水压变量泵的设计和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水液压传动技术是一门新型技术,以水(含海水和淡水)作为工作和润滑介质,不再需要添加任何其它润滑剂,具有不燃烧、对环境无污染、系统压缩损失小、响应快、温升低、沿程损失和局部损失小、系统维护成本低等优点。水压变量泵是当前水压传动技术研究最前沿的课题,是水压传动系统中的核心工作元件之一;相对水压定量泵,水压变量泵的优点是能够实现功率调节,节省能源,减少系统发热,延长泵的使用寿命。
     本文在总结了国内外水压定量泵及传统油压变量泵现状的基础上,对水压变量泵的设计理论和方法进行了研究;分析了水压变量泵的设计理论和方法与传统油压变量泵的异同以及水压变量泵设计中存在的关键问题,并提出了相应的解决措施;确定了以恒压盘配流通轴式斜盘轴向柱塞泵为水压变量泵的总体结构,并对基泵的主要结构参数进行了设计计算。针对水介质的特点,本文对恒压水压变量泵的变量机构进行了设计,变量机构由控制阀和变量驱动机构两部分组成,文中分别对两部分进行了研究,设计出适合以水为工作介质的结构。
     通过对变量泵的容积效率进行分析计算,得出了变量泵泄漏量所占的百分比,从而为在结构设计上控制泄漏提供了指导。水压变量泵控制系统是一个位置控制系统,本文在结构设计的基础上建立了水压变量泵的数学模型,分析了恒压阀阀芯位移、阀芯半径、弹簧刚度及变量缸腔半径等参数对泵动态性能的影响,并研究了水的理化性能对水压变量泵动态性能的影响。
     本文对水压变量泵的结构形式作了探讨性研究,确定了泵的结构方案,并从理论上对本方案的可行性作了论证,为水压变量泵样机的研制奠定了基础。随着新材料和新工艺的发展,水压变量泵的研制将逐渐成为现实,这对推动水压传动技术的广泛应用和节省能源有着十分重要的意义。
Water hydraulic transmission technology is a new technology which uses water, including sea water and fresh water, as working medium and lubrication medium in a hydraulic system. It has advantages of fire resistance, no pollution, small losses for compression, fast response, low temperature rise, small pressure loss and low maintenance cost. Water hydraulic variable displacement pump, the most front topic of current hydraulic pressure transmission engineering research field, is one of the core working cells of hydraulic pressure transmission system. Compared to water hydraulic quantitative pump, water hydraulic variable displacement pump's merit obtains power regulation and energy conservation and can reduce the system’s heat loss, lengthen pump's service life.
     In this thesis, the newest domestic and overseas general researching and application of water hydraulic quantitative pump and oil hydraulic variable displacement pump are summarized. The differences of design theory and methods between them are studied. The key questions of designing water hydraulic variable displacement pump are analyzed and the solutions are discussed. Then the gross structure plan is determined and the primary structure parameters of this pump are calculated. In view of the water medium characteristic, this paper has carried on the design to the constant pressure water hydraulic variable displacement pump's stroking mechanism. A stroking mechanism is composed of the control valve and the variable driving mechanism. This thesis has conducted the research separately to two parts, designs suits take the water as the working medium structure.
     In this thesis, the volumetric efficiency of the system is analyzed, the percentage of leakage of variable pump is calculated and the leakage control of structural design can give guidance. Water hydraulic variable displacement pump control system is a position control system. The mathematical model of variable displacement pump is set up based on structural design. The constant pressure valve spool displacement, spool radius, spring stiffness ,variable cylinder cavity radius, physical and chemical properties of water to the variable pump in dynamic performance is analyzed.
     The thesis study on the structure of the variable displacement piston pump and design an innovative variable displacement piston pump. The feasibility of such a design is also discussed which provides theory basis for the research and manufacture of the pump. Conclusion and prospect of the whole project and this dissertation is pointed out. This dissertation believes water hydraulics will have a prospective future with the development of new material, new technology and new process.
