视网膜水平细胞及相关神经元在视网膜变性过程中形态学变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视网膜色素变性(Retinitis pigmentosa, RP)是一组以进行性光感受器或色素上皮功能丧失为共同表现的不可逆神经性致盲眼病,是遗传性视觉损害和盲目的最常见原因之一。近年来对于RP在临床及基础研究方面取得一定进展,但对于在视网膜变性过程中各级神经元的病理改变尚不清楚。
     视网膜水平细胞与视杆双极细胞是视网膜中重要的二级神经元,二者与光感受器在外网状层形成三联体突触和常态突触,在视觉信息的处理与传递中具有关键作用。当视网膜变性发生时,随着光感受器的逐渐凋亡,作为下游神经元的水平细胞与视杆双极细胞首先失去了上游信息的输入,其形态结构会如何变化,其形态的改变是否对下游的第二级突触有无影响。既往有学者对P23H大鼠、视网膜脱离小鼠、rd、rd1、rd10、FVB/N、crx-/-小鼠模型上的研究中发现在变性中期水平细胞树突、视杆双极细胞顶端树突出现萎缩,变性晚期视杆双极细胞与水平细胞产生新的突起并形成了异位突触,异位突触周围有突触标记物环绕。由于既往研究所用动物模型的发病机理各异,得到的结果相差较大,对临床治疗指导作用有限。RCS大鼠是研究视网膜色素变性的经典的动物模型,由于其与人类RP在病因及病程进展等方面有许多相似之处,因此以RCS大鼠为模型来研究视网膜水平细胞与视杆双极细胞在视网膜变性过程中形态学的变化将对RP的临床治疗提供理论基础。
     近年来视网膜移植、视觉假体和视网膜修复性植入策略是拯救视网膜的两种主要策略,我们认为以上策略能否成功的关键第一是受体视网膜中的二、三级神经元在移植时首先须保持稳定的形态结构,第二是供体组织或细胞能与受体视网膜中的二级神经元产生功能性突触连接,第三选择合适的治疗时间窗。所以本实验结果将对RP的基因和分子治疗时间窗的选择、对植入细胞和假体的稳定性、对治疗性前体细胞的整合等都会提供实验依据、理论基础和新的思路。
     本研究采用DiI示踪标记结合视网膜冰冻切片和荧光免疫组织化学染色的方法,来研究RCS大鼠视网膜水平细胞及相关神经元在变性过程中形态学的变化。本研究包括两个部分:
     第一部分:RCS大鼠视网膜水平细胞在变性过程中的形态学变化
     RCS大鼠在视网膜变性的过程中,光感受器和带状突触的数量都在不断减少,这个过程可以持续到出生后90天,光感受器和带状突触的丢失速率比较均匀。P2MRCS大鼠视网膜外核层厚度仅约为对照组的15%,P3M RCS大鼠视网膜外核层仅残余一层细胞核。P1M、P2M RCS大鼠视网膜水平细胞的轴突终末在外网状层的分层未见明显改变,P3M时出现分层改变,不再呈水平线状,出现新生突起并向外核层延伸。DiI示踪标记水平细胞结果分析表明:P1M、P45d RCS大鼠视网膜水平细胞的树突与轴突终末的形态无明显的改变。P2M RCS大鼠视网膜水平细胞的树突与轴突终末的形态出现明显的改变:树突、轴突野明显变小(P<0.05),树突、轴突终末细小分支丢失,树突、轴突终末分支长度比值(RCS大鼠与正常组大鼠水平细胞的树突、轴突终末分支长度比值)明显变小(P<0.05)。
     第二部分:RCS大鼠视网膜视杆双极细胞与无长突细胞在视网膜变性过程中形态学的变化。
     P1M、P45d RCS大鼠视杆双极细胞形态正常,P2M RCS大鼠视杆双极细胞顶端树突萎缩;P3MRCS大鼠视杆双极细胞顶端萌生新的神经突起。无长突细胞的树突在内网状层的分层至变性晚期亦未见改变。
     本研究结论:
     1、RCS大鼠视网膜水平细胞与视杆双极细胞在变性过程中形态的改变是由于光感受器的凋亡引起的继发性反应,其形态的稳定依赖于光感受器。
     2、RCS大鼠视网膜水平细胞与视杆双极细胞形态的改变未影响无长突细胞的树突在内网状层的分层。
Retinitis Pigmentosa (RP) is a group of hereditary retinal degeneration characterized by progressive dysfunction of photoreceptors cells (PRC) and associated with progressive cells loss and eventually atrophy of several retinal layers. It is the common reason of hereditary visual impairment and blindness in clinic. So far, we have made progress on the clinical and basic research in recent years, But the various pathological changes of retinal neurons in the course of RP are not clear.
