基于AMESim的气动系统建模与仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业技术的飞速发展,对气压传动与控制系统的性能和控制精度提出了更高的要求。而运用计算机仿真技术对气动系统进行分析具有重要的意义。计算机仿真技术不仅可以预测系统的性能,减少设计时间,还可以对所涉及的系统进行整体分析和评估,从而达到优化系统、缩短设计周期和提高系统稳定性的目的。
     AMESim作为法国IMAGINE公司开发的一款对多学科领域复杂系统进行建模的仿真软件,为用户提供了一个系统工程设计的完整平台,使得用户可以在同一个平台上对复杂的多学科领域系统进行建模,并在此基础上进行仿真计算和深入研究。而正是基于上述优点本文研究了AMESim在气动系统建模仿真中的应用。
     首先,借助AMESim所提供的友好的开发工具AMESet和AMECustom作为开发手段来补充和完善AMESim气动图库中气动元件模型过于简单、数量少等缺点。针对气动控制元件、气动执行器元件建立了子模型。从仿真方面进行研究,着重于把AMESet和客户化定制两种方法结合起来使用,利用质量守恒定律、理想气体状态方程、热力学方程、流量方程等建立一阶微分数学模型,并配以AMESim平台对所建立的模型进行进一步的系统仿真验证。
     其次,对气动比例位置系统进行了两种方法的数学建模研究。一种方法是利用Simulink强大的非线性建模功能,建立了一个全新的基于比例方向阀的气动比例位置系统的非线性模型。并利用Simulink的线性化工具对系统模型在具体工作位置作了线性化处理,得到了较为精确地数学模型,以便于为下一步的研究提供依据。另一种方法是利用AMESim和Simulink联合仿真技术,对系统进行了进一步的建模与仿真分析,仿真和性能的预测结果表明,这种方法可以最大程度的考虑细节问题,并利用两个软件各自的优点,取得了良好的控制效果。
     再次,通过AMESim对所建立的气动比例位置系统模型进行故障仿真研究,获取了气动比例系统常见故障的故障样本仿真曲线。通过故障仿真揭示出系统相关故障的故障状态。
     最后,研究了建立气动系统半物理仿真与检测实验的方法。本文采用AMESim与MATLab的实时仿真功能、xPC Target平台和气动元件构成半物理仿真系统来实现气动系统的半物理仿真。
Along with the rapid development of industry of pneumatic transmission and control, the performance of the system and the control accuracy put forward higher request. Using computer simulation technology, the performance of systems can be forecasted, the design cycle can be shorten, and the whole system can be analyzed and evaluated. So the purposes of optimizing system, shorting design cycle and improving the stability of system can be achieved.
     AMESim as IMAGINE company to develop a multi-disciplinary field complex system modeling simulation software, to provide users with a system of engineering design, user can complete platform in the same platform for complex multi-disciplinary field system is modeled and simulated on the basis of calculation and in-depth research. And it is based on the above advantages, This paper AMESim in pneumatic system modeling simulation application is studied.
     However, its pneumatic library has very few modules, and those modules are very simple, which is quite inconvinient to use. Firstly the paper uses its two development tools, namely AMESet and AMECustom, to construct more modules for those typical components and elements that are widely used in real pneumatic system, and the submodels for pneumatic control component, actuator component are created. Conservation law of mass,the state equation for ideal gas、thermodynamic equation and flow rate equation are used to establish first order differential mathematic model,and a special investigation on mass flow rate coefficient for different components are carried out to make the model more accuarate.
     Two mathematical modeling methods on pneumatic proportional system are presented. One method is by means of powerful Simulink nonlinear modeling function, built a firenew nonlinear model of pneumatic proportional position control system based on the proportional directional valve. According to utilized linearization tools of Simulink to linearly treat at concreted operating point for the system model, a more accurate mathematical model is attained in order to the basis for further research. The other method is using AMESim and Simulink co-simulation technology, building systems for the further simulation analysis,simulationed performance prediction results show, the details of the system can be considered at utmost. And by using the details of their respective advantages, two software has excellent control effect.
     Third, Basing on the simulation model, uses AMESim software to make fault simulation of pneumatic proportional position control system. Throughusing simulated the common failure of position system, btain fault simulation curve samples of common fault of the position system.Through fault simulation systems revealed a state of failure.
