气压驱动步态康复训练机器人设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,脑血管疾病的发病率正在逐年上升。我国每年新发生脑卒中人数达250万,70%-80%的患者留有不同程度的肢体运动障碍,从而丧失劳动和生活自理能力。减重步态训练是下肢偏瘫患者康复治疗普遍采用的有效方法之一,其康复效果已经得到国内外诸多医学专家的普遍认同。目前大多数临床医院所采用的减重步态训练是在康复专业理疗师手把手的指导下完成正确的行走步态,效率低且工作强度大,制约了康复训练效率的提高和方法的改进。
     本课题研制的基于气压驱动的步态康复训练机器人,是针对现有减重康复训练的不足而设计的一种新型训练装置。本文首先综述了康复机器人课题研究的当前背景,以及气动系统在康复设备和机器人方面的应用。然后提出了减重步态康复训练机器人总体设计方案,利用Matlab/Simulink仿真环境下的机构系统模块集(SimMechanics)建立了机器人系统的仿真模型,进行了运动仿真分析研究,得到机器人三个关节的运动轨迹。根据所获得的关节运动轨迹,对步态康复训练机器人进行了样机设计。步态康复训练机器人采用高速开关阀作为控制元件,利用PWM方式调节高速开关阀占空比来实现进出气缸和气动人工肌肉气体流量的变化,从而推动机器人关节运动来实现跟踪设定的步态轨迹。根据设计方案,初步制作了机器人(单腿三个关节)样机,并配备了相应的驱动元件和传感器检测元件,制作了功率驱动板,搭建了相关的实验硬件平台。根据PWM控制高速开关阀气动系统特点制定了对应的驱动方式及控制策略,在LabVIEW环境下编写了相对应的数据采集和控制软件,进行了单关节和双关节的跟踪实验。
     通过实验初步验证了步态康复训练机器人系统工作的可行性和有效性,并且步态康复训练机器人项目具有较好的发展前景。最后对于下一步机器人样机系统的调试、功能的扩展优化以及在临床上试用考察康复效果等工作进行了展望。
As people's living standards improve, stroke patients are increasing year by year. Every year, the number of new stroke happened is 250 millions in our country, 70% -80% of patients have varying degrees of movement disorder limb, and lose the labor and self-care ability. Body weight supported treadmill training is an effective method for improving the recovery of walking ability. The effects of rehabilitation have been generally agreed by medical experts both at home and abroad. At present body weight supported treadmill training is done hand by hand by the physical therapist to reach the correct walking gait in most of hospitals, this is low efficiency and intensity of work. All of this constrains the efficiency of rehabilitation training and the improvement of rehabilitation methods.
     In this subject, the gait rehabilitation training robot driven by pneumatic actuators is a new type of device aimed at the existing shortage of body weight supported treadmill training at present. At first this paper summarizes the current research background of the rehabilitation robot, and the applications of the pneumatic system on the rehabilitation equipments and the rehabilitation robots, then put forward the design program of the gait rehabilitation training robot for body weight supported treadmill training. Based on the analysis of normal walking gait, the simulation model of the gait rehabilitation training robot system is set up by using of SimMechanics in the Matlab / Simulink simulation environment, an analytical study is carried out on this robot simulation model, the trajectories of the robot’s three joints are obtained as the results. The prototype of the robot driven by pneumatic cylinders and pneumatic muscles is presented according to the trajectory of joints. The high-speed on-off valve is taken as the control element, and the pneumatic actuator’s positions are controlled by regulating high-speed on-off valve’s duty cycle in PWM mode, thus the robot can guide the patient’s legs to move in a preprogrammed gait pattern on the special treadmill. According to the design plan, the prototype of robot’s leg which has three joints is produced, and equipped with driven components and sensor components. In the meanwhile, a power driver board is produced; the experimental hardware platform is set up. According to the characteristics of pneumatic system controlled by high-speed on-off valve, the system-driven approach and control strategies are formulated. In the LabVIEW environment, the corresponding software of data acquisition and control is programmed. Based on the prototype platform, the experiments about tracking the target gait trajectory of both one joint and two joints are carried out by using the designed control strategies.
