个性化髋关节假体耦合系统优化新设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究人造髋关节内置假体耦合系统优化新设计方法。假体置入人体后,其结构形态、几何尺寸、材料属性以及与股骨接触界面形式等因素与股骨的自适应重建存在动态的内在联系,假体和股骨等成为一个耦合动态系统。研究将把机械设计理论及方法、生物力学、机械动力学、骨生长重建理论、骨力学、材料学、最优化理论和方法及技术与医用CT技术、CAD和CAE技术和计算机可视化仿真理论及技术等结合起来,构建人造髋关节假体——股骨系统耦合动态数学和有限元仿真模型,在计算机可视化仿真中研究和探讨关节假体与股骨等耦合相互作用时,假体外部形状、结构形态、材料属性和几何尺寸等不同机械设计参数以及假体与股骨髓腔等部位的接触耦合形式对股骨生长重建的影响,在改变这些机械设计参数以及假体与股骨髓腔等部位接触耦合形式过程中来设计关节假体,这样设计的假体有利于股骨生长重建并形成稳定结合,以此建立关节假体耦合系统自适应优化新设计方法。
     本文的研究工作主要包括以下几个方面:
     ①通过专业医学软件Mimics和CAD软件,运用以股骨CT图像数据为基础的图像处理与轮廓线提取技术,反求股骨计算机三维实体模型。
     ②根据股骨CT图像数据,设计符合个体特征的个性化定制型髋关节假体。对定制型髋假体进行四套方案设计:四线法、中心线法、拉伸法和扫描法,并在髋假体设计好后进行虚拟置换,创建个性化髋关节假体耦合系统。
     ③依据和利用股骨CT扫描数据和其表观密度以及弹性模量之间的关系,创建了接近股骨真实力学性能的有限元材料模型。
     ④通过对有限元仿真计算和股骨加载实验的数据进行对比,不仅获得了自然生理状态下的股骨应力应变分布规律,且检验和改善前期建模及有限元分析工作。
     ⑤对髋关节假体的静态、动态及疲劳特性进行研究。用四种方法设计的髋关节假体,与Charnley型常用假体进行比较分析。
     ⑥采用非线性骨再造速率方程和有限元方法、Visual C++平台结合,引入拓扑优化思想,在个性化髋关节假体耦合系统中研究分析了不同物理参数的内置假体植入股骨髓腔后,对股骨重建的影响。从股骨单元细胞数目变化和应力应变分布入手,分析对比不同假体的结构形态、材料属性、几何尺寸和接触形式等参数对骨重建的影响。
New design methodology for individual hip-joint-prosthesis coupling system optimization is studied in this thesis. After prosthesis is implanted, dynamic internal relationships between parameters, such as structural shapes, physical dimensions, material properties, contact interface forms with femur and so on, and femoral self-adaptive reconstruction exist. Therefore, the prosthesis and femur are integrated as a coupling dynamic system. This study combines mechanical design theory and method, biomechanics, mechanical dynamics, the theory of bone reconstruction, bone mechanics, material science, and optimization theory and method, with the technics of medical CT, CAD, CAE and computer visual simulation theory and technology, to construct dynamic mathematics and finite element simulation models of individual hip-joint-prosthesis coupling system. When the coupling interaction of joint prosthesis and femur, the effect of different mechanical design parameters, which include prostheses’structural shapes, physical dimensions, material properties, etc. and the contact coupling forms of prostheses with femoral medullary cavities, on femoral growth and reconstruction is studied and discussed in computer visual simulation. Then joint prostheses can be designed during the process of changing these mechanical design parameters and the contact coupling forms of prostheses with femoral medullary cavities. Therefore, the designed prostheses in this way are beneficial to bone growth and reconstruction, and to form stable integration. As a result, the new design methodology for individual hip-joint-prosthesis coupling system optimization can be established.
     To sum up, the primary study contents in this thesis are described as following:
     ①Utilizing Mimics and CAD software, as well as the technics of processing images and picking up contour lines based on femoral CT images, the 3D solid computer model of femur is designed in reverse.
     ②According to the CT images of the femur, design custom-made prostheses. Four methods which are four-line method, center-line method, stretching method and sweeping method are brought forward. After prostheses are designed, virtual assembly is done to construct individual hip-joint-prosthesis coupling system.
     ③Utilizing the relationships between femoral CT data and apparent density, elastic modulus, the finite element material model of the femur which is more similar to real mechanical properties is reconstructed.
     ④By comparing the results of finite element simulation calculation and the load experiment of the femur, the femoral stress-strain distribution under natural physiological condition is obtained, and checking up and improving the works, such as modeling and finite element analysis are also done.
     ⑤Static, dynamic and fatigue behavior of hip-joint prostheses are studied. The prostheses are designed by four different methods, compared with that of a commonly used prosthesis developed by Charnley.