     Fourth is the method study of building up pneumatic system half-physicssimulation and check trial method. The paper adopts AMESim and MATLab real time simulation function、xPC Target station and pneumatic component to set up half-physics simulation system in order to realize pneumatic system half-physics simulation.
引文
1陈立群.液压传动与气动技术.北京:北京大学出版社,2006:75-77
    2 Szente.V,Hos.C.Gas dynamic pipe flow effects in controlled pneumatic systems asimulation study.Periodica Polvtechnica Mechanical Engineering,2001(45):239-250
    3王可定.计算机模拟及其应用.南京:东南大学出版社,1997:1-3,6-7
    4 Wiliam W Reeves.The Technology of Fluid Power Englewood Cliffs.N.J.Prentice Hall,1987(37):156-267
    5 Anthon Espoide.Fluid Power with Application.Englewood Cliff.N.JPrentice Hall,1988.1-29
    6 K.Toshiharu,N.Ryota,S.Manabu.Development of a Web Client-server System for Pneumatic Circuit Simulation Based on Bond Graphs.Proceedings of the IEEE International Conference on Systems,Man and Cybernetics,2002,2:5-7
    7 S.C.Fok,Z.Wang,P.D.Dransfield.Digital Simulation Study of an Adaptive Controller for a Pneumatic Cylinder System.International Journal of Computer Applications in Technology,1995,8(3):163-171
    8 Y.Lin-Chen,J.H.Wang,Q.H.Wu.A Software Tool Development for Pneum-atic Actuator System Simulation and Design.Computers in Industry,2003,51(1):73-88
    9邱晓林,李天柁.基于MATLAB的动态模型与系统仿真工具.西安:西安交通大学出版社,2003:34-35
    10 S.D.Prior,A.S.White.A simulation system for pneumatic conveying systems.Power Technology,1998,95(1):7-14
    11 Giuffrida.A,Lanzafame.R.Modeling and simulation of a balanced vane pump.American Society of Mechanical Engineers.The Fluid Power and Systems Technology Division(publication)FPST,2001(8):71-79
    12熊伟.气压传动系统计算机辅助设计与仿真研究.[哈尔滨工业大学工学博士学位论文].2001:28-35
    13摆玉龙,郑岳意.基于功率键合图法的相似系统建模与仿真.甘肃科学学报,2006,18(4):56-59
    14 E.Aquilen-Gomez,A.Lara-Lopez.Dynamics of a Pneumatic System Modeling Simulation and Experiments.International Journal of Robotics and Automation,1999,14(1):39-43
    15 Sorniotti.Aldo,Repici.Gain.francesco.Maria.Development of an electrohydrauli-c brake system minimizing cost.WSEA Transaction on Systems,2005,8(6):60-61
    16鲜麟波,杨钢.基于AMESim和Simulink的电液位置/力混合控制仿真研究.机床与液压,2007,35(5):25-27
    17周红芳,张新华,谢劲松.AMESim软件在气动伺服系统仿真中的应用.战术导弹控制技术,2008,30(2):53-56
    18李永堂,雷步芳,高雨茁.液压系统建模与仿真.北京:冶金工业出版社,2003:72-75
    19秦家升,游善兰.AMESim软件的特征及其应用.工程机械,2004,35(12):58-60
    20 www.amesim.com.cn
    21苏东海,于江华.液压仿真新技术AMESim及应用.计算机应用,2006,11(33):35-37
    22蔡茂林.现代气动技术理论与实践.液压与气动密封,2007,27(2):45-48
    23施开志.气动系统主要元件的建模和系统仿真的研究.[哈尔滨工业大学硕士学位论文].2006:33-35
    24李壮云.液压气动与液力.北京:电子工业出版社,2008:25-27
    25 H.P.Zhang,Mitsum.Senoo,Kotaro.Kurihara.Development of Model Selection Software of Pneumatic Components.Harbin Institute of Technology. 3r dInternational Symposium of Fluid Power Transmission and Control(ISFP99),1999:566-571