     Horizontal cell and bipolar cell are the second-order neurons in retinal, they form triad synapses and normal synapses with photoreceptor. They play a key role in visual information processing and transmission. With the gradual reduction of photoreceptors, As the downstream neurons, they begin to lose the upper information input, how they influenced the normal visual information processing and transmission?We would like to know whether the morphology of rod bipolar cell and horizontal cell change when the retinal degeneration occurs. scholars have studied many models on retinal degeneration,such as P23H rat, retinal detachmented mice, rd, rd1, rd10, FVB/N, crx-/- mice, they found that dendrites of rod bipolar cells and horizontal cells shrinked in the medium-term degeneration, they sprouted new processes and formed ectopic synapses late in the degeneration, there were synaptic markers surround around the ectopic synapses. Because there are big difference on pathogenesis betwen previous animal models and human RP, so the guidance of treatment to restore retinal function is limited. There are many similarities in the etiology and progression between the RCS rat and human, RCS rat has been recognized as a classic model of retinitis pigmentosa. Pathological changes of neurons of the RCS rat will provide clues on protection, rescue and rehabilitation of visual function.
     In recent years, retinal transplantation, visual prosthesis and retinal prosthetic implantation are the main strategies to restore the retinal. We believe that the key to the success of these strategies including: (1)The second-order neurons of receptors hould maintain a stable morphological structure; (2) Donor tissue or cells can form functional synaptic connections with receptors; (3)Choose appropriate therapeutic time window. Results of this study will provide experimental evidence, theoretical basis and new ideas to the selection of RP genes and molecular therapeutic time window, the stability of implanted cells and prosthesis and the integration of therapeutic precursor cells.
     Based on the research situation, we adopted retinal frozen sections, immunofluorescence staining and DiI trace labeling to study the morphology changes of horizontal cell and related neurons during retinal degeneration. The study included two parts:
     Part One: Morphology changes of horizontal cells in RCS rat during retinal degeneration
     Photoreceptors and the number of ribbon synapses constantly reduced during the process of retinal degeneration in RCS rat, This process can continue until P90d, photoreceptor and ribbon synapse lost slowly. The thickness of ONL in RCS rats was only 15% of control rats at P2M, and at P3M ONL remained only one layer cells. With the progress of retinal degeneration, at P1M, P45d the axon terminals of horizontal cells had no significant changes. At P3M it changed much and extended to ONL. The results from DiI trace labeling showed that the morphology of dendrites and axon terminals of horizontal cells had no changes at P1M, P45d. However, at P2M they changed significantly: Compared with the normal control group,the field of dendrites and axon terminals became small (P<0.05), the small branches of dendrites and axon terminals lost, and the ratio of dendrite length to axon length also shrinked (P<0.05).
     Part Two: Morphology changes of rod bipolar cells and amacrine cells in RCS rat during retinal degeneration.
     The results showed the top dendrites of rod-bipolar cell atrophy at P2M; At P3M the dendrites sprouted new process in RCS rat. there were no changes of amacrine cells’dendrites lamination in INL till the late stage of retinal degeneration.
     Conclusions:
     1. The morphology changes of horizontal cell and rod bipolar cell in RCS rats are secondary reactions caused by photoreceptor apoptosis, the stabilization of structure is dependent on photoreceptors.
     2. The morphology changes of horizontal cell and rod bipolar cell in RCS rats did not affect the lamination of amacrine cells’dendrites in IPL.
引文
[1] Eisenfeld, A.J., LaVail, M.M. & LaVail, J.H. (1984) Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells.J. Comp. Neurol., 223, 22–34.
    [2] Sheedlo, H.J., Li, L.X. & Turner, J.E. (1989) Functional and structural characteristics of photoreceptor cells rescued in RPE-cell grafted retinas of RCS dystrophic rats. Exp. Eye Res., 48, 841–854.
    [3] Li, L. & Turner, J.E. (1991) Optimal conditions for long-term photoreceptor cell rescue in RCS rats: the necessity for healthy RPE transplants. Exp. Eye Res., 52, 669–679.