     Through preliminary experiments, the feasibility and effectiveness of the gait rehabilitation training robot are verified, and the robot has a better prospect for development. In the next step we will focus on perfecting the prototype, expanding and optimizing the function of the system, studying and assessing the effect of rehabilitation in the clinical trial and so on.
引文
[1]南登崑.康复医学(第3版)[M].北京:人民卫生出版社,2005:1-35.
    [2]金俏,黄茜.急性脑卒中患者早期综合康复治疗的临床研究[J].中国现代医学杂志, 2006(22):3444-3446.
    [3]徐军青,邱纪方,俞莲娟.早期康复干预对急性脑卒中患者生存质量的影响[J].中华物理医学与康复杂志,2006(10):696-698.
    [4]曹玉灵,马超,伍少玲,等.早期综合康复对脑卒中患者运动功能和ADL能力的影响[J].中国康复医学杂志, 2006(11):1029-1030.
    [5]杨雅琴,张通.减重步行训练对脑卒中后偏瘫步态康复的影响[J].中国康复医学杂志,2004(10): 731-733.
    [6]罗爱华,潘翠环,叶彤,等.减重步行训练对脑梗死后偏瘫患者步行功能的影响[J].广州医学院学报,2005,33(04):18-20.
    [7]励建安.脑卒中的步态异常和治疗对策[J].中华全科医师杂志, 2005,4(12):715-717.
    [8]励建安,孟殿怀.步态分析的临床应用[J].中华物理医学与康复杂志,2006,28(07):500-503.
    [9] Dallaway J L, Jackson R D, Timmers P H A. Rehabilitation robotics in Europe [J]. IEEE Transactions on Rehabilitation Engineering, 1999, 3(2):35-45.
    [10]孙立宁,何富君,杜志江,等.辅助型康复机器人技术的研究与发展[J].机器人, 2006,28(3):355-360.
    [11] Faolo D, Eugenio G. Robotic for medical applications[J], IEEE Robotics and Automation Magazine, 1996,54(6):44-56.
    [12] Lunenburger L, Colombo G, Riener R, Dietz V. Clinical assessments performed during robotic rehabilitation by the gait training robot Lokomat[C]. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, 2005:345-348.
    [13] Bernhardt M, Frey M., Colombo G, Riener R. Hybrid force-position control yields cooperative behaviour of the rehabilitation robot LOKOMAT[C]. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, 2005:536-539.
    [14] Mirbagheri M, Tsao C, Pelosin E, Rymer W. Therapeutic effects of robotic-assisted locomotor training on neuromuscular properties[C]. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, 2005:561-564.
    [15] Ekkelenkamp R,Veneman J, van der Kooij H. LOPES: selective control of gait functionsduring the gait rehabilitation of CVA patients[C]. Rehabilitation Robotics, ICORR, 9th International Conference, 2005:361-364.
    [16] Jan F. Veneman, Rik Kruidhof, Edsko E. G. Hekman et al. Design and Evaluation of the LOPES ExoskeletonRobot for Interactive Gait Rehabilitation [J]. IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, SEPTEMBER 2007,15(3):379-386
    [17] Schmidt H, Hesse S, Bernhardt R, Kruger J. Haptic Walker-A Novel Haptic Foot Device [J] . ACM Transactions on Applied Perception, April, 2005, 2(2):166-180.
    [18] http://www.sanlab.kz.tsukuba.ac.jp/HAL/indexE.html[OL]
    [19] Daniel P. Ferris , Keith E. Gordon , Gregory S. Sawicki ,Ammanath Peethambaran .An improved powered ankle–foot orthosis using proportional myoelectric control[J] . Gait & Posture, 2006, 23:425-428.
    [20] James A. Norris , Kevin P. Granata , Melanie R. Mitros et al. Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults [J]. Gait & Posture, 2007, 25:620–627.
