大流量混合煤气调节阀电液比例系统稳压技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为建设资源节约和环境友好型和谐社会,钢厂已经在利用生产过程中产生的焦炉和高炉煤气发电。由于技术、安全和成本的原因,混合煤气的稳压目前均采用大型气动压力调节阀实现,受气动执行机构的滞环特性、气体可压缩性等的影响,大型气动压力调节阀响应慢、响应滞后、调节不及时,使送往燃气轮机的混合煤气压力波动过大,这是目前影响正常发电的主要原因。开发适合钢厂循环发电工程要求的高性能压力调节阀,实现大流量煤气压力的稳压是循环发电工程的一个关键技术问题。
     大型气体压力调节阀存在的主要问题是响应慢和响应滞后,这是目前的气动执行机构所不能克服的。电液执行机构抗干扰能力强,可以输出较大的推力和较快的执行速度。课题提出研究由电液比例单元驱动大流量调节阀的电液压力调节系统,取代目前钢厂循环发电工程中采用的气动压力调节系统。论文首先对稳压系统进行系统设计及元器件选型。其次,基于物理模型进行图形化建模,通过建模仿真软件AMESim建立稳压系统的PID控制模型,并对系统的动态响应进行了仿真分析,这种方法可以最大程度的考虑系统的细节问题,从而能够得到更加准确的系统模型。再次,进行了机理建模,即通过分析阀控对称缸及调节阀部分的力平衡特性以及压力-流量特性等,建立了系统的非线性数学模型。最后,基于Matlab针对机理建模进行压力控制策略研究,为了对调节阀进行精确的压力控制,研究了以动力学模型为基础的调节阀系统的控制策略,从而以提高系统的响应速度、准确性及稳定性。
     通过对大流量混合煤气稳压系统的研究和仿真实验分析可以看出,在采用PID控制方法对大流量混合煤气稳压系统实施控制之后,通过调整不同的比例、积分和微分系数能够使系统对输入信号产生较好的跟踪,但不能很好的克服煤气压力波动对系统稳定性的影响。在采用模糊控制之后,减少了压力波动作用对系统的不良影响,提高了系统的稳定性,对不确定性因素影响的适应能力也有所增强。
In order to build a resource-conserving and environment-friendly harmony society, steel plants have been using coke oven and blast furnace gas produced in the production process to generate power. Due to technical, safety and cost reasons, mixed-gas regulators are currently large pneumatic pressure control valves. Because the lagging characteristics of the pneumatic executive system, the impact of gas compressibility, large pneumatic pressure control valve can not adjust in time, and pressure fluctuation of the mixed gas sent to the gas turbine is too large, which are the main reasons for abnormal power generation. It is a key technical issue to develop high-performance pressure control valve used in power generation projects for steel plant.
     The main problems for large pressure control valve are lag and slow in response, which the pneumatic part can not overcome. Electro-hydraulic executive system has strong capability for resisting bias, further more it can output large thrust and faster execution speed. In the paper, subject bring forward that using ressure control system drived by electro-hydraulic proportional unit to replace the pneumatic pressure regulator system currently used in steel cycle power generation project. In this paper, firstly, system is designed and components are selected. Secondly, physical model was build based on graphical modeling, and PID control mode of system modeling based on the simulation software AMESim is established, further more simulation analysis for dynamic response is carried out. Greatest degree details of the system can be considered in this method, and more accurate system model is able to be built. Thirdly, the mechanism of modeling, that is, through analysing the force balance equation and characteristics of the pressure-flow characteristics of every part to establish a non-linear mathematical model. Finally, in order to improve the response speed, accuracy and stability, pressure control strategies are studied based on Matlab.
     After study and analysis of simulation results on large flux mixed gas control system, we can see that after the using of the PID control method for large-flux mixed-gas control system, the system can track the input signal perfectly by adjusting different proportion, integral and differential coefficient to the system, and is able to control the output pressure in the range expected essentially. But not very good ability to overcome the pressure fluctuations act on stability of the system. After the using of fuzzy control, the adverse effects that external fluctuations act on the system have been reduced, and the stability of the system is improved. Adaptive capacity to uncertainty factors is enhanced also.