    [4] Lin, N., Fan, W., Sheedlo, H.J., Aschenbrenner, J.E. & Turner, J.E. (1996) Photoreceptor repair in response to RPE transplants in RCS rats: outer segment regeneration. Curr. Eye Res., 15, 1069–1077.
    [5] Little, C.W., Castillo, B., DiLoreto, D.A., Cox, C., Wyatt, J., del Cerro, C. & del Cerro, M. (1996) Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina. Invest. Ophthalmol. Vis. Sci., 37, 204–211.
    [6] LaVail, M.M. (2001) Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog. Brain Res., 131, 617–627.
    [7] Lund, R.D., Adamson, P., Sauve, Y., Keegan, D.J., Girman, S.V., Wang, S., Winton, H., Kanuga, N., Kwan, A.S., Beauchene, L., Zerbib, A., Hetherington, L., Couraud, P.O., Coffey, P. & Greenwood, J. (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc. Natl Acad. Sci., USA, 98, 9942–9947.
    [8] Lund, R.D., Ono, S.J., Keegan, D.J. & Lawrence, J.M. (2003) Retinal transplantation: progress and problems in clinical application. J. Leukoc.Biol., 74, 151–160.
    [9] Vollrath, D., Feng, W., Duncan, J.L., Yasumura, D., D’Cruz, P.M., Chappelow. A., Matthes, M.T., Kay, M.A. & LaVail, M.M. (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk.Proc. Natl Acad. Sci., USA,98, 12584–12589.
    [10] Strettoi E, Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc. Natl Acad. Sci., USA, 2000,97(20):11020–11025.
    [11] Cuenca N, Pinilla I, Sauve Y, Lu B, Wang S, Lund RD. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 2004;127(2):301–317.
    [12] Park SJ, Kim IB, Choi KR, Moon JI, Oh SJ, Chung JW, Chun MH. Reorganization of horizontal cell processes in the developing FVB ? N mouse retina. Cell Tissue Res, 2001,306(2): 341–346.
    [13] Pignatelli V, Cepko CL, Strettoi E. Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J Comp. Neurol., 2004, 469(3): 351–359.
    [14] D’Cruz, P.M., Yasumura, D., Weir, J., Matthes, M.T., Abderrahim, H., LaVail, M.M. & Vollrath, D. (2000) Mutation of the receptor tyrosine kinase gene (Mertk) in the retinal dystrophic RCS rat. Hum. Mol. Genet., 9, 645–651.
    [15] Andreas G, Li Y, Thomp son DA. (2000).Mutations in MERTK, the human orthologue of the RS rat retinal dystrophy gene, cause retinitis pigmentosa[ J ]. Nature genet, 26:270– 271.
    [16] Sylla, E. & Vollrath, D. (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature Genet., 26, 270–271
    [17] Davidorf, F.H., Mendlovic, D.B., Bowyer, D.W., Gresak, P.M., Foreman, B.C., Werling, K.T. & Chambers, R.B. (1991) Pathogenesis of retinal dystrophy in the Royal College of Surgeons rat. Ann. Ophthalmol., 23, 87–94.
    [18] Dowling, J.E. & Sidman, R.L. (1962) Inherited retinal dystrophy in the rat. J. Cell Biol., 14, 73–109
    [19] Eisenfeld, A.J., LaVail, M.M. & LaVail, J.H. (1984) Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells. J. Comp. Neurol., 223, 22–34.
    [20] Tso, M.O., Zhan, G.C., Abler, A.S., Chang, C.J., Wong, F., Chang, G.Q. & Lam, T.T. (1994) Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy ofRCS rats. Invest. Ophthalmol. Vis. Sci., 35,2693–2699.
    [21] Lue CL. (1994).Rod cell activity in retinal degenerative rats[ J ]. J FormosMed Assoc, 93:605– 610.
    [22] Bourne, M.C., Campbell, D.A. & Tansley, K. (1938) Hereditary degeneration of the rat retina. Br. J. Ophthalmol., 122, 613–623.
    [23] Dowling, J.E. & Sidman, R.L. (1962) Inherited retinal dystrophy in the rat. J. Cell Biol., 14, 73–109
    [24] Dowling, JE. The retina: an approachable part of the brain. Belknap-Harvard; Cambridge, MA: 1987.