    26李林,彭光正,王雪松.气管道流量特性参数的分析研究.液压与气动,2004,(4):5-7
    27 D.A.Jobson.On the Flow for a compressible fluid through orifices.IME,169:767-779
    28费国忠,彭光正,赵彤.气管道流量特性参数理论分析与实验研究.工程设计学报,2007,5(8):126-128
    29 H.P.Grace,C.E.Lapple.Discharge coefficient for small-diameter orifices and flow nozzles.ASME,Vol.73:639-647
    30杨丽红,刘成良,叶骞.多变指数在放出法中的应用.机床液压,2005(8):84-86
    31冯刚.涡轴发动机燃油控制系统HMU仿真元件库的建立及应用.中国航空学会第十四届发动机自动控制专业学术交流会,2008,4:36-39
    32李华聪,李吉.机械/液压系统建模仿真软件AMESim.计算机仿真,2006,23(12):294-296
    33余佑良,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用.液压气动与密封,2005(3):28-30
    34邱铭军,赵航,姚培.AMESim软件及其应用.筑路机械与施工机械,2005(8):60-61
    35 SMC(中国)有限公司.现代实用气动技术.第二版.北京:机械工业出版社,2004:317-318
    36范伟,余麟,刘昭博.气动人工肌肉驱动仿人灵巧手的设计.机床与液压,2006,(8):28-31
    37 Kenji.Kawashima.Application of robot arm using fiber knitted type pneumatic artificial rubber muscles.IEEE International Conference on Robotics and Automation,2004:18-19
    38 S.C.Fok,Z.Wang,P.D.Dransfield.Digital Simulation Study of an Adaptive Controller for a Pneumatic Cylinder System.International Journal of Computer Applications in Technology,1995,8(3-4):163-171
    39 Versluys.Rino.A study on the bandwidth characteristic of pleated pneumatic artificial muscles.Applied Bionics and Biomechanics,2009(3):3-9
    40陆鑫盛,周洪.气动自动化系统的优化设计.上海:上海科学技术文献出版社,1999:21-23
    41 T.Fjita,Jang.t.kagawa.Dynamic of penumatic cylinder system.Proceeding of the third JHPS Intenational Symposium,1996:259-264
    42章宏甲,王积伟.液压与气压传动.北京:机械工业出版社,2000:121-123
    43王燕波,王祖温,杨庆俊,等.气压伺服系统的建模与特性.吉林大学学报,2009,39(5):1187-1189
    44李洪人.液压控制系统.北京:机械工业出版社,1996:200-201
    45陈汉超,盛永才.气压传动与控制.北京:北京工业学院出版社,1987:69-71
    46 [英]C.R.英柏劳斯.液压气动伺服机构.黄明慎.北京:国防工业出版社,1998:56-58
    47 Shearer J L.Study of Pneumatic Processes in the Continuous Control of Motion WithCompress air.Trans ASME,1956(2),233-242
    48 V.Tapio.Design pneumatic position servo system.Power international,1999(6):15-17
    49邱晓林.基于MATLAB的动态模型与系统仿真工具.西安:西安交通大学出版社,2003,25(3): 12-13
    50马长林,黄先祥,郝琳.基于AMESim的电液伺服系统仿真与优化研究.2006,5(1):12-13
    51陈宏亮,李华聪.AMESim与MATLAB/Simulink联合仿真接口技术应用研究.流体传动与控制,2006,14(1):14-16
    52江铃玲,张俊俊.基于AMESim与MATLAB\Simulink联合仿真技术的接口与应用研究.流体传动与控制,2007,22(5):25-27
    53 Hitchcox.A.A.Software Aids Fluid Power System Design. Hydraulic & Pneumatic,1991,44:41-48,62-68
    54高恒,尚群立.气动位置伺服系统建模与PID控制仿真研究.机械制造,2009,543(47):21-23
    55潘峰,张云州,薛定宇,等.微型足球机器人伺服控制实时仿真系统研究.系统仿真学报,2006,15(6):28-29
    56刘华.从离线仿真到实时仿真的连续平台.CAD/CAM与制造业信息化,2006,25(11):12-13
    57徐国政.基于MATLAB/xPC Target的数据采集系统.数据采集与监测,2005,21(1):48-49
    58薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.北京:清华大学出版社,2004,345-401
    59 M.Demetgul,I.N.Tansel,S.Taskin.Fault diagnosis of pneumatic system with artificial neural network algorithms.Expert Systems with Application,2009,36(1):512-519
    60王海龙,陈珊杰.基于MATLAB的数据采集系统的研究.中国农学通报,2007,25(1):15-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700