引文
1.刘定智.输油管道阀前压力扰动对阀后压力影响的模拟研究[J].石油规划设计,2007,18(1):18-21
    2.杨世忠,邢丽娟.调节阀流量特性分析及应用选择[J].阀门,2006,(5):33-36
    3.徐力生,叶松源,陈伟,胡芳龙,苏达.新型自控调节阀的研制[J].贵州水力发电,2006,20(2):77-78
    4.Suzanne Michaud,Samir Ziada,Henri Pastorel.Acoustic Fatigue of a Steam Dump Pipe System Excited by Valve Noise[J].Journal of Pressure Vessel Technology,2001,123:461-467
    5.Ranganathan Srinivasan,Raghunathan Rengaswamy.Approaches for efficient stiction compensation in process control valves[J].Computers and Chemical Engineering,2008,32:218-229
    6.M.A.A.Shoukat Choudhury,S.L.Shah,N.F.Thornhill,DavidS.Shook.Automatic detection and quantication of stiction in control valves[J].Control Engineering Practice,2006,14:1395-1412
    7.Wiktor Bolek,Jerzy Sasiadek,Tadeusz Wisniewski.Two-valve control of a large steam turbine[J].Control Engineering Practice,2002,10:365-377
    8.S.K.Das,B.Ravikumar,D.K.Bhattacharya,I.Chattoraj.Stress corrosion cracking in an Al-bronze chlorine gas Regulating valve[J].Engineering Failure,2000,7:229-237
    9.A.Misra,K.Behdinan,W.L.Cleghorn.Self-excited Vibration of A Control Valve due to Fluid-Structure Interction[J].Journal of Fluids and Structures,2002,16(5):649-665
    10.Thananchai Leephakpreeda.Flow-sensorless control valve:neural computing approach[J].Flow Measurement and Instrumentation,2003,14:261-266
    11.Tielong Shen,Katsutoshi Tamura,HiroshiKaminaga.Robust Nonlinear Control of Parametric Uncertain Systems with Unknown Friction and Its Application to a Pneumatic Control Valve[J].Journal of Dynamic Systems,Measurement,and Control,2000,122:257-262
    12.Vineet Ahuja,Ashvin Hosangadi,JeremyShipman.Multi-Element Unstructured Analyses of Complex Valve Systems[J].Journal of Fluids Engineering,2006,128:707-716
    13.JamesA.Davis,MikeStewart.Predicting Globe Control Valve Performance PattⅠ:CFD Modeling[J].Transactions of the ASME,2002,124:772-777
    14.JamesA.Davis,MikeStewart.Predicting Globe Control Valve Performance PartⅡ:Experimental Verification[J].Transactions of the ASME,2002,124:778-783
    15.Kamran Eftekhari Shahroudi.Robust Servo Control of a High Friction Industrial Turbine Gas Valve by Indirectly Using the Standard μ-Synthesis Tools[J].IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY,2006,14(6):1097-1103
    16.贾青,陶正良.从对我国电站调节阀的调研看其现状及发展前景[J].水利电力机械,2005,27(1):8-10
    17.何衍庆,邱宣振,杨洁.控制阀工程设计与应用[M].北京:化学工业出版社,2005
    18.何衍庆,杨洁,王为国.控制阀设计的新方法[J].医药工程设计,2007(6):59-62
    19.李占平.智能电液阀门执行机构控制器的研究[D].安徽理工大学硕士学位论文,2005:33-35
    20.张玉润.基于几何参数设计调节阀流通面积[J].仪器仪表学报,1996,4:416-420
    21.张玉润,陈意秋,王新,姜新,华宣南,包康成.异径多束流调节阀减振降噪效果显著[J].石油化工自动化,1999,2(2):66-67
    22.张玉润,张宇明.按流体诱发振动的流体力学理论.应用概率分析和数理统计方法[J].仪器仪表学报,2000,21(2):121-124
    23.汪岗伟.改进和提高电液调节阀的运行可靠性[J].油气储运,1999,18(7):53-56
    24.张兴政,马仁库,聂强.REXA电液执行器在汽轮机DEH系统中的应用[J],发电设备.2003(4):58-60
    25.管伟诗,赵轶飞,任贵龙等.大流量气体燃料调节阀的试验研究[J].应用科技,2001,28(5):7-9
    26.屠珊,孙弼,毛靖儒.电站汽轮机调节阀振动试验研究[J].阀门,2003,(5)7-10
    27.戴义平,马庆中,赵婷.调节阀特性非线性补偿对动态特性影响的仿真研究[J].汽轮机技术,2006,48(2):116-118
    28.许秀然.邵荣国.火电站超临界机组阀门国产化[J].阀门,1998,(2):34-37
    29.宋银立.中国阀门行业现状及发[J].G通用机械产业与市场,2005,(5):10-11
    30.刘世勋,刘少军.国外液压控制技术发展动向[J].液压与气动,1996,4:3-4
    31.张明.医用牵引床比例阀控缸缓冲与定位的研究[D].山东大学硕士学位论文,2005:8-16
    32.吴根茂,邱敏秀等.实用电液比例控制技术[M].杭州:浙江大学出版社,1993
    33.刘豹.现代控制理论[M].北京:机械工业出版社,1992:3-10
    34.路甫祥,胡大宏.电液比例控制技术[M],北京:机械工业出版社,1998