    [25] Peichl L, Gonzalez-Soriano J. Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 1994;11(3):501–17.
    [26] Marc, R.W., Murry, R.F., Fisher, S.K., Linberg, K.A., Lewis, G.P. (1998). Amino acid signatures in the detached cat retina. Invest.Ophthalmol. Vis. Sci. 39:1694–1702.
    [27] Marc, R.W., Jones, B.W., Watt, C.B., Strettoi, E. (2003). Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22:607–655.
    [28] Lewis, G. P., Linberg, K. A., & Fisher, S. K. (1998). Neurite outgrowth from bipolar and horizontal cells after experimental retinal detachment. Investigative Ophthalmology and Visual Science,39:424–434.
    [29] Strettoi, E., & Pignatelli, V. (2000). Modifications of retinal neurons in a mouse model of retinitis pigmentosa. In: Proceedings of the National Academy of Sciences of the USA, Vol. 97, pp. 11020–11025.
    [30] Strettoi, E., Porciatti, V., Falsini, B., Pignatelli, V., & Rossi, C. (2002). Morphological and functional abnormalities in the inner retina of the rd/rd mouse. Journal of Neuroscience, 22:5492–5504.
    [31] Strettoi, E., Pignatelli, V., Rossi, C. Falsini, B., Porciatti, V. (2003).Remodeling of second-order neurons in the retina of rd/rd mutant mice. Journal of Vision Research 43:867–877.
    [32] Gargini,C., Eva Terzibasi,E., Mazzoni,F. , & Strettoi,E. (2007). Retinal Organization in the retinal degeneration 10 (rd10) Mutant Mouse: a Morphological and ERG Study J Comp Neurol. January 10; 500(2): 222–238. doi:10.1002/cne.2114
    [33] Park, S.J., Kim, I.B., Choi, K.R., Moon, J.I., Oh, S.J., Chung, J.W. & Chun, M.H.(2001) Reorganization of horizontal cell processes in the developing FVB ? N mouse retina. Cell Tissue Res., 306, 341–346.
    [34] Pignatelli, V., Cepko, C.L. & Strettoi, E. (2004) Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J. Comp. Neurol., 469, 351–359.
    [35] Rembold M, Loosli F, Adams RJ,et al .Individual cell migration serves as the driving force for optic vesicle evagination. Science. 2006 25;313(5790):1130-4
    [36] Jadhav AP, Cho SH, Cepko CL. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A. 2006 12;103(50):18998-18903
    [37] Steven K. Fisher, Geoffrey P. Lewis, Kenneth A. Linberg, Mark R. Verardo. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Progress in Retinal and Eye Research 2005,24:395-431
    [38] Peng Y.-W., Senda T., Hao Y., Matsuno K., Wong F. Ectopic synaptogenesis during retinal degeneration in the Royal College of Surgeons Rat.Neuroscience2003, 119: 813–820
    [39] Bryan W Jones,Carl B Watt ,Robert E Marc . Retinal remodeling. Clin Exp Optom 2005; 88: 5: 282–291
    [40] Bryan W. Jones, Robert E. Marc. Retinal remodeling during retinal degeneration. Experimental Eye Research2005, 81: 123–137
    [41] Woolley, CS (1999) Structural plasticity of dendrites. In: Dendrites (Stuart G, Spruston N, Hausser M, eds), pp 339–364. New York:Oxford University Press.
    [42] Enrica Strettoi, Alan J. Mears, and Anand Swaroop. Recruitment of the Rod Pathway by Cones in the Absence of Rods. The Journal of Neuroscience, August 25, 2004 ? 24(34):7576–7582
    [43] Chu, Y., Humphrey, M. F., & Constable, I. J. (1993). Horizontal cells of the normal and dystrophic rat retina: a wholemount study using immunolabelling for the 28-kDa calcium-binding protein. Experimental Eye Research, 57:141–148.
    [44] Kwan, A.S.L., Wang, S. & Lund, R.D. Photoreceptor layer reconstruction in rodent model of retinal degeneration. Exp. Neurol., 1999,159(1):21-33.
    [45] Nicola′s Cuenca, Isabel Pinilla, Yves Sauve′& Raymond Lund. Early changes in synaptic connectivity following progressive photoreceptor degeneration in RCS rats.European Journal of Neuroscience, Vol. 22, pp. , 2005,22(5):1057–1072.
