步控制系统进行了数学建模,并对数学模型内的参数选取进行了说明。利用MATLAB/SIMULINK工具箱构造了实时仿真模型,对水压缸的固有频率及阻尼系数影响因素进行了分析;获取模型的响应,考察了系统的动静态响应特性。
The hydraulic position synchro systems have many advantages such as simple structure, easy to buildup, easy to control by automation and output power is great. So the hydraulic system has wide applications in many fields. The traditional hydraulic systems use oil as the work medium and are restricted for the purpose of safety and cleanness. Water hydraulic system is anti-burning and more safety and clean to environment. It's one of the develop directions of current international fluid transmission field. It can replace the oil hydraulic system in some occasions which has high requirements of anti-fire and environment protection, for examples the food production, upper water stage and sea engineering. It has a wide prospect.
     This thesis makes a research on development of water hydraulic technology and buildup a water hydraulic position synchronizing system in the condition that water hydraulic control valves are limited. It also studies on the control theories and testing methods of the system. The main works of this thesis include:
     This thesis points out that the system is actually a position control system with position feedbacks. It classifies position synchro systems to several kinds and analyzes the characteristics of them. The system’s two cylinders are controlled separately. One is controlled by Danfoss’s manual throttling control valve and the other one by two Danfoss’s proportional flow control valves. The latter cylinder should follow the former. The two proportional valves’input signals are also discussed in the thesis.
     Design of the low friction cylinder which will be used in this system is done. In order to obtain high performance, the low friction is essential for cylinder. The thesis studies on the friction phenomenon and some improvements are put forwards to reduce friction and stick-slip of the piston. Some strategies are pointed out to solve the leakage, corrosion and low lubricant problems of water hydraulic cylinder in thesis. A test is made and the result shows the cylinder works normally and has low friction.
     The mathematical models of the flow control valves, cylinder and the whole control system are built. Some parameters of these models are expatiated. The relating real-time simulations are built by using the MATLAB/SIMULINK toolbox. The simulating result shows factors which influence the natural frequency and damping factor of cylinder. The static and dynamic characteristics of control system are also get from simulating models.
引文
[1] ZhuangYun Li. The Development and Perspective of Water Hydraulics, Keynote Lecture for Fourth JHPS International Symposium on Fluid Power. Tokyo, 1999
    [2] Westinghouse Oceanic Division. Development of seawater hydraulic vane motor for diver tools: report of American Naval Construction Battalion Center. N.Y.: NCBC, 1980
    [3]施光林,史维祥,李天石.液压同步闭环控制及其应用[J].机床与液压,1997,4:3~8.
    [4]张英婵.液压同步控制回路简析与应用[J].重型机械科技,2006,4:42~44
    [5]韩波,王庆丰,路甬祥.电液比例位置同步控制系统的控制结构研究[J].机床与液压. 1997,1:7~10
    [6]程绪鹏.基于LabVIEW软件的液压同步系统研究[D].天津理工大学,2006
    [7]苏东海,韩国惠,于江华等.液压同步控制系统及其应用[J].沈阳工业大学学报,2005,27(4): 364~367.
    [8]倪敬,项占琴,潘晓弘.双缸同步提升电液系统建模和控制[J].机械工程学报,2007,43(2),81~86
    [9]韩清娟.双缸同步系统自适应控制的研究[D].兰州理工大学,2004
    [10] W. Backe. Water- or Oil- Hydraulics in the future[C]. Proc. The 6th Scandinavian International Conf. on Fluid Power. SICFP, 1999, vol.1: 51~65.
    [11] E. Varandili. Properties of Tap Water as a Hydraulic Pressure Medium, Proc. The Sixth Scandinavian International Conf. on Fluid Power (SICFP'99), Vol.1, pp.113-127, 1999
    [12] Koskinen K.T., Vilenius M.J.. Water as a Pressure Medium in Fluid Power Systems[J]. IFAC Workshop on Trend in Hydraulic and Pneumatic Components and Systems,1994, 9:8~9.
    [13] Taylor P. M., Kieffer J., Oldaker R., et al. A water hydraulic robot[C]. Proc. of the 32nd Conference on Decision and Control, Part 2 (of 4), 1993 (2): 1911~1912
    [14]杨曙东,李壮云.水压传动技术及其发展前景.湖北省机械工程学会“世纪之交工程技术的回顾与展望”论文集,2005.5.
    [15] ELWOOD Inc. Valves and systems for High Pressure Water and Low ViscosityFluid Hydraulics(产品介绍).
    [16] AALTONEN J.,Kari KOSKINEN,Matti VILENIUS. Experiences on the Low Pressure Water Hydraulic Systems[C]. Fluid Power. The 4th JHPS International Symposium,1999.