    [21] D.W. Repperger, C.A.Phillips, A.Neidhard-Doll,et al. Actuator design using biomimicry methods and a pneumatic muscle system[J]. Control Engineering Practice, 2006, 14:999-1009.
    [22] TU Diep Cong Thanh, Kyoung Kwan Ahn. Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network [J]. Mechatronics, 2006, 16:577–587.
    [23] http://www.pim.tsinghua.edu.cn/units/shejisuo/REC/area/link3.htm[OL]
    [24]张晓超,张立勋,颜庆.一种新型三自由度下肢康复训练机器人步态机构运动分析及仿真[J].自动化技术与应用,2005,24(3):32-35.
    [25]朱建瓴,刘成良,人体下肢康复机构设计及运动学仿真[J].计算机仿真, 2007,24(3):145-148.
    [26]程方,王人成,贾晓红,等.减重步行康复训练机器人研究进展[J].中国康复医学杂志, 2008,23(4):366-368.
    [27]韩建海,张河新.柔软型气动执行器技术展望[J].液压与气动,2004(6):1-3.
    [28] Kazuo K, Takakazu T, Keigo W, et al. Exoskeleton for human upper-limb motion support[C]. Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2003:2206-2211.
    [29] Sanchez J, Wolbrech E, Smith R, et al. A Pneumatic Robot for Re-Training Arm Movement after Stroke[C]. Proceedings of the IEEE 9th International Conference on RehabilitationRobotics, USA, 2005:500-504.
    [30] Jiping H, Koeneman E J, Schultz R S, et al. Design of a Robotic Upper Extremity Repetitive Therapy Device[C]. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, Chicago, USA, 2005:95-98.
    [31] Daisuke S, Toshiro N, Masahiro T. Development of Active Support Splint driven by Pneumatic Soft Actuator(ASSIST)[C]. Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005:5202-5205.
    [32] Kobayashi H, Hiramatsu K. Development of muscle suit for upper limb[C]. Proceedings of the IEEE International Conference on Robotics and Automation, Piscataway, USA, 2004:2206-2211.
    [33] Satoshi K, Keitaro N, Hiroshi Y, et al. A study for control of a power assist device development of an EMG based controller considering a human model[C]. Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, New York, 2004:2283-2288.
    [34]范伟,彭光正,黄雨.气动人工肌肉驱动器的研究现状及其发展趋势[J].机床与液压,2003(1):32-36.
    [35]隋立明,王祖温,包钢.气动肌肉的刚度特性分析[J].中国机械工程,2004,15(3):242-244.
    [36]朱从笑,陶国良.气动人工肌肉伺服平台的建模[J].浙江大学学报, 2004,38(8):1056-1060.
    [37]吕广明,孙立宁,彭龙刚.康复机器人技术发展现状及关键技术分析[J].哈尔滨工业大学学报,2004,(9):1224-1228.
    [38]卫玉芬,李小宁.气动肌肉驱动的柔顺机器人操作手的设计和实现[J].机器人,2005,27(5):445-449.
    [39]赵怀林,杉坂政典.Mckibben肌肉双足机器人设计[J].液压与气动,2007,(5):3-5.
    [40]赵怀林,李果,余达太. Mckibhen气动人工肌肉特性研究[J].液压与气动,2005,(7):29-31.
    [41]隋立明,张立勋.气动技术在康复领域中的应用[J].液压气动与密封, 2006,(4)33-35.
    [42]隋立明,包钢,王祖温.气动肌肉在康复工程中的应用[J].中国临床康复,2004, 8(2)320-321.
    [43]李强,秦现生,应申舜.新型气动人工肌肉在仿生关节中的应用[J].液压与气动,2007, (4):50-54.
    [44]熊克凯,韩建海.一种新型气动柔软机器人关节的研制[J].机床与液压,2006(5):81-82.