     ⑥This study adopts the connection of nonlinear bone-reconstruction rate equation with finite element analysis method and Visual C++ platform, and introduces topology optimization thought, in order to analyze the effect of endoprostheses of different physical parameters which are implanted femoral medullary cavities, on femoral reconstruction. According to the number change of femoral unit cells, and stress-strain distribution, the effect of the different prostheses’structural shapes, material properties, physical dimensions, contact forms and so on, on bone reconstruction is compared and analyzed in the system.
引文
[1] Zafer Senalp, Oguz Kayabasi and Hasan KurtaranStatic. Dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials & Design. 2007, 28(5), 1577-1583.
    [2] Pawlikowski M., Skalski K., Haraburda M. Process of hip joint prosthesis design including bone remodeling phenomenon. Computers and Structures. May, 2003, 887-893.
    [3] Rina Sakai, Moritoshi Itoman and Kiyoshi Mabuchi. Assessments of different kinds of stems by experiments and FEM analysis: Appropriate stress distribution on a hip prosthesis. Clinical Biomechanics. 2006, 21(8), 826-833.
    [4] Daniel P. Nicolella, Ben H. Thacker, Hamid Katoozian and Dwight T. Davy. The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis. Journal of Biomechanics. 2006, 39 (7), 1265-1278.
    [5]葛世荣,王成焘.人体生物摩擦学的研究现状与展望[J].摩擦学学报, 2005, 25(2), 186-191.
    [6]薛文东,戴克戎,龙公.中国人股骨上段几何特征研究[J].北京生物医学工程, 2006, 25, 30-34.
    [7] Marco Viceconti, Debora Testi. HIDE: a new hybrid environment for the design of custom-made hip prosthesis. Computer Method and Programs in Biomedicine. 2001, 64, 137-144.
    [8] Ching-Lung Tai, Chun-Hsiung Shih. Finite element analysis of the cervico-trochanteric stemless femoral prosthesis. Clinical Biomechanics. 2003, 18, 53–58.
    [9] M. Viceconti, R. Lattanzi, B. Antonietti. CT-based surgical planning software improves the accuracy of total hip replacement preoperative planning. Medical Engineering & Physics. 2003, 25, 371–377.
    [10]戴克戎.关节外科的现状与未来[J].上海医学, 1999, 22(3), 132-133.
    [11]龚宪生,罗承刚.螺旋CT及CAD技术在人工关节定制设计中的应用研究[J].中国生物医学工程学报, 2005, 24(6): 799—802.
    [12]薛文东,戴克戎,汤亭亭.股骨上段髓腔的计算机测量方法[J].生物医学工程学杂志, 2001, 18(2), 169-172.
    [13]钱西汉,王成焘.定做式假体的三维重建[J].透析与人工器官, 1999, 10(4), 37.
    [14]龚宪生,王超.一种新型无柄股骨假体的设计研究[J].工程设计学报, 2005, 12(5): 288-293.
    [15]罗承刚,龚宪生.近端股骨的非均匀及各向异性有限元模拟[J].重庆大学学报, 2004, 27(2): 20-23.
    [16]康黎云,龚宪生,王键.一种定制型人工髋关节内置假体设计新方法[J].科学研究月刊, 2005, 1(5): 32—34, 36.
    [17]康黎云,龚宪生,权威,王键.髋关节内置假体设计方法[J].重庆大学学报, 2005, 28(8): 18-22.
    [18] Chun-Lin, Chih-Han Chang. Computer aided analysis of bone remodeling after total hip replacement. Journal of Medical & Biological Engineering. 21(3), Sept.2001, 161-166.
    [19] Boyd S. Shrive N. Wohl G. Measurement of cancellous bone strain during mechanical tests using a new extensometer device. Medical Engineering & Physics, 23 (6), July 2001, 411-416.
    [20] Oguz Kayabasi, Fehmi Erzincanli, et al. Finite element modeling and analysis of a new cemented hip prosthesis. Advances in Engineering Software, 2006, 37: 477-483.
    [21] Turner A.W.L, Gillies R.M., Walsh W.R. Effect of model parameters on theoretical bone adaptation following primary hip arthroplasty. 7th World Biomaterials Congress, 2004, 800-809.
    [22]朱兴华,苏继军,郭同彤.骨表面重建数值模拟在人工股骨头假体优化设计中的应用[J].中国生物医学工程学报, 2001, 20(6), 560-565.
    [23]钟世镇,朱青安,欧阳均.国内创伤骨科生物力学研究概况(综述)[J].暨南大学学报, 2000, 21(1), 1-6.
    [24]马卫华,刘建国.三维图像重建及个体化人工髋关节研究进展及现状[J].骨与关节损伤杂志, 2003, 18(2), 139-141.
    [25]王彩梅,周学玉,贺靠团.生物固定型股骨柄假体的几何系统设计[J].中国临床康复, 2006, l0(33), 139-142.