    35.王春行.液压伺服控制系统[M].北京:机械工业出版社,1989
    36.吴根茂,邱敏秀.新编实用电流比例技术[M].浙江大学出版社,2006
    37.黎启柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997
    38.张利平.液压控制系统及设计[M].北京:化学工业出版社,2006
    39.机械设计手册编委会,机械设计手册[M].北京:机械工业出版社,2004
    40.刘展.电液伺服系统的数字控制技术研究[D].北京交通大学硕士毕业论文,2006:2-6
    41.K.J.Waldron,M.Raghavan.Kinematics of a Hybrid Series-Parallel Manipulator Systems[J].Dynamic System,Measurement,and Control,1989,(111):211-221
    42.Viersma T J.Analysis synthesis and design of hydraulic servo systems and pipelines[M].Elsevier Scientific Publishing Company,1980
    43.王进华.控制单活塞杆液压缸的不对称伺服阀[J].液压与气动,1992,(4):18-20
    44.杨板泉飞行模拟器六自由度运动系统及其运动性能的研究[D].哈尔滨工业大学博士学位论文,2002:10-12,43-4
    45.刘长年.非对称油缸的动态研究[J].机床与液压,1985,(1):1-13
    46.王顺晃,舒迪前.智能控制系统及其应用[M],北京:机械工业出版社,1998
    47.张洪涛,安瑞生.智能控制在电液伺服控制中的应用[J].液压与气动,1998,(6):6-7
    48.韦巍.智能控制技术的研究现状和展望[J].机电工程,2000,17(6):1-4
    49.T.H.Lee,S.S.Ge.Intelligent Control of Mechatronic Systems[C].Proceedings of the 2003IEEE International Symposium on Intelligent Control,Houston,Texas,2003:646-660
    50.史维祥.流体控制发展的一些动向[J].液压气动与密封,2001,(2):10-12
    51.孔祥臻.气动比例系统的动态特性与控制研究[D].山东大学博士学位论文,2007:7-10
    52.丛爽.神经网络模糊系统及其在运动控制中的应用[M].合肥:中国科学技术出版社,2001
    53.B.Armstrong.Control of Machines with Friction[M].Boston,USA:Kluwer Academic Publishers,1991
    54.吴宗泽.机械设计师手册[M].北京:机械工业出版社,2002
    55.刘延俊.液压与气压传动[M].北京:机械工业出版社,2003
    56.李壮云.中国机械设计大典第五卷[M],南昌:江西科学技术出版社,2002
    57.Peppiatt,Nick,Flitney,Bob.International standards for reciprocating seals used in hydraulic applications[J].Sealing Technology Volume,2004,7:7-10
    58.A.O.Lebec.A study of mixed Lubrication in Contacing Mechanical Face Seals[C].Proc.4~(th) Leeds-Lyon Symposium on Lubrication.Lyon,1997:46-57
    59.吴瑞明,周晓军,雷良育.液压缸密封工艺分析[J].机床与液压,2003,(6):306-308
    60.贾培起.液压缸[M].北京:北京科学技术出版社,1987
    61.经克,杨晓玉,杨尚平.液压缸附加摩擦力的理论分析和试验测定[J].组合机床与自动化加工技术,2000,(6):26-28
    62.陈铁民,荆宝德.皮囊式液压蓄能器的选择与计算[J].建筑机械,1995,(8):21-22
    63.付永领,祁晓野.AMESim系统建模和仿真-从入门到精通[M].北京航空航天大学出版社,2005
    64.陈宏亮,李华聪.AMESim与Matlab/Simulink联合仿真接口技术应用研究[J].流体传动与控制,2006
    65.IMAGINE S,A.AMESim4.0 User Manual[M],2002
    66.梁利华.液压传动与电液伺服系统[M].哈尔滨工程大学出版社,2005
    67.Ali Talasaz.Ali Neissi Shooshtari.Closed-Loop Pressure Control Based on Smith Predictor for Gas Distribution Network.Information[J],Decision and Control,2007:266-271
    68.刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989
    69.罗传翼,程桂芬.信号、系统与自动控制原理[M].北京:机械工业出版社,2000
    70.陶永华,尹怡欣,葛芦生.新型PID控制及其应用[M].机械工业出版社,1998
    71.薛定宇.反馈控制系统设计与分析[M].北京:中国铁道出版社,1995
    72.罗荣海.机器人自动导引、跟踪控制研究[D].南京航天航空大学硕士学位论文,2002:12-13
    73.韩利竹,王华.MATLAB电子仿真与应用[M].北京:国防工业出版社,2003
    74.邱晓林,李天棺,弟宇鸣等.基于MATLAB的动态模型与系统仿真工具-Silnulink3.0/4.X[M].西安:西安交通大学出版社,2003
    75.易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,1999
    76.石辛民,郝整清.模糊控制及其MATLAB仿真[M].北京:清华大学出版社;北京交通大学出版社,2008
    77.Sugeno M,Yasukawa T.A fuzzy logic based approach to qualitative modeling[J].IEEE Trans on fuzzy systems,1993,1(1):7-31
    78.Ha Q P,Rye D C,Durrant Whyte H F.Fuzzy mmoving sliding mode control with Application to robotic manipulators[J].Automatica,1999,35(9):607-616
    79.Guerra T M,Vermeriren L.Control law for takagi-sugeno fuzzy models[J].Fuzzy Sets and System,2001,12(1):95-108
    80.李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700