    [45]肖亮子,韩建海,赵书尚,等.基于气动人工肌肉并联驱动手腕康复训练器[J].液压与气动, 2007,(6):64-66.
    [46]顾新.偏瘫患者下肢运动功能、平衡功能和步行速度的相关性[J].中华物理医学与康复杂志,1998,20(7):199-201.
    [47]刘晓红.下肢矫形器在瘫痪康复中的应用[J].中国组织康复与临床研究,2007,11(31):6252-6255.
    [48]杨俊玲,徐应乐,魏毅,等.下肢矫形器疗法对脑卒中偏瘫患者运动功能恢复的影响[J].中国临床康复,2005,(09):6-7.
    [49] Hesse S, Werner C, Bardeleben A, et al. Body weight-support treadmill training after stroke[J]. Curr Atheroscler Rep, 2001, (3):287-294.
    [50] Patricia Winchester, Ross Querry. Robotic Orthoses for Body Weight–Supported Treadmill Training [J].Physical Medicine and Rehabilitation Clinics of North America, February 2006, 17(1)159-172.
    [51]费烨赟.基于肌电信号控制的康复医疗下肢外骨骼设计及研究[D]硕士.浙江大学20060501.
    [52]牛彬,可穿戴式的下肢步行外骨骼控制机理研究与实现[D].硕士.浙江大学20060501.
    [53] [美]约翰·F·加德纳,周进雄,张陵译.机构动态仿真-使用MATLAB和SIMULINK[M].西安:西安交通大学出版社,2002.
    [54]吴宝元,余永,许德章,等.可穿戴式下肢助力机器人运动学分析与仿真[J].机械科学与技术,2007,26(2)235-240.
    [55] Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, and Thelan. OpenSim: Open-source software to create and analyze dynamic simulations of movement [J]. IEEE Transactions on Biomedical Engineering, November 2007, 54(11):1940-1950.
    [56]薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    [57] MathWorks Corp. SimMechanics user’s guide 1.1 [Z]. MathWorks Corporation, 2002.
    [58]韩建海,则次俊朗.小型空压机直接驱动型气动位置控制系统[J].机械工程学报, 2003,6(39):67-91.
    [59]杨林,韩建海,赵书尚,等.气动人工肌肉制作及应用[J].液压气动与密封,2007,27(3):6-8.
    [60]肖亮子,基于气动人工肌肉并联驱动手腕康复训练器研究[D].硕士.河南科技大学2006.
    [61]杨乐平,李海涛,杨磊编著.LabVIEW程序设计与应用(第二版)[M].电子工业出版社,2005.
    [62]韩建海,张河新.气动比例/伺服控制技术及应用[J].机床与液压,2001(1):3-6.
    [63]张强,王即武,王仁人.气动位置控制技术的发展[J].农业装备与车辆工程,2006(1):6-9.
    [64]王宣银,朱世强,陶国良,等.流体调制技术及其在流体伺服控制中的应用[J].机床与液压,2000(4):7-9.
    [65] Noritsugu T. Pulse-width modulated feedback force control of a pneumatically powered robot hand[C]. In: Proceedings of the international symposium on fluid power control and measurement, Tokyo, 1987:47–52.
    [66] Ming-Chang Shih, Ming-An Ma. Position control of a pneumatic cylinder using fuzzy PWM control method [J]. Mechatronics, 1998, 8:241-253.
    [67]符欲梅,倪文波,昝昕武,等.载波频率对高速开关阀系统影响的实验研究[J].机床与液压,2000(1)45-46.
    [68]王祖温,孟宪超,包钢.基于QFT的开关阀控气动位置伺服系统鲁棒控制[J].机械工程学报,2004(7):75-80.
    [69]吴海燕,尚群立.气动定位系统基本特性和模型研究[J].液压与气动,2007,(08):13-16.
    [70] T. Noritsugu, Development of PWM Mode Electro-Pneumatic Servomechanism. Part II: Position Control of a Pneumatic Cylinder [J], Journal of Fluid Control, 1987, 66:65-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700