    [26]蔡胥,崔健,王岩.张力侧中空股骨柄假体的研制及体外静力实验研究[J].中华骨科杂志, 2006, 26(5), 332-335.
    [27]王超,龚宪生.新型无柄股骨假体应力分布的有限元分析[J].医用生物力学, 2006, 21(1): 66—71.
    [28]匡光志,余楠生等.全髋置换前后假体周围骨的应力变化[J].生物医学工程与临床, 2002, l8(4): 266-267.
    [29]马卫华,刘建国.三维图像重建及个体化人工髋关节研究进展及现状[J].骨与关节损伤杂志, 2003, 18(2): 139-141.
    [30]陈作炳,李世普.人工关节三维重建关键技术研究[J].武汉理工大学学报, 2001, 23(3): 38-41.
    [31]薛文东,水汶,张双燕.股骨CT图像的边缘提取[J].上海生物医学工程, 2004, 25(1):27-28.
    [32]朱东,宫赫.骨再造方程中参考激励值的变化对自优化结果的影响[J].吉林工业大学自然科学学报, 2001,第31卷第3期, 41-44.
    [33]凌玲,胡晓斌,王成焘.股骨上段的三维重建[J].医用生物力学, 1995, 10(4): 235-239.
    [34] Cowin SC. The cellular mechanosensory mechanism for new bone formation. Proceedings of the Fourth China-Japan-USA Singapore Conference on Biomechanics. 1995: 53-56.
    [35]刘建国,马卫华等.计算机辅助股骨近段髓腔结构三维重建及个体化股骨假体设计[J].骨与关节损伤杂志, 2003.2, 1(2): 107-110.
    [36]闫玉华,殷湘慧.人工关节的研究现状和发展趋势[J].生物骨科材料与临床研究, 2004.6, 1(4): 39-43
    [37] Crowninshield RD, Brand RA, Johnston RC. An analysis of femoral component stem design in total hip arthroplasty. J Bone Joint Surg. 1980, 62(A):68–78.
    [38]王岩,周勇刚.新型国产JHB人工髋关节置换临床应用初步报告[J].中国矫形外科杂志, 2003,第11卷第19期, 1330-1332.
    [39]沈慧勇,丁悦.股骨上段的测量与股骨假体设计[J].中国临床解剖学杂志, 1999,第17卷第2期, 148-149.
    [40]肖嵩华,郭义柱.人工全髋关节置换术后股骨应力变化的有限元分析[J].军医进修学院学报, 2003, Jun, 24(2): 155-157.
    [41] Brian P. McNamara, David Taylor, Patrick J. Prendergast. Computer prediction of adaptive bone remodelling around noncemented femoral prostheses: the relationship between damage-based and strain-based algorithms. Med. Eng. Phys. 1997, Vol.19, No.5, 454–463.
    [42]罗成刚.股骨三维重建与生物力学特性分析及实验研究[D].重庆大学, 2004.
    [43]康黎云.定制型髋假体的设计方法研究及接触有限元分析[D].重庆大学, 2005.
    [44]陈希瑞.股骨自适应再造仿真研究[D].重庆大学, 2006.
    [45]许金栋.股骨-假体系统中不同物理参数假体对骨重建的影响分析[D].重庆大学, 2007.
    [46]沈观林.复合材料力学[M].第一版清华大学出版社, 1997.31.
    [47] M.Doblare, J.M. Garcia. Anisotropic bone remodelling model based on a continuum amage-repair theory. Journal of biomechanics. 35 (2002): 1-17.
    [48] J.M.Garcia, et al. Bone remodelling simulation: a tool for implant design. Computational Materials Science. 25 (2002): 100-114.
    [49] R.Huiskes et al. Adaptive bone-remodeling theory applied to prosthetic-design analysis. J.Biomechanics. 1987, 20(11/12): 1135-1150.
    [50] Carter DR, Hayes WC. The compressive behavior of bone as a two- phase porous structure. J Bone Joint Surg (Br). 1977, 59A (7): 954-960.
    [51] Savilahti S, Myllyneva I, Pajamaki KJJ, Lindholm TS. Survival of Lubinus straight (IP) and curved (SP) total hip prostheses in 543 patients after 4–13 years. Arch Orthop Trauma Surg. 1997, 116: 10–17.
    [52] Marston RA, Cobb AG, Bentley G. Stanmore compared with Charnley total hip replacement: a prospective study of 413 arthroplasties. J Bone Joint Surg. 1996, 78-B: 78-84.
    [53] Neumann L, Freund KG, Senson KH. Long-term results of Charnley total hip replacement review of 92 patients at 15 to 20 years. J Bone Joint Surg. 1994, 76B: 245-51.