    [46] Robert E. Marc, Bryan W. Jones, Carl B. Watt, Enrica Strettoi. Neural remodeling in retinal degeneration[ J ]. Progress in Retinal and Eye Research,2003, 22(5): 607–655
    [47] Jones BW, Watt CB, Frederick JM, et al. Retinal remodeling triggered by photoreceptor degenerations[ J ].Comp Neurol, 2003 ,464(1):1-16
    [48] Jones BW, Watt CB, Marc RE. Retinal remodelling[ J ]. Clin. Exp.Optom, 2005,88(5): 282-291.
    [49] Fisher SK, Lewisa GP, Linberga KA, Verardoa MR. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment[ J ]. Prog Retin Eye Res, 2005,24(3): 395-431.
    [50] Marc RE, Jones BW, Watt CB, Strettoi E. Neural remodeling in retinal degeneration[ J ]. Prog Retin Eye Res, 2003,22(5): 607-655.
    [51] Jones BW, Marc RE. Retinal remodeling during retinal degeneration[J]. Exp Eye Res, 2005, 81(2): 123-137.
    [52] Liets LC, Eliasieh K, Van Der List DA, Chalupa LM (2006) Dendrites of rod bipolar cells sprout in normal aging retina. Proceedings of the National Academy of Sciences 103:12156.
    [53] Peng YW, Hao Y, Petters RM, Wong F (2000) Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nature neuroscience 3:1121-1127.
    [54] Fariss, R. N., Li, Z.Y., & Milam, A. H. (2000).Abnormalities in rod photoreceptors, amacrine cells and horizontal cells in human retinas with retinitis pigmentosa. American Journal of Ophthalmology,129:215–223.
    [55] Margolis DJ, Newkirk G, Euler T, Detwiler PB (2008) Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. Journal of Neuroscience 28:6526.
    [56] Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. Journal of Neuroscience 28:14282
    [57] Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B (2007) Local retinal circuits of melanopsin-containing ganglion cellsidentified by transsynaptic viral tracing. Current Biology 17:981-988.
    [58] Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proceedings of the National Academy of Sciences 105:16009.
    [59] Zhang Y, Ivanova E, Bi A, Pan ZH (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. Journal of Neuroscience 29:9186.
    [1] Eisenfeld, A.J., LaVail, M.M. & LaVail, J.H. (1984) Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells.J. Comp. Neurol., 223, 22–34.
    [2] Sheedlo, H.J., Li, L.X. & Turner, J.E. (1989) Functional and structural characteristics of photoreceptor cells rescued in RPE-cell grafted retinas of RCS dystrophic rats. Exp. Eye Res., 48, 841–854.
    [3] Li, L. & Turner, J.E. (1991) Optimal conditions for long-term photoreceptor cell rescue in RCS rats: the necessity for healthy RPE transplants. Exp. Eye Res., 52, 669–679.
    [4] Lin, N., Fan, W., Sheedlo, H.J., Aschenbrenner, J.E. & Turner, J.E. (1996) Photoreceptor repair in response to RPE transplants in RCS rats: outer segment regeneration. Curr. Eye Res., 15, 1069–1077.
    [5] Little, C.W., Castillo, B., DiLoreto, D.A., Cox, C., Wyatt, J., del Cerro, C. & del Cerro, M. (1996) Transplantation of human fetal retinal pigment epithelium rescues photoreceptor cells from degeneration in the Royal College of Surgeons rat retina. Invest. Ophthalmol. Vis. Sci., 37, 204–211.
    [6] LaVail, M.M. (2001) Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases. Prog. Brain Res., 131, 617–627.
    [7] Lund, R.D., Adamson, P., Sauve, Y., Keegan, D.J., Girman, S.V., Wang, S., Winton, H., Kanuga, N., Kwan, A.S., Beauchene, L., Zerbib, A., Hetherington, L., Couraud, P.O., Coffey, P. & Greenwood, J. (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc. Natl Acad. Sci., USA, 98, 9942–9947.
    [8] Lund, R.D., Ono, S.J., Keegan, D.J. & Lawrence, J.M. (2003) Retinal transplantation: progress and problems in clinical application. J. Leukoc.Biol., 74, 151–160.
    [9] Vollrath, D., Feng, W., Duncan, J.L., Yasumura, D., D’Cruz, P.M., Chappelow. A., Matthes, M.T., Kay, M.A. & LaVail, M.M. (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk.Proc. Natl Acad. Sci., USA,98, 12584–12589.