    [17] James Webster. An Investigation into a Modified Port-Plate Seal of an Axial Piston Water pump, Wear. 1988, v127: 85~99
    [18] Bhushan B and Gray S. Materials Study for High Pressure Seawater Hydraulic Tool Motor. AD- A055609/2 G1, NCEL, Apr 1982
    [19] K.T.Koskinen. Water Hydraulics—A Versatile Technology[J]. Journal of the Japan Hydraulics & Pneumatics Society, 1998 (11): 42~45
    [20] Ter?v? J., Kuikko T. and Vilenius M.. Development of Seawater Hydraulic Power Pack. Proc. of 4th Scandinavian Int. Conf. on Fluid Power, Finland, Sept. 26-29, 1995: 978~991
    [21] Brookes C.A. The Development of Water Hydraulic Pumps Using Advanced Engineering Ceramics. The 4th Scandinavian International Conference on Fluid Power, 1995: 965~977
    [22] Trostmann E. Water Hydraulics Control Technology. Marcel Deker. Inc., New York, 1996
    [23] Louis Cassens,Michael F.Thomas,Gary Krutz.Water hydraulic energy savings vehicle.The 8 Scandinavian international conference on fluid power,SICFP'03 Tampere,Finland:May 7-9 2003:117~128
    [24]余祖耀,贺晓峰.海(淡)水液压技术的研究取得重大进展[J].液压气动与密封,2004,1:46~47.
    [25]杨华勇,弓永军,周华.纯水液压控制阀研究进展[J].中国机械工程,2002,15(15):1400~1404.
    [26] Usher S. Main Water Hydraulics-The State of the Art Putting Water to Work. Proceeding of Water-based Fluids in Hydraulic Applications[C] London, UK, 2001
    [27]杨俭.电液比例位置系统复合控制及相关研究[D].浙江大学,2005,3.
    [28]李壮云.液压元件与系统,机械工业出版社,2005.
    [29]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究[J].机床与液压,2006,5:63~64.
    [30]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化[J].机械工程学报,2006,42(5):203~207.
    [31]曾义春,刘义雄.液压系统中进—出口联合节流调速回路的理论分析和试验研究[J].广西大学学报(自然科学版),1983,1:39~42.
    [32]王雄耀.低速气缸与高速气缸[J].液压气动与密封,1999,5:23~26.
    [33]花克勤.伺服液压缸设计制造中的几点思考[J].液压气动与密封,2002,5:3~6.
    [34]谢祖刚.气缸低速摩擦特性的研究[D].浙江大学,2003,1.
    [35] Lauri Laitinen,Klaus Heiskanen,Jyrki Kajaste. Frictional Phenomena in Water Hydraulic Cylinder at Low-pressure Levels[C]. The 8th Scandinavian International Conference on Fluid Power. SICFP,2003.
    [36] KOSKINEN K.T., VILENIUS M.J., VIRCALO T., et al. Water as a Pressure Medium in Position Servo Systems[C]. Fluid Power. 4th JHPS International Symposium,1999.
    [37]邓鹏,潘尚峰.基于ADAMS/Hydraulic的液压缸机械损失参数的研究[J].液压与气动,2006,12:83~85.
    [38]谢玉东,刘延俊,王勇.气动比例阀摩擦力补偿机制及试验分析[J].润滑与密封,2007,32(9):94~97.
    [39]雷天觉.新编液压工程手册[M].北京理工大学出版社,1998.
    [40]王承鹤,饶军.关于聚四氟乙烯的摩擦特性及其对欧拉-库仑摩擦定律的冲击[J].北京联合大学学报,1997,11(1):82~85.
    [41] L M. Lacraru, K. Bouazza-Marouf. Frictional Compensation of an Actively Restrained Clutch for Path Tracking[J]. Proc. IMechE Vol. 220 Part I: J. Systems and Control Engineering, 2006.
    [42]高钦和.进油节流调速液压回路爬行现象的建模与仿真分析[J].机床与液压,2000,5:83~84.
    [43]路芳婷,任中伟.国内外大型液压缸活塞杆防腐技术的发展与现状[J].水利电力机械,2007,29(10):132~134.
    [44]黄迷梅.液压气动密封与泄漏防治[M].机械工业出版社,2003,3.
    [45]全国液压气动标准化技术委员会.液压气动标准汇编[M].中国标准出版社, 1997.
    [46]何存兴.液压元件[M].机械工业出版社,1981.
    [47]陈愈,沈关耿,徐国峻等.液压阀[M].中国铁道出版社,1982.
    [48] Satoru Hayashi, Atsushi Shirai, Nan-nan Guo. Static and Dynamic Characteristics ofa Pressure-compensated Flow Control, Proceedings of the Fifth International Conference on Fluid Power Transmission and Control, Hangzhou, 2001: 156~160
    [49]刘银水,雷士雄,吴德发等.海水液压调速阀的设计与试验研究[J].中国机械工程,2007,18(12):1448~1452.
    [50]邱鸿利,黄艳,刘银水.应用MATLAB软件进行一种水压流量控制阀的仿真设计[J].液压与气动,2002,8:15~18.
    [51]高德林.对调速阀动态分析的几点看法[J].液压气动与密封,1983,3:18~20.
    [52]吴根茂.动态封闭容腔及其压力基本公式[J].流体传动与控制,2007,3:54~56.
    [53] Tapio VIRVALO,Esa MAKINEN, Matti VILENIUS. On the Damping of Water Hydraulic Cylinder Drive[C]. Fluid Power. 4th JHPS International Symposium,1999.
    [54] Esa M. Tapio V.. Experimental Comparison Between Hydraulic and Water Hydraulic Position Control Systems[C]. The 8th Scandinavian International Conference on Fluid Power, SICFP’03, May 7-9,2003, Tampere, Finland.
    [55]白金,韩俊伟.基于MATLAB-Simulink环境下的PID参数整定[J].哈尔滨商业大学学报(自然科学版),2007,23(6):673~677.
    [56]黄忠霖.控制系统MATLBAB计算仿真[M].国防工业出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700