    [54] Delaunay CP, Kapandji AI. Primary total hip arthroplasty with the Karl Zweymuller first-generation cementless prosthesis: a 5 to 9 year retrospective study. J Arthroplasty.1996, 11: 643–52.
    [55] Sotereanos NG, Engh CA, Glassman AH, Macalino GE. Cementless femoral components should be made from cobalt chrome. Clin Orthop. 1995, 313:146–53.
    [56] Wroblewski BM, Sidney PD. Charnley low friction arthroplasty of the hip. Clin Orthop.1993, 292:191–201.
    [57] Harrigan TP, Harris WH. A three-dimensional non-linear finite element study of the effect of cement–prosthesis debonding in cemented femoral total hip components. J Biomech. 1991, 24: 1047–1058.
    [58] Jasty M, Malone WJ, Bragdon CR, O’Connor D, Haire T, Harris WH. The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg.1991, 73B: 551–8.
    [59] Verdonschot N, Huiskes R. The effects of cement–stem debonding in THA on the long-term failure probability of cement. J Biomech. 1997, 30:795–802.
    [60] Dolinski K. Fatigue reliability assessment of cemented hip prosthesis. J Theor Appl Mech. 1999, 3: 505–18.
    [61] Andress HJ, Kahl S, et al. Clinical and finite element analysis of a modular femoral prosthesis consisting of a head and stem component in the treatment of pertrochanteric fractures. J Orthop Trauma.2000, 14(8):546–53.
    [62] Stolk J, Verdonschot N, et al. Stair climbing is more detrimental to the cement in hip replacement than walking. Clin Orthop. 2002: 294–305.
    [63] Lennon AB, McCormack BA, et al. The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses. Med Eng Phys. 2003, 25(10): 833–41.
    [64] Stolk J, Maher SA, et al. Can finite element models detect clinically inferior cemented hip implants? Clin Orthop. 2003(409): 138–150.
    [65] Waide V, Cristofolini L, et al. Modelling the fibrous tissue layer in cemented hip replacements: experimental and finite element methods. J Biomech.2004, 37(1): 13–26.
    [66] Colombi P. Fatigue analysis of cemented hip prosthesis: model definition and damage evolution algorithms. Int J Fatigue. 2002, 24: 895–901.
    [67] Colombi P. Fatigue analysis of cemented hip prosthesis: damage accumulation scenario and sensitivity analysis. Int J Fatigue. 2002, 24: 739–46.
    [68] Viceconti M, Casali M, Massari B. The standardized femur program. J Biomech.1996, 29: 1241–9.
    [69] ANSYS. ANSYS Theory Reference Manual, Release 8.0 ANSYS Inc., 2003.
    [70] Nuno N, Avanzoli G. Residual stress at the stem-cement interface of an idealized cemented hip stem. J Biomech. 2002, 35: 849–52.
    [71] Norman TL, Thyagarajan G, Saligrama VC, Gruen TA, Blaha JD. Stem surface roughness alters creep induced subsidence and‘taperlock’in a cemented femoral hip prosthesis. J Biomech. 2001, 34: 1325–33.
    [72] Chwirut JD. Long term compressive creep deformation and damage in acrylic bone cements. J Biomed Mater Res. 1984, 18: 25–37.
    [73] El-Sheikh HF, MacDonalds BJ, Hashmi MSJ. Material selection in the design of the femoral component of cemented total hip replacement. J Mater Process Technol. 2002, 122: 309–17.
    [74] Teoh SH. Fatigue of biomaterials: a review. Int J Fatigue.2000, 22: 25-37.
    [75]毛宾尧.人工髋关节外科学[M].北京:人民卫生出版社, 2006.
    [76] Von Meyer GH. Die architektur der spongiosa. Arch Anat Physiol Wiss Med, 1867, 34(6): 15-28.
    [77] Wolff Maquet Furlong R. Springer. The Law of Bone Remodeling. Berlin, Das Gesetz der Transformation der Knochen, Kirschwald, 1986.
    [78] Jasty M, Malone WJ, Bragdon CR, O’Connor D, Haire T, Harris WH. The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg. 1991, 73B: 551-558.
    [79]朱兴华,宫赫.弹性模量与表观密度的分段函数关系用于股骨近端的结构模拟[J].中国生物医学工程学报, 2003, 22(3): 250-257.
    [80]朱兴华,张春秋,郭同彤.多载荷下带有生理限定应力的松质骨细观结构模拟[J].中国生物医学工程学报, 2003.2, 22(1): 51-59.
    [81] ZHU XH, Gong H, ZHU D. A study of the effect of nonlinearities in the equation of bone remodeling. Biomechanics, 2002, 35(7): 951–960.
    [82]朱东,董心,刘百奇,庄玲,朱兴华.膝内翻引起胫骨平台内侧骨质增生的模拟[J].中国生物医学工程学报, 2005.8, 24(4): 391-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700