    [10] Strettoi E, Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc. Natl Acad. Sci., USA, 2000,97(20):11020–11025.
    [11] Cuenca N, Pinilla I, Sauve Y, Lu B, Wang S, Lund RD. Regressive and reactive changes in the connectivity patterns of rod and cone pathways of P23H transgenic rat retina. Neuroscience 2004;127(2):301–317.
    [12] Park SJ, Kim IB, Choi KR, Moon JI, Oh SJ, Chung JW, Chun MH. Reorganization of horizontal cell processes in the developing FVB ? N mouse retina. Cell Tissue Res, 2001,306(2): 341–346.
    [13] Pignatelli V, Cepko CL, Strettoi E. Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J Comp. Neurol., 2004, 469(3): 351–359.
    [14] D’Cruz, P.M., Yasumura, D., Weir, J., Matthes, M.T., Abderrahim, H., LaVail, M.M. & Vollrath, D. (2000) Mutation of the receptor tyrosine kinase gene (Mertk) in the retinal dystrophic RCS rat. Hum. Mol. Genet., 9, 645–651.
    [15] Andreas G, Li Y, Thomp son DA. (2000).Mutations in MERTK, the human orthologue of the RS rat retinal dystrophy gene, cause retinitis pigmentosa[ J ]. Nature genet, 26:270– 271.
    [16] Sylla, E. & Vollrath, D. (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature Genet., 26, 270–271
    [17] Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG, Apfelstedt-Sylla E, ollrath D (2000) Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nature genetics 26:270-271.
    [18] Vollrath D, Feng W, Duncan JL, Yasumura D, D'Cruz PM, Chappelow A, Matthes MT, Kay MA, LaVail MM (2001) Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proceedings of the National Academy of Sciences of the United States of America 98:12584.
    [19] Davidorf, F.H., Mendlovic, D.B., Bowyer, D.W., Gresak, P.M., Foreman, B.C., Werling, K.T. & Chambers, R.B. (1991) Pathogenesis of retinal dystrophy in the Royal College of Surgeons rat. Ann. Ophthalmol., 23, 87–94.
    [20] Dowling, J.E. & Sidman, R.L. (1962) Inherited retinal dystrophy in the rat. J. CellBiol., 14, 73–109
    [21] Eisenfeld, A.J., LaVail, M.M. & LaVail, J.H. (1984) Assessment of possible transneuronal changes in the retina of rats with inherited retinal dystrophy: cell size, number, synapses, and axonal transport by retinal ganglion cells. J. Comp. Neurol., 223, 22–34.
    [22] Tso, M.O., Zhan, G.C., Abler, A.S., Chang, C.J., Wong, F., Chang, G.Q. & Lam, T.T. (1994) Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest. Ophthalmol. Vis. Sci., 35,2693–2699.
    [23] Lue CL. (1994).Rod cell activity in retinal degenerative rats[ J ]. J FormosMed Assoc, 93:605– 610.
    [24] Bourne, M.C., Campbell, D.A. & Tansley, K. (1938) Hereditary degeneration of the rat retina. Br. J. Ophthalmol., 122, 613–623.
    [25] Dowling, J.E. & Sidman, R.L. (1962) Inherited retinal dystrophy in the rat. J. Cell Biol., 14, 73–109
    [26] Dowling, JE. The retina: an approachable part of the brain. Belknap-Harvard; Cambridge, MA: 1987.
    [27] Peichl L, Gonzalez-Soriano J. Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 1994;11(3):501–17.
    [28] Robert E. Marc, Bryan W. Jones, Carl B. Watt, Enrica Strettoi. Neural remodeling in retinal degeneration. Progress in Retinal and Eye Research2003, 22 : 607–655
    [29] Jones BW, Watt CB, Frederick JM, et al. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol. 2003;464:1-16.
    [30] Peng YW, Hao Y, Petters RM, Wong F (2000) Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nature neuroscience 3:1121-1127.
    [31] Liets LC, Eliasieh K, Van Der List DA, Chalupa LM (2006) Dendrites of rod bipolar cells sprout in normal aging retina. Proceedings of the National Academy of Sciences 103:12156.
    [32] Strettoi, E., Pignatelli, V., Rossi, C. Falsini, B., Porciatti, V. (2003).Remodeling of second-order neurons in the retina of rd/rd mutant mice. Journal of Vision Research 43:867–877.