引文
[1]柯尊荣,朱玉泉.新型海(淡)水柱塞泵的研究与开发.武汉:华中科技大学博士学位论文, 2000
    [2]周华,贺小峰,李壮云等.海水液压传动技术的研究与应用.液压与气动, 1995 (3): 3~4
    [3]周华,杨华勇.重新崛起的现代纯水液压传动技术[J] .液压气动与密封, 2000: 6~9
    [4]杨华勇,周华,路甬祥等.水液压技术的研究现状与发展趋势.中国机械工程, 2000 (12):17~20
    [5]刘银水,杨曙东,李壮云.海水液压水下作工具系统的微生物污染和腐蚀,海洋技术, 2002(21):49~52
    [6]杨尔庄.二十一世纪液压技术现状及发展趋势(续) [J].液压与气动, 2001: 1~3
    [7]王东,朱玉泉等.海水轴向柱塞泵配流方式的发展状况.液压与气动, 2001(12) 26~29
    [8]杨华勇,周华.纯水液压传动技术的若干关键问题.机械工程学报, 2002(12):32~33
    [9]杨曙东,李壮云,朱玉泉等.水压传动的主要课题与研究进展,中国机械工程, 2000, 11(9):1071~1073
    [10] Bhushan B and Gray S. Materials Study for High Pressure Seawater Hydraulic Tool Motor. AD- A055609/2 G1, NCEL, Apr 1982
    [11] K.T.Koskinen. Water Hydraulics—A Versatile Technology[J]. Journal of the Japan Hydraulics & Pneumatics Society, 1998 (11): 42~45
    [12] Brookes C.A. The Development of Water Hydraulic Pumps Using Advanced Engineering Ceramics. The 4th Scandinavian International Conference on Fluid Power, 1995: 965~977
    [13]贺小峰,黄国勤,朱碧海等.海水液压动力驱动的水下作业工具系统.液压与气动, 2004 (8):49~51
    [14]闻德生.一种新型的轴向柱塞泵.杭州国际会议论文集, 1985: 22~24
    [15]徐绳武.新型节能变量轴向柱塞泵.液压气动与密封. 2004年第6期
    [16] Takashima M. Development of High Performance Components for Pollution Free Water Hydraulic System. Third JHPS Int. Symposium on Fluid Power, Yokohama’96,November 4~6, 1996(6): 465~471
    [17]山口惇. Challenge to Water Hydraulic System[J]. Journal of the Japan Hydraulics & Pneumatics Society, 1998 (11): 25~31
    [18] Trostmann E. Water Hydraulics Control Technology. Marcel Deker. Inc., New York, 1996
    [19] ZhuangYun Li. The Development and Perspective of Water Hydraulics (Keynote Lecture) Fourth JHPS International Symposium on Fluid Power. Tokyo, 1999
    [20]杨曙东,李壮云.水压传动的发展及其关键基础技术.机床与液压, 2000,5:6~9
    [21]徐绳武.柱塞式液压泵.北京:机械工业出版社, 1985
    [22] Pohls O. Kuikko T. Sea Water Hydraulic Axial Piston Machine. The 6th Scandinavian International Conference on Fluid Power, May 26~28, 1999, Tampere, Finland
    [23] Lu Yongxiang. New Achievements and Preview of Fluid Power Engineering, Proceedings of 1th International Conference on FPTC, Hangzhou, Spet 9 -10,1997:16~23
    [24]闻德生.斜盘型开路式泵.北京:机械工业出版社, 1993: 199~204
    [25]曾曙林,杨沿平.纯水液压元件材料的分析与研究.湖南工程学院学报. 2004.3: 47~49
    [26]唐群国,李壮云,张铁华.工程陶瓷在水压元件中的应用与研究.液压与气动. 2003(7): 717~718
    [27]唐群国,李壮云,张铁华,贺小峰.水润滑下几种工程塑料的磨损特性试验研究.润滑与密封, 2003年第4期: 15~16
    [28]上海煤矿机械研究所.液压传动设计手册.上海:上海人民出版社, 1974: 605~615
    [29] Webster J and McGee J A.An Investigation into a Modified Port-Plate Seal of An Axial Piston Water Pump.Wear, 1988, v127: 85~99
    [30] Brookes C A, Fagan M J, James R D, et al.The Selection and Performance of Ceramic Components in A Seawater Pump.3rd JHPS Int Symp on Fluid Power, Japan, 1996: 3~12
    [31] PAOLUZZIR. Stationary and dynamic analysis of a water relief. Proceedings of the 4th JHPS Inter national Symposium on Fluid Power , Tokyo : Tokyo Institute of Technology , 1999 : 561 ~566
    [32]弓永军.纯水液压控制阀关键技术研究.浙江大学博士学位论文. 2005
    [33]蔡春源主编.新编机械设计手册.第1版.辽宁:辽宁科学技术出版社, 1993
    [34]谢伟,周华,弓永军.纯水液压阀气蚀试验系统研制.液压与气动, 2005年第五期: 3~4
    [35]杨华勇,弓永军,周华.纯水液压控制阀研究进展.中国机械工程第15卷第15期,2004年8月上半月: 1400~1404
    [36] Ulrich Samland, Brian Hollingworth. The use of new materials in water hydraulics. The 4th Scandinavian International Conference Fluid Power, Tamper Finland, Sep.26-29, 1995: 955~964.
    [37] S.Oshima, T.I Chikama. Cavation Phenomenon and Performance of Oil Hydraulic Valve. Trans. of Japan Soc. Mech.engineer, Series B, 1985, 52 (462): 427~435
    [38] Feicht F. Influencing Service Life and Failure of Hydraulic Components. Hydraulic and Pneumatic, 1976 (20): 804~806
    [39]顾毅.纯水液压溢流阀及试验系统研究.昆明理工大学硕士学位论文. 2003
    [40]弓永军,周华,杨华勇.纯水液压控制阀的研制.机床与液压, 2004(10): 14~16
    [41]王强,姜继海.水压传动元件的发展现状及其应用前景.机床与液压. 2004: 35~36
    [42]准铃木理.水压溢流阀的开发.日本机械学会论文第74期通常总会讲演会讲演论文集(Ⅲ)1997: 55~58
    [43]刘银水,黄艳,邱鸿利,李壮云.二级节流的性能分析及其在水压阀中的应用.机床与液压. 2001: 15~18
    [44]宋宏尧.液压阀设计与计算.北京:机械工业出版社, 1979: 224~232
    [45]王东.海水液压柱塞泵关键技术及其样机的研究.武汉:华中科技大学博士学位论文, 2002
    [46]金树德,陈次昌等.现代水泵设计方法.北京:兵器工业出版社, 1993: 228~244
    [47]周华.海水液压泵及其基础理论研究.武汉:华中理工大学博士学位论文, 1997
    [48]杨源泉等.阀门设计手册.北京:机械工业出版社, 1992: 191~202
    [49] Tamami T, Chishiro Y, Simpei M.Development of Water Hydraulic Proportional Control Valve. Proceedings of the Fourth JHPS International Symposium on Fluid Power,Tokyo, 1999
    [50] Bhushan B and Gray S.Materials Study for High Pressure Seawater Hydraulic Tool Motor. AD-A055609/2G1, Apr, 1978
    [51]曾曙林,周梓荣,彭浩舸.纯水液压系统间隙泄漏量的试验研究方法.液压与气动, 2003(3): 14~15
    [52]王东,朱玉泉,李壮云.柱塞泵中柱塞摩擦副泄漏流量的分析.液压气动与密封, 2002 (4): 22~23
    [53] Barrett F B. Navy Diver Tools, Development and Evaluation. AD-A042339, Naval Coastal Systems Laboratory, June 1977
    [54] Brookes C A, Fagan M J, James R D, et al. The Development of Water Hydraulic Pumps Using Advanced Engineering Ceramics. Proc of 4th Scandinavian Int Conf of Fluid Power, Finland, Sept 26~29, 1995: 965~977
    [55]余祖耀.海水液压动力系统及其关键技术的研究[博士后研究工作报告].武汉,2003.
    [56]聂松林,刘银水,余祖耀等.海水液压作业工具系统的研制.海洋工程, 2004, 22(3): 86~91
    [57] Stricker S. Advances Make Tap Water Hydraulics More Practica1. Hydraulics & Pneumatics. 1996 :29~32
    [58] Graham R and Hastings G G.. Development of A Seawater Hydraulic Tool System. AD-A114960/8, May, 1982
    [59]章宏甲,黄谊主编.液压传动.第1版.北京:机械工出版社, 2003.31~33
    [60] Hausherr G, Jochums. What is currently available in the field of water Hydraulics-A Status report, NFPA, 1995:152~158
    [61] Scheffcls. Developments In Water Hydraulics.Hydraulics & Pneumatics, December 1996: 33~34
    [62]刘银水.水压阀口流动特性、水下作业工具及水压实验台的研究[博士后研究工作报告].武汉, 2004.
    [63] Sorensen P. Latest Development in the Application of Water Hydraulics. Fluid Power Theme days in IHA, Water Hydraulics , Tampere , Finland, Sept. 1997:9~10
    [64]宋俊,王淑莲等.液压元件优化.北京:机械工业出版社, 1999: 154~172
    [65] Koskinen K. T. and Vilenius M. J. Water Hydraulics—A Versatile Technology Journal of the Japan Hydraulics & Pneumatics Society 1998 v29(7): 13~19
    [66] Smith W J.. Design and Field Problems with Valve Components on Water Systems. Proc. of 38th National Conference on Fluid Power, USA, Nov.16~18, 1982: 213~342
    [67]李永堂,雷步芳等.液压系统建模与仿真.北京:冶金工业出版社, 200: 137~152
    [68]吴根茂,路甬祥.液压元件及系统的动态仿真.杭州:浙江大学出版社, 1988: 164~175
    [69] Black S A.Preliminary Analysis of Seawater Hydraulic Tool Motors. Technical Memoran-dum 43-77-06, Civil Engineering Lab, NCBC, Dec, 1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700