    [33] Strettoi, E., Porciatti, V., Falsini, B., Pignatelli, V., & Rossi, C. (2002). Morphological and functional abnormalities in the inner retina of the rd/rd mouse. Journal of Neuroscience, 22:5492–5504.
    [34] Rembold M, Loosli F, Adams RJ,et al .Individual cell migration serves as the driving force for optic vesicle evagination. Science. 2006 25;313(5790):1130-4
    [35] Jadhav AP, Cho SH, Cepko CL. Notch activity permits retinal cells to progress through multiple progenitor states and acquire a stem cell property. Proc Natl Acad Sci U S A. 2006 12;103(50):18998-18903
    [36] Steven K. Fisher, Geoffrey P. Lewis, Kenneth A. Linberg, Mark R. Verardo. Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Progress in Retinal and Eye Research 2005,24:395-431
    [37] Peng Y.-W., Senda T., Hao Y., Matsuno K., Wong F. Ectopic synaptogenesis during retinal degeneration in the Royal College of Surgeons Rat.Neuroscience2003, 119: 813–820
    [38] Bryan W Jones,Carl B Watt ,Robert E Marc . Retinal remodeling. Clin Exp Optom 2005; 88: 5: 282–291
    [39] Bryan W. Jones, Robert E. Marc. Retinal remodeling during retinal degeneration. Experimental Eye Research2005, 81: 123–137
    [40] Woolley, CS (1999) Structural plasticity of dendrites. In: Dendrites (Stuart G, Spruston N, Hausser M, eds), pp 339–364. New York:Oxford University Press.
    [41] Enrica Strettoi, Alan J. Mears, and Anand Swaroop. Recruitment of the Rod Pathway by Cones in the Absence of Rods. The Journal of Neuroscience, August 25, 2004 ? 24(34):7576–7582
    [42] Fariss, R. N., Li, Z.Y., & Milam, A. H. (2000).Abnormalities in rod photoreceptors, amacrine cells and horizontal cells in human retinas with retinitis pigmentosa. American Journal of Ophthalmology,129:215–223.
    [43] Peng Y.-W., Senda T., Hao Y., Matsuno K., Wong F. Ectopic synaptogenesis during retinal degeneration in the Royal College of Surgeons Rat.Neuroscience2003, 119: 813–820
    [44] Gargini,C., Eva Terzibasi,E., Mazzoni,F. , & Strettoi,E. (2007). Retinal Organization in the retinal degeneration 10 (rd10) Mutant Mouse: a Morphological and ERG StudyJ Comp Neurol. January 10; 500(2): 222–238. doi:10.1002/cne.2114
    [45] Margolis DJ, Newkirk G, Euler T, Detwiler PB (2008) Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input. Journal of Neuroscience 28:6526.
    [46] Mazzoni F, Novelli E, Strettoi E (2008) Retinal ganglion cells survive and maintain normal dendritic morphology in a mouse model of inherited photoreceptor degeneration. Journal of Neuroscience 28:14282
    [47] Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Current Biology 17:981-988.
    [48] Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proceedings of the National Academy of Sciences 105:16009.
    [49] Zhang Y, Ivanova E, Bi A, Pan ZH (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. Journal of Neuroscience 29:9186.
    [50] Jones BW, Watt CB, Marc RE. (2005). Retinal remodelling. Clin. Exp.Optom.,88(5): 282-291.
    [51] Fisher SK, Lewisa GP, Linberga KA, Verardoa MR. (2005).Cellular remodeling in mammalian retina: results from studies of experimental retinal detachment. Prog Retin Eye Res, 24: 395-431.
    [52] Marc RE, Jones BW, Watt CB, Strettoi E. (2003).Neural remodeling in retinal degeneration. Prog Retin Eye Res, 22: 607-655.
    [53] Jones BW, Marc RE.(2005).Retinal remodeling during retinal degeneration. Exp Eye Res, 81: 123-137.
    [54] MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A, Sowden JC, Ali RR (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203-207.
    [55] Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM, Pan ZH (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50:23-33.
    [56] Lagali PS, Balya D, Awatramani GB, Murch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nature neuroscience 11:667-675.
    [57] Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proceedings of the National Academy of Sciences 105:16009.
    [58] Zhang Y, Ivanova E, Bi A, Pan ZH (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. Journal of Neuroscience 